Asymptotic optimality of multi-action restless bandits

David Hodge
Kevin Glazebrook

The University of Nottingham
&
Lancaster University

November 26th 2010
YEQT IV, EURANDOM, Eindhoven
Multi-armed bandits

History
Multi-armed bandits date back to times long before the term was coined.

What are they?
- A collection of n reward-generating objects;
- Rewards are incurred in continuous time;
- **Action/Decision**: which objects to activate at each timestep?
- Reward rates depend on current state and action;
- Markovian dynamics also depend on whether a state is active or passive;

Applications? **Everywhere in stochastic control!**
- Natural, obvious, direct uses in queues, and machine maintenance;
- Also in financial decision making;
- A very wide variety of MDPs.
The problem

To optimally determine a dynamic policy of activation decisions, at each system state, which bandit to activate and leave all other bandits passive. Passive \Rightarrow no change in state!

What does optimally mean above?

- Discounted rewards (over infinite horizon);
- Long-run average rewards.

Examples

- Drug trials – which drug to use on the next patient?
- Single server queue with holding costs – which class to serve next?
Optimality of Gittins

Theorem

The solution, \(\pi \), maximizing

\[
V_\pi = E_\pi \left[\sum_{t=0}^{\infty} \beta^t R_{j(t)}(x_j(t)(t)) \mid x(0) = x \right],
\]

is characterized by index functions \(\mathcal{I}^j(\cdot) \) for each bandit \(j \in \{1, \ldots, n\} \).

Optimal policy \(\pi \) acts on bandit \(j \) at time \(t \) if

\[
\mathcal{I}^j(x_j(t)) = \max_{1 \leq i \leq n} \mathcal{I}^i(x_i(t))
\]

Note:

- One active bandit at each time;
- Passive bandits are fixed.
Subsidy problem approach (primarily Whittle)
Various proofs from Gittins, Jones, Weber, Whittle

The retirement option

- Introduce a new bandit with fixed constant reward W;
- Equivalent to a reward W for passivity;
- Characterize the value function in terms of W;
- Identify the value function as a solution to the original DP, for appropriate W.

Optimality?

- When only one active choice, yes!
- More than one active bandit, no! (Sometimes yes)
Restless bandits

What are they?

- Passive bandits can evolve;
- Passive bandits reward rates now matter (previously could be reassigned and neglected);
- We consider discrete state space restless bandits.

How much harder?

- Tsitsiklis & Papadimitriou showed PSPACE-hard. This is (probably!) worse than NP-Hard.

Applications?

Far too many to list!
Whittle approach for restless bandits

What’s been tried?
- W-subsidy approach still applies;
- Equivalent to rewarding W for being passive;
- (or $-W$ if minimizing some costs)
- Index policies no longer necessarily optimal.
- Conjecture of asymptotic result...false! (Weber & Weiss 1990)

How do indices arise?
- Introduce passivity reward W;
- Bandits become independent;
- Lagrangian relaxation attains optimum (with W);
- Index = Fair charge = W value at which optimal policy changes;
- Indexability: passive set monotone increasing in W.
Model

- Define a bandit on a finite state space \(\{1, 2, \ldots, k\} \);
- Take \(n \) copies of this bandit;
- **Two** actions: active or passive for each bandit;
- Reward rate \(g(i, a) \) in state \(i \) under action \(a \);
- Long-run average reward objective;
- \(m \) of \(n \) bandits can be activated with \(m \approx \alpha n \), \(\alpha \in (0, 1) \);
- Different Markovian evolution matrices for active or passive.

Conjecture

If the bandits are indexable then the policy which, in each state, activates the \(m \) indices with current highest value, achieves asymptotically optimal reward per bandit as \(n \to \infty \) with \(m/n \to \alpha \).

False! (rarely and by very little)
Overview

- Two problems: hard constraint \(m = \alpha n \), relaxed constraint \(\mathbb{E}m = \alpha n \);
- Inequalities:

\[
R_{\text{ind}}^{(n)}(\alpha) \leq R_{\text{opt}}^{(n)}(\alpha) \leq R_{\text{rel}}^{(n)}(\alpha) = nr(\alpha);
\]

- Inequality 2 is a per bandit (i.e. \(\div n \)) equality – relaxing \(m = \alpha n \) to \(\mathbb{E}m = \alpha n \) doesn’t improve reward per bandit;
- Indexability is not sufficient for 1 to be an order \(n \) equality;
- Indexability plus global attraction of a fluid limit differential equation \(\Rightarrow \) asymptotic optimality.
Weber & Weiss provide a (hard sought) counterexample above. Constructing an indexable bandit not satisfying the differential equation condition on four states.

Theorem

Global attraction of a unique solution to the derived fluid limit differential equation in two and three dimensions is guaranteed.

Question: What happens if we extend the action space?

More than just active, 1, or passive, 0, …

- Does indexability still make sense?
- What constraints are natural?
- Do we have asymptotic optimality?

Before we address these we ask ‘What more has been shown?’
Intervening years – application areas

Areas with an interest – 1990 to present

- ADP/LP relaxations: Exploration v Exploitation (Powell)
- Bandwidth allocation
- Complexity (Papadimitriou & Tsitsiklis)
- Maintenance (Glazebrook)
- Military applications: primarily target selection
- Network optimization
- PCLs, high-level abstract indexability (Niño-Mora)
- Revenue management: esp. retail (Caro & Gallien)
- Optimal search: e.g. the Cow-path problem
- Sensor management
- Warranties (Glazebrook)
- More general resource allocation (Glazebrook, Niño-Mora)

Around 100 references from works in a wide variety of areas.
More general resource allocation
Multi-action bandits

Model
- Multiple levels of activity;
- Extended Markovian dynamics;
- Varying resource consumption;
- More general resource constraints.

Summary
- Niño-Mora: very general, gives heuristics with knapsack concerns;
- Glazebrook, Hodge, Kirkbride:
 - Indexability of multi-action restless bandits – server pools & replenishment;
 - Performance evaluation of index heuristics;
 - Indexability under state dependent resource consumption.
Multi-action asymptotic framework

Model

- Define a bandit on a finite state space \(\{1, 2, \ldots, k\} \);
- Take \(n \) copies of this bandit;
- Many actions: \(a \in \{0, 1, 2, \ldots, A\} \) for each bandit;
- Reward rate \(g(i, a) \) in state \(i \) under action \(a \);
- Long-run average reward objective;
- \(m \) units of activity to use across \(n \) bandits – i.e. \(m \cong \beta n, \beta \in (0, A) \);
- Different Markovian evolution matrices depending on action \(a \).
What does indexability mean?

Multi-action finite state restless bandit

- Decouple bandits with W-passivity relaxation (equivalently mean usage constraint);
- We’re talking state-wise monotonicity of bandit optimal policy in a W-passivity relaxation;
- In a given state x:
 - at high W we use a low action,
 - at low W we use a high action;
- Given x, we see W-values at which the optimal policy transitions between actions a;
- $I(x, a) \equiv I_x(a) =$ value of W at which optimal policy is indifferent between a and $a - 1$;
- $\forall x$, $I_x(1) \geq I_x(2) \geq I_x(3) \geq \ldots \geq I_x(A)$ (indexability).
Asymptotic optimality of greedy index policy

New result

Theorem

If we take \(n \) copies of an indexable restless bandit (as previously described), and if the fluid limit differential equation for the proportion of bandits in each state has a single-point limit set, then the greedy multi-action index policy agrees with both the strict resource constraint and relaxed constraint problems in average reward per bandit:

\[
\lim_{n \to \infty} \frac{R_{\text{ind}}^{(n)}(\beta)}{n} = \lim_{n \to \infty} \frac{R_{\text{opt}}^{(n)}(\beta)}{n} = r(\beta).
\]
Stage 1: Establish that $R_{opt}^{(n)}(\beta) \sim R_{rel}^{(n)}(\beta)$ – difference is $o(n)$

You can modify the Weber & Weiss argument:

- **Bright idea:** Consider the evolution of n bandits under the optimal relaxed policy;
- **Zoom in on a single bandit** and observe its equilibrium π on $\{1, 2, \ldots, k\}$;
- **Now make rational** (\mathbb{Q}) assumptions, incl. n such that $n\pi_i \in \mathbb{N}$;
- **Now start n bandits** from $x^* \in \{1, 2, \ldots, k\}^n$ mirroring π;
- **The relaxed optimal policy** will use exactly βn: use that policy for fixed time δ. A suboptimal, feasible(!), policy for the hard constraint which almost achieves $r(\beta)$ per bandit.

Theorem

This establishes that asymptotically the strict $m = \beta n$ and $\mathbb{E}m = \beta n$ problems have the same reward per bandit.
Stage 2: Evaluate the greedy index policy

- Space scaling $\Rightarrow z^{(n)} \in [0, 1]^k$ with jumps of size $1/n$;
- Time scaling \Rightarrow rates of $z^{(n_1)} \sim$ rates of $z^{(n_2)}$ for all n_1, n_2;
- For a known set of indices $\mathcal{I}_x(a)$ the evolution of $z^{(n)}$ under the index policy can be compared with a ‘piecewise not-quite-linear’ k-dimensional differential equation:
 \[
 \frac{dz}{dt} = \sum_{i,j} z_i \phi_i(z, \lambda_{ij}(\cdot))e_{ij}.
 \]
- ‘$\|z^{(n)}(t) - z(t)\|$ is small’ (same mean rewards);
- Idea: Identify the relaxed single-bandit equilibrium π from earlier as a stationary point!
- Indexability \Rightarrow uniqueness of stationary point.
Motivating areas

Direct:
- Many flows models in communication networks;
- Large scale bandit problems.

Indirect:
- Theoretical justification that greedy index-based heuristics are strong;
- Motivation to study approaches to NP-Hard bandit problems via approximations with index-interpretations;
- Problems in the many diverse areas mentioned earlier now may have a much closer class of problems with known asymptotically optimal policies.
Open questions

Where now?

- Can we quantify suboptimality in counterexamples? (Likely yes!) How large suboptimality?
- Infinite bandit state spaces?
Thank you