A Non-Parametric Bayesian AR Model – Application to DNA-sequencing

Maria Anna Di Lucca1 Peter Müller2 Yuan Ji3

1Department of Decision Science Bocconi University, Italy
2Department of Biostatistics MD Anderson Cancer Center, Texas
3Department of Bioinformatics MD Anderson Cancer Center, Texas

November, 8th 2010
High-throughput sequencing

- High-throughput sequencing reads 10^9 base pairs per run.
- Many problems calls for solutions, we concentrate on Base Calling.
- Base-Calling: map (4 dim) intensity measurements, y_t into base $k_t \in \{A, C, G, T\}$.
- Ideally the intensity corresponding to the correct base is highest.
- DNA is arranged in short segments of length 36 bases pairs (= colony)
Observed DNA-Sequencing dataset

- dataset references: short DNA fragments of 36 bases each, \(i = 1, 2, \ldots, 36 (=\text{colony}) \).
- Each colony corresponds to a DNA segment with 36 bases.
- For each base there are four fluorescence intensities
 \(y_t = (y_{t1}, y_{t2}, y_{t3}, y_{t4}) \) (ideally the intensity corresponding to \(k_t \) is the highest).

There are three kind of noises: *phasing*, *fading* and *cross-talk* between the channels.
Compare DNA-Sequencing Dataset with true bases

- Data: 4 dim measurements $y_t \in \mathbb{R}^4$
- Truth: time basis $k_t \in \{A, C, G, T\}$

Figure: It is the subset (350×4) of the complete dataset with (35000×4). The different colors come from the true sequences. There is evidence of cross-talk between the channels.
Previous Parametric Studies

Ji and all (2010) defined a multivariate mixture of 4 Normals to model the DNA-sequencing:

\[y_t \sim \sum_{j=1}^{4} P(k_t = j) N_4(\mu_j, \alpha y_{t-1,j}, \Sigma_j) \]

for \(t = 2, \ldots, 36 \)

- We will replace \(N(.,.) \) assumption by a non-parametric model.
We propose a non-parametric Bayesian autoregression for a sequence \(\{y_t\} \).

\[
y_t \mid y_{t-1} = y \sim \sum_{j=1}^{4} p_j F_j^y
\]

We introduce a family of unknown random probability measures

\[
\mathcal{F}_j \equiv \{F^j_{y,i}(\cdot); y \in \mathbb{R}^4, i \in 1, 2, \ldots, 36, j \in 1, 2, 3, 4\}
\]

with a DDP prior \(P(\mathcal{F}_j) \)

\[
F^j_{y,i} = \sum_{h=1}^{\infty} \omega^j_h N_4(\theta^j_h(y, i), \Sigma_j)
\]

DDP with common weights across \(y \)
Summary

- $y_t \mid y_{t-1} = y \sim \sum_{j=1}^{4} p_j F_{y,i}^j$

or $y_t \mid y_{t-1} = y, k_t = j \sim F_{y,i}^j$

where $P(k_t = j) = p_j$

- $F_{y,i}^j = \sum_{h=1}^{H} \omega_{h}^j N_4(\theta_{h}^j(y, i), \Sigma_j)$

or

$y_t \mid y_{t-1} = y, r_t = h \sim \sum_{j=1}^{J} p_j N_4(\alpha_{h}^j \times y_{t-1} + e^{-\lambda i \gamma} \beta_{h}^j, \Sigma_j)$
DDP-VAR(1) model for DNA-Sequencing

\[y_t \mid y_{t-1} = y, r_t = h, k_t = j \sim N(\theta^j_h(y, i), \Sigma_j) \]

\[\theta^j_h(y, i) = \alpha^j_h \times y + \beta^j_h e^{-\lambda t^\gamma} \]

\[P(r_t = h) = w_h \]
\[P(k_t = j) = p_j \]
\[(\beta^j_h, \alpha^j_h) \sim G^0_j(\beta^j_h, \alpha^j_h) \]

- \(\beta^j_h \sim N_4(m_\beta, \Sigma_\beta) \)
- \(\alpha^j_h \sim N_4(m_\alpha, \Sigma_\alpha) \)
- \(\beta^j_h \) and \(\alpha^j_h \) are independent
First Results on the Dataset

Figure: The elipses = a posterior draw for $\alpha_h^j, \beta_h^j, \Sigma_j$; the yellow are for A ($j = 1$), The light blue are for C ($j = 2$), the grey for G ($j = 3$) and the pink for T ($j = 4$).
A Simulated Dataset

Figure: These plots show simulated data. The form and the position show the absence of exchangeability.
Correct vs Wrong Labels k_t

Figure: The blue barplot counts the number of true base calls and the red barplot the number of the wrong labels.
Remarks

- This is a natural consequence of the ANOVA DDP for linear models.

- The innovation is the extension to the time series problems.

- The flexibility of the model is useful for real problems.