Worldwide Spreading of Economic Crises

Panos Argyrakis Department of Physics University of Thessaloniki 54124 Thessaloniki Greece <u>panos@physics.auth.gr</u> http://kelifos.physics.auth.gr

MODEL

- view the world as a network of all countries
- each country is a node ~ 200 nodes
- connection between nodes: economic relations
- fully connected network?
 answer = no
- all connections are one-way, with specific weight
- k-shell decomposition method to rank countries
- start a crisis on a single node
- allow the crisis to propagate throughout the network
- use simple propagation model, e.g. SIR model
- monitor countries that are affected

DATA

• CON (Corporate Ownership Network):

4000 world corporations with the highest turnover with 616000 direct or indirect subsidiaries: network of 206 countries

 ITN (International Trade Network):
 Detailed information about international trade (import-export) between 82 countries

CON network

• Total link weight

$$w_{tot}^{(ij)} = w_{ij} + w_{ji}$$

• Total node weight

$$\widetilde{w}_{tot}^{i} = \sum_{j} w_{ij} + \sum_{j} w_{ji}$$

GDP vs Weight

- total node weight of a node $i \ \widetilde{w}_{tot}^i = \sum_j w_{ij} + \sum_j w_{ji}$ versus its GDP
- linear relation:
 Nodes with high GDP have high weight

The k-shell decomposition method

- Start with the actual network
- Identify all nodes that have k=1, and remove them.
- Repeat until we are left only with nodes that have k>=2
- These nodes constitute the shell $k_s=1$
- Similarly remove all nodes with k=2, in order to find the nodes with k_s=2, etc.

Illustration of the layered structure of the network

The core shown is the actual core obtained for CON

Identifying the core using k-shell decomposition

- We need a cut-off parameter for the weights of the network in order to identify the most internal core.
- We choose one that leads to a stable core

Change in the k-shell ranking

 Most countries (82%) are located in almost the same distance from the nucleus for both CON and ITN

Cores

• CON:

USA (US) United Kingdom (GB) France (FR) Germany (DE) Netherlands (NL) Japan (JP) Sweden (SE) Italy (IT) Switzerland (CH) Spain (ES) **Belgium (BE)** Luxembourg (LU)

ITN: USA (US) United Kingdom (GB) France (FR) Germany (DE) Netherlands (NL) Japan (JP) Italy (IT) Spain (ES) Belgium (BE) Luxembourg (LU) China (CN) Russia (RU)

k-shell ranking of countries

The SIR model

- SIR (Susceptible, Infected, Removed),
- q=probability of infection
- Initially all nodes are susceptible (S)
- Then, a random node is infected (I)
- virus is spread in the network, all "I" nodes become "R"
- This process continues until the virus either
 - has been spread in the entire network, or
 - has been totally eliminated
- M=infected mass
- Duration

Modeling crisis spreading: SIR

- Infection probability: $p_{ij} \propto m \cdot w_{tot}^{(ij)} / \tilde{w}_{tot}^{j}$
- w^(ij)_{tot}/w^j_{tot}: the economic dependence of country "j" on country "i"
- m : the strength of a crisis

Infection depends on the shell where the crisis originates

Infected Fraction

k-shell ranking of countries

Determining if infected or not:

- Perform 1000 realizations of SIR
- Use arbitrary range
 - 0- 200: not infected
 - 200-800: can not tell
 - 800-1000: infected

• If crisis starts in nucleus (inner core)

- 90.6% of countries infected
- 96.6% worst case scenario
- If crisis starts shell k=6
 - 3.3% of countries infected
 - 18.9% worst case scenario

Countries affected by the 2008 economic crisis

Model results: a crisis starts in US and spreads through CON

Example: Belgium

- 29th in the world in GDP
- Start a crisis with m=4.5
- Will affect 60% of world (average of 50 runs)
- Worst case senario: maximum value of the same 50 runs. Will affect 95% of world

Conclusions

- Spreading of a crisis
- we used a NETWORK approach
- we used real data (companies, impo-expo)
- k-shell decomposition method
- SIR spreading mechanism
- a small number of countries (12) is critical
- not necessarily the largest economies

Contributed to this work:

- Antonios Garas (now at ETH, Zurich)
- Shlomo Havlin (Bar-Ilan, Israel)
- Celine Rozenblat, Lausanne, Switzerland
- Marco Tomassini, Lausanne, Switzerland