A generalized Verhulst approach of population evolution

Content

- Introduction

- Main aspects
- Conclusions

Introduction

- «Population» «evolution»
- Malthus (1798)
- Gompertz (1825)
- Verhulst (1836)
$■$ Lotka (1925) - Volterra (1931)
- Avrami (1939)
- plenty plenty of others

Growth equations

- Malthus

$$
\frac{d x}{d t}=r x
$$

$$
x(t)=e^{r t}
$$

- Verhulst

$$
\frac{d x}{d t}=r x[1-x] . \quad x(t)=\frac{e^{r t}}{1+e^{r t}}
$$

Data compared to Verhulst logistic map

USA population (1810-1970)
Montroll \& Badger (1974)

$$
r=0.02984
$$

Paramecium

aurelia
paramecium is a group of unicellular ciliate protozoa
... from about 50 to $350 \mu \mathrm{~m}$ in length

http://www.ask.com/wiki/Paramecium?qsrc=3044

Mass growth

(A) Alligator
(B) Elephant
(C) Shrew
(D) Ostrich

Lee \& Werning (2008)

Length growth

Cucumis melo stem length
FIGURE 1
Pearl et al. (1928) Observed and calculated mean stem length of seedlings of Cucumis melo grown in the complete absence of exogenous food and light.

$$
r=0.704
$$

Skewedl logistic

The growth of a canteloup plant under normal field conditions.

$$
y(t)=\frac{k}{1+e^{a_{0}+a_{1} t+a_{2} t^{2}+\ldots}}
$$

Number of nodes

Canteloup
Pearl et al. (1928)

Language death

Evolution equation à la Verhulst
(a,b): Sc.Gael in Scotl., Quechua in Peru, (c,d): Welsh in W, W in «W » Abrams \& Strogatz (2003)

Death law

- Gompertz

$$
x(t)=e^{-e^{-r t}}
$$

$$
\frac{d x}{d t}=r x \log \left[\frac{k}{x}\right]
$$

$$
k \sim M
$$

Logistic map/function

$$
\frac{d N(t)}{d t}=k N(t)\left[1-\frac{N(t)}{M}\right]
$$

- Sigmoid curve
- Constant growth rate r
- Constant carrying capacity, $M=1$

$$
\frac{N(t)}{M} \equiv x
$$

$$
x=\frac{e^{r t}}{1+e^{r t}}=\frac{1}{1+e^{-r t}}
$$

Exogenous causes

Lake trouts

Beeton (1970);
Meadows et al. (1972)

${ }^{99}$ Sellifeontirol" ${ }^{9}$

''deer or goats, when natural enemies are absent, often overgraze their range and cause erosion or destruction of the vegetation,'’ and consequently die

Kormandy (1969)

Bauduen, Var

http://fr.wikipedia.org/wiki/Bauduen

What I want !

Bass model

Comparison of macroscopic and microscopic Bass diffusion descriptions

(a) $N=1000, \Delta t=0.1$; (b) $N=1000, \Delta t=1$; (c) $N=10000$, $\Delta t=0.1 ;$ (d) $N=10000, \Delta t=1$.

With a maximum ?

Vitanov et al.

V \& G
 V'\& G

Verhullst : dxx/dt

< size eq. »

$$
\frac{d x}{d t}=r x[1-x]
$$

$$
\begin{gathered}
x=\frac{e^{r t}}{1+e^{r t}}=\frac{1}{1+e^{-r t}} \\
\qquad \frac{d x}{d t}=\frac{r}{1+e^{r t}} \frac{e^{r t}}{1+e^{r t}}=\frac{r e^{r t}}{\left(1+e^{r t}\right)^{2}} \\
\text { «time eq.» }=\frac{r e^{-r t}}{\left(1+e^{-r t}\right)^{2}} \cdot=\frac{1}{1+2 \cosh (r t)}
\end{gathered}
$$

time-Verhullst : $d^{2} x / d t^{2}$

$$
\frac{d^{2} x}{d t^{2}}=\frac{r^{2} e^{r t}\left(1-e^{r t}\right)}{\left(1+e^{r t}\right)^{3}} \quad \frac{d^{2} x}{d t^{2}}=\left[r^{2} \frac{1-e^{r t}}{1+e^{r t}}\right] x(1-x)
$$

$$
R=\left[r^{2} \frac{1-e^{r t}}{1+e^{r t}}\right] \quad R=-r^{2} \tanh \frac{r t}{2}
$$

size-Verhulst : $d^{2} x / d t^{2}$

$$
\frac{d^{2} x}{d t^{2}}=r^{2} x(1-x)(1-2 x) ;
$$

$$
\frac{d^{2} x}{d t^{2}}=r[1-2 x] \frac{d x}{d t}
$$

Sharp turn-overs

drop or jump transitions

Carrying capacity

- A population growing in a limited environment can approach the ultimate carrying capacity of that environment in several possible ways.
- It can adjust smoothly to an equilibrium.
- It can overshoot the limit and then die back again in either a smooth
- or an oscillatory way.
- It can overshoot carrying capacity and in the process decrease the ultimate carrying capacity by consuming some necessary nonrenewable resource:
- e.g., deer or goats, when natural enemies are absent, often overgraze their range and cause erosion or destruction of the vegetation

World model

- The "standard" world model run assumes no major change in the physical, economic, or social relationships that have historically governed the development of the world system.
- All variables plotted here follow historical values from 1900 to 1970.
= Food, industrial output, and population grow exponentially until the rapidly diminishing tesource base forces a slowdown in industrial growth.
Because of natural delays in the system, both population and pollution continue to increasefor some time after the peak of industrialization.
- Population growth is finally halted by a rise in the death rate due to decreased food and medical services
Meadows et al. (1972)

World model

Meadows et al. (1972)

Club of Rome

Meadows et al. (1972)

2-loops WM

Meadows et al. (1972)

Doubling resources

Meadows et al. (1972)

t-dependent Carrying Capacity

- power law

- tanh law

What I get

In summary, V to V^{+}

$$
\begin{gathered}
\frac{d x}{x(1-x)}=r t \\
\frac{d y}{y[k-y] f(t)}=\frac{b}{k} d t \\
\frac{d y}{a y+b y^{2}+c y^{3}+\ldots .} \simeq \frac{r}{M} d t \\
\frac{d y}{a y+b y^{2}+c y^{3}+\ldots .} \simeq \frac{r(t)}{M(t)} d t \\
\frac{d y}{a\left(y-y_{a}\right)\left(y-y_{b}\right)\left(y-y_{c}\right)}=\frac{r}{k} d t \\
\operatorname{COST}, \text { Eindhoven }
\end{gathered}
$$

Conclusion

Toward one single simple dynamics equation

- Extended logistic equation
- Growth rate time dependence
- Carrying capacity dependence
- Exogenous and endogenous causes
- External field interactions
- Intra-community interactions
- Gompertz or Verhulst : asymmetric behavior
- Initial/ final levels or conditions
- Pearl or Bass extension
- Time delay; anticipation
- More complicated but still reductive :
- Lotka-Volterra
- (Vitanov-Ausloos)

Cell number

C

NHCD number
Galvão et al. (2010)

Mass growth

(A) Tenontosaurus,
(B) Allosaurus,
(C) Tyrannosaurus

Lee \& Werning (2008)

