Egalitarian Networks from Asymmetric Relations: Coordination on Reciprocity in a Social Game of Hawk-Dove

Milena Tsvetkova, Cornell University Vincent Buskens, Utrecht University

Third Annual Meeting and Conference of the COST Action MP0801 May 18, 2011

4 B K 4 B K

- Asymmetric relations
 - ubiquitous (e.g., specialization in social exchange)

伺 と く ヨ と く ヨ と

• Asymmetric relations

- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency

伺 と く ヨ と く ヨ と

Asymmetric relations

- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy

伺 ト く ヨ ト く ヨ ト

- Asymmetric relations
 - ubiquitous (e.g., specialization in social exchange)
 - essential for collective efficiency
 - conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity

直 と く ヨ と く ヨ と

Asymmetric relations

- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity
 - Direct reciprocity

4 B K 4 B K

Asymmetric relations

- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity
 - Direct reciprocity
 - Indirect (generalized) reciprocity

Asymmetric relations

- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity
 - Direct reciprocity
 - Indirect (generalized) reciprocity
- Requirements for establishment of social norms
 - Monitoring
 - Punishment

Question

 What are the conditions under which groups of individuals are more likely to coordinate on efficient and egalitarian structures from asymmetric dyadic relations?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Question

- What are the conditions under which groups of individuals are more likely to coordinate on efficient and egalitarian structures from asymmetric dyadic relations?
 - Group size
 - hinders monitoring
 - encourages violations

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Question

- What are the conditions under which groups of individuals are more likely to coordinate on efficient and egalitarian structures from asymmetric dyadic relations?
 - Group size
 - hinders monitoring
 - encourages violations
 - Link costs
 - makes punishment through exclusion individually rational

	(0,G) (0,T)	(1,G)	(1,T)
(0,G) (0,T)	0, 0	0, 0	0, 0
(1,G)	0, 0	4, 4	3, 9
(1,T)	0, 0	9, 3	1, 1

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$

	(0,G) (0,T)	(1,G)	(1, <i>T</i>)
(0,G) (0,T)	0, 0	0, 0	0, 0
(1,G)	0, 0	4, 4	3, 9
(1,T)	0, 0	9, 3	1, 1

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version

< 回 > < 回 > < 回 >

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version

< 回 > < 回 > < 回 >

э

• efficient but not necessarily egalitarian

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version

(4 同) (4 日) (4 日)

- efficient but not necessarily egalitarian
- Egalitarian equilibria

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version
 - efficient but not necessarily egalitarian
- Egalitarian equilibria
 - Sometimes: Static indirect reciprocity

- 4 同 6 4 日 6 4 日 6

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version
 - efficient but not necessarily egalitarian
- Egalitarian equilibria
 - Sometimes: Static indirect reciprocity
 - Always: Alternating direct reciprocity

- Social game
 - Network game: $I_{ij} = \{0, 1\}$
 - Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version
 - efficient but not necessarily egalitarian
- Egalitarian equilibria
 - Sometimes: Static indirect reciprocity
 - Always: Alternating direct reciprocity

Social game

- Network game: $I_{ij} = \{0, 1\}$
- Hawk-Dove Game: $a_{ij} = \{Give, Take\}$
- Strict Nash equilibria
 - combination of equilibria in two-person version
 - efficient but not necessarily egalitarian
- Egalitarian equilibria
 - Sometimes: Static indirect reciprocity
 - Always: Alternating direct reciprocity

- 4 同 6 4 日 6 4 日 6

• Assumption: Only egalitarian equilibria are stable.

- Assumption: Only egalitarian equilibria are stable.
- Egalitarian equilibria
 - more likely in smaller groups
 - more likely when maintaining links is more costly

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Assumption: Only egalitarian equilibria are stable.
- Egalitarian equilibria
 - more likely in smaller groups
 - more likely when maintaining links is more costly
- Egalitarian static equilibria
 - more likely in smaller groups

同 ト イヨ ト イヨ ト

- Assumption: Only egalitarian equilibria are stable.
- Egalitarian equilibria
 - more likely in smaller groups
 - more likely when maintaining links is more costly
- Egalitarian static equilibria
 - more likely in smaller groups
- Egalitarian alternating equilibria
 - given group size: occurrence relative to their baseline probabilities

・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・

- 11 sessions × 15 subjects
- each subject obtains 4 treatments
 - Group size of 3 and 5
 - Link costs of 0 and 2
 - Order is balanced over sessions

< 同 > < 国 > < 国 >

- 2 rounds x 20 periods
- Action choices
 - No relation, Give, Take
- Network visualization
 - after first period

Experiment

ROUND 1		PERIOD	4/20			Remaining Tim	e / Resterende tijd (sec): 20
					P3 13	Total p	oints in this round. 36
p.	articipant	Your action in previous period	Your neighbor's action in previous period	Your points	Your neighbor's points	Choose relation	
	P2	Take	Give	9	3	C No relation C Take C Give	
	P3	Give	Take	3	9	C No relation C Take C Give	ОК

▲ロン ▲御と ▲道と ▲道と

Equilibria

nearly all egalitarian

Equilibria

- nearly all egalitarian
- Egalitarian equilibria
 - nearly all alternating

・ 同 ト ・ ヨ ト ・ ヨ ト

Equilibria

- nearly all egalitarian
- Egalitarian equilibria
 - nearly all alternating
 - more common in three-person

э

groups

Equilibria

- nearly all egalitarian
- Egalitarian equilibria
 - nearly all alternating
 - more common in three-person

groups

• equally common in both cost conditions

	Mo	odel 1a		Model 1b			
	Coeff.	s.e.	p	Coeff.	s.e.	р	
Composition effect				(offset)			
Five-person group	-1.496	.229	.000	673	.229	.003	
Link costs	102	.187	.583	136	.193	.481	
Rounds played	.329	.066	.000	.353	.066	.000	
Group-size ordering ^a	.262	.407	.519	.555	.302	.066	
Link-costs ordering ^b	.694	.426	.103	.444	.305	.147	
Constant	921	.358	.010	466	.341	.172	
Number of obs.		352			352		
Log likelihood	-205.328			_	159.952		
X ^{2 c}	$81.00 \ (p = .000)$			41.66 $(p = .000)$			
Df		5	,		[ິ] 5	,	

Note: Two-sided *p*-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Reference: interacting in three-person groups first

^b Reference: interacting in the no-cost condition first

^c Wald test

	Mo	odel 1a		N	Model 1b			
	Coeff.	s.e.	p	Coeff.	s.e.	р		
Composition effect					(offset)			
Five-person group	-1.496	.229	.000	673	.229	.003		
Link costs	102	.187	.583	136	.193	.481		
Rounds played	.329	.066	.000	.353	.066	.000		
Group-size ordering ^a	.262	.407	.519	.555	.302	.066		
Link-costs ordering ^b	.694	.426	.103	.444	.305	.147		
Constant	921	.358	.010	466	.341	.172		
Number of obs.		352			352			
Log likelihood	-205.328			_	159.952			
X ^{2 c}	$81.00 \ (p = .000)$			$41.66 \ (p = .000)$				
Df		5	·	5				

Note: Two-sided *p*-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Reference: interacting in three-person groups first

^b Reference: interacting in the no-cost condition first

^c Wald test

	Mo	odel 1a		Model 1b			
	Coeff.	s.e.	p	Coeff.	s.e.	р	
Composition effect				(offset)			
Five-person group	-1.496	.229	.000	673	.229	.003	
Link costs	102	.187	.583	136	.193	.481	
Rounds played	.329	.066	.000	.353	.066	.000	
Group-size ordering ^a	.262	.407	.519	.555	.302	.066	
Link-costs ordering ^b	.694	.426	.103	.444	.305	.147	
Constant	921	.358	.010	466	.341	.172	
Number of obs.		352			352		
Log likelihood	-205.328			_	159.952		
X ^{2 c}	$81.00 \ (p = .000)$			$41.66 \ (p = .000)$			
Df		5	,		5	,	

Note: Two-sided *p*-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Reference: interacting in three-person groups first

^b Reference: interacting in the no-cost condition first

^c Wald test

	Mo	odel 1a		N	Model 1b			
	Coeff.	s.e.	p	Coeff.	s.e.	р		
Composition effect				(offset)				
Five-person group	-1.496	.229	.000	673	.229	.003		
Link costs	102	.187	.583	136	.193	.481		
Rounds played	.329	.066	.000	.353	.066	.000		
Group-size ordering ^a	.262	.407	.519	.555	.302	.066		
Link-costs ordering ^b	.694	.426	.103	.444	.305	.147		
Constant	921	.358	.010	466	.341	.172		
Number of obs.		352			352			
Log likelihood	-205.328			_	159.952			
X ^{2 c}	$81.00 \ (p = .000)$			$41.66 \ (p = .000)$				
Df		5	,	5				

Note: Two-sided *p*-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Reference: interacting in three-person groups first

^b Reference: interacting in the no-cost condition first

^c Wald test

	Mo	odel 1a		N	Model 1b			
	Coeff.	s.e.	p	Coeff.	s.e.	р		
Composition effect				(offset)				
Five-person group	-1.496	.229	.000	673	.229	.003		
Link costs	102	.187	.583	136	.193	.481		
Rounds played	.329	.066	.000	.353	.066	.000		
Group-size ordering ^a	.262	.407	.519	.555	.302	.066		
Link-costs ordering ^b	.694	.426	.103	.444	.305	.147		
Constant	921	.358	.010	466	.341	.172		
Number of obs.		352			352			
Log likelihood	-205.328			_	159.952			
X ^{2 c}	$81.00 \ (p = .000)$			$41.66 \ (p = .000)$				
Df		5	,		41.00 (p = 1.000) 5			

Note: Two-sided *p*-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Reference: interacting in three-person groups first

^b Reference: interacting in the no-cost condition first

^c Wald test

• Egalitarian alternating equilibria

< 同 > < 回 > < 回 >

Hypothesized probability Observed probability

- Egalitarian alternating equilibria
 - Occurred more often than expected
 - (0, 1, 2) .858 versus .75
 - (0, 1, 2, 3, 4) .512 versus .117
 - (0, 2, 2, 2, 4) .116 versus .039

(4 同) (4 日) (4 日)

Hypothesized probability Observed probability

- Egalitarian alternating equilibria
 - Occurred more often than expected
 - (0, 1, 2) .858 versus .75
 - (0, 1, 2, 3, 4) .512 versus .117
 - (0, 2, 2, 2, 4) .116 versus .039

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Did not occur
 - (0, 1, 3, 3, 3)/(1, 1, 1, 3, 4)
 - (2, 2, 2, 2, 2)

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

	Model 2			Model 3		
	Coeff.	s.e.	р	Coeff.	s.e.	р
Baseline probability	(offset)			(offset)	
(0, 1, 2) (1, 1, 1)	.702 (ref.)	.315	.026			
(0, 1, 2, 3, 4)				1.838	.451	.000
(0, 1, 3, 3, 3)/(1, 1, 1, 3, 4) = (0, 2, 2, 2, 4)				1.455	.779	.062
(0, 2, 2, 3, 3)/(1, 1, 2, 2, 4)				(ref.)	747	257
(1, 2, 2, 3, 3)				308	.632	.626
(2, 2, 2, 2, 2) ^a		260		-	215	
Log likelihood	_	54.699		-	-58.014	
X ² b	4.96	(p=.026)	33.8	2 (p=.00	0)
Df		1			4	

Note: Two-sided p-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Removed due to estimation problems caused by near-perfect prediction

^b Wald test

イロト イポト イヨト イヨト

-

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

	Model 2			Model 3		
	Coeff.	s.e.	р	Coeff.	s.e.	р
Baseline probability	(offset)		(offset)	
(0, 1, 2)	.702	.315	.026		. ,	
(1, 1, 1)	(ref.)					
(0, 1, 2, 3, 4)				1.838	.451	.000
(0, 1, 3, 3, 3)/(1, 1, 1, 3, 4) ^a				-		
(0, 2, 2, 2, 4)				1.455	.779	.062
(0, 2, 2, 3, 3)/(1, 1, 2, 2, 4)				(ref.)		
(1, 1, 2, 3, 3)				847	.747	.257
(1, 2, 2, 2, 3)				308	.632	.626
(2, 2, 2, 2, 2) ^a				-		
Number of obs.		268			215	
Log likelihood	-54.699 -58.014					
X ^{2 b}	4.96	(p=.026)	33.82 (p=.000)		
Df		1			4	1

Note: Two-sided p-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Removed due to estimation problems caused by near-perfect prediction

^b Wald test

イロト イポト イヨト イヨト

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

	Model 2			Ν	/lodel 3	
	Coeff.	s.e.	р	Coeff.	s.e.	р
Baseline probability	(offset)		(offset)	
(0, 1, 2)	.702	.315	.026		. ,	
(1, 1, 1)	(ref.)					
(0, 1, 2, 3, 4)				1.838	.451	.000
$(0, 1, 3, 3, 3)/(1, 1, 1, 3, 4)^{a}$				-		
(0, 2, 2, 2, 4)				1.455	.779	.062
(0, 2, 2, 3, 3)/(1, 1, 2, 2, 4)				(ref.)		
(1, 1, 2, 3, 3)				—.847	.747	.257
(1, 2, 2, 2, 3)				308	.632	.626
(2, 2, 2, 2, 2) ^a				-		
Number of obs.		268			215	
Log likelihood	-	54.699		-	-58.014	
X ² b	4.96 (p=.026) 33.82 (p=.000)					0)
Df		1			4	

Note: Two-sided p-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Removed due to estimation problems caused by near-perfect prediction

^b Wald test

イロト イポト イヨト イヨト

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

	Model 2			Model 3		
	Coeff.	s.e.	р	Coeff.	s.e.	р
Baseline probability	(offset)		(offset)	
(0, 1, 2) (1, 1, 1)	.702 (ref.)	.315	.026			
(0, 1, 2, 3, 4)				1.838	.451	.000
(0, 1, 3, 3, 3)/(1, 1, 1, 3, 4)				1 455	770	062
(0, 2, 2, 2, 4) (0, 2, 2, 3, 3)/(1, 1, 2, 2, 4)				(ref.)	.119	.002
(1, 1, 2, 3, 3)				847	.747	.257
(1, 2, 2, 2, 3)				308	.632	.626
(2, 2, 2, 2, 2) ^a		260		-	015	
Number of obs.	_	208		_	215	
x ² b	-54.099 -58.014				0)	
Df	4.50	1	,	55.0	4	•,

Note: Two-sided p-values for coefficients.

Note: Standard errors adjusted for multi-way clustering.

^a Removed due to estimation problems caused by near-perfect prediction

^b Wald test

イロト イポト イヨト イヨト

• Social game with partner-specific choices

伺 と く ヨ と く ヨ と

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes
 - More likely to be established in small groups

直 と く ヨ と く ヨ と

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes
 - More likely to be established in small groups
 - Direct reciprocity is more common than indirect reciprocity

伺 と く ヨ と く ヨ と

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes
 - More likely to be established in small groups
 - Direct reciprocity is more common than indirect reciprocity
 - Preferred outcomes have egalitarian payoff distributions but hierarchical action configurations

伺 ト イ ヨ ト イ ヨ ト