Egalitarian Networks from Asymmetric Relations: Coordination on Reciprocity in a Social Game of Hawk-Dove

Milena Tsvetkova, Cornell University
Vincent Buskens, Utrecht University

Third Annual Meeting and Conference of the COST Action MP0801
May 18, 2011

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity
- Direct reciprocity

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity
- Direct reciprocity
- Indirect (generalized) reciprocity

Background

- Asymmetric relations
- ubiquitous (e.g., specialization in social exchange)
- essential for collective efficiency
- conductive to aggregate inequality and hierarchy
- Egalitarian outcomes through norms of reciprocity
- Direct reciprocity
- Indirect (generalized) reciprocity
- Requirements for establishment of social norms
- Monitoring
- Punishment

Question

- What are the conditions under which groups of individuals are more likely to coordinate on efficient and egalitarian structures from asymmetric dyadic relations?

Question

- What are the conditions under which groups of individuals are more likely to coordinate on efficient and egalitarian structures from asymmetric dyadic relations?
- Group size
- hinders monitoring
- encourages violations

Question

- What are the conditions under which groups of individuals are more likely to coordinate on efficient and egalitarian structures from asymmetric dyadic relations?
- Group size
- hinders monitoring
- encourages violations
- Link costs
- makes punishment through exclusion individually rational

Model

	$(0, G)$ $(0, T)$	$(1, G)$	$(1, T)$
$(0, G)$	$\mathbf{0 , 0}$	0,0	0,0
$(0, T)$	$(1, G)$	0,0	4,4
$\mathbf{3 , 9}$			
$(1, T)$	0,0	$\mathbf{9 , 3}$	1,1

- Social game
- Network game: $l_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$

Model

	$(0, G)$	$(1, G)$	$(1, T)$
$(0, T)$	$(0, G)$		
$(0, T)$	$\mathbf{0}, \mathbf{0}$	0,0	0,0
$(1, G)$	0,0	4,4	$\mathbf{3 , 9}$
$(1, T)$	0,0	$\mathbf{9 , 3}$	1,1

- Social game
- Network game: $l_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria

Model

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version

Model

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version
- efficient but not necessarily egalitarian

Model

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version
- efficient but not necessarily egalitarian
- Egalitarian equilibria

Model

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version
- efficient but not necessarily egalitarian
- Egalitarian equilibria
- Sometimes: Static - indirect reciprocity

Model

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version
- efficient but not necessarily egalitarian
- Egalitarian equilibria
- Sometimes: Static - indirect reciprocity
- Always: Alternating - direct reciprocity

Model

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version
- efficient but not necessarily egalitarian
- Egalitarian equilibria
- Sometimes: Static - indirect reciprocity
- Always: Alternating - direct reciprocity

Model

probability

s.d.	score	stat. alt.
8.5	$(0,1,2,3,4)$	$.117 \quad .117$

7.6	$(0,1,3,3,3)$.039	
7.6	$(1,1,1,3,4)$.039	
7.6	$(0,2,2,2,4)$.039	.039
6.6	$(0,2,2,3,3)$.117	
6.6	$(1,1,2,2,4)$.117	
5.4	$(1,1,2,3,3)$.234	.234
3.8	$(1,2,2,2,3)$.273	.273
0	$(2,2,2,2,2)$.023	.023

- Social game
- Network game: $I_{i j}=\{0,1\}$
- Hawk-Dove Game: $a_{i j}=\{$ Give, Take $\}$
- Strict Nash equilibria
- combination of equilibria in two-person version
- efficient but not necessarily egalitarian
- Egalitarian equilibria
- Sometimes: Static - indirect reciprocity
- Always: Alternating - direct reciprocity

Hypotheses

- Assumption: Only egalitarian equilibria are stable.

Hypotheses

- Assumption: Only egalitarian equilibria are stable.
- Egalitarian equilibria
- more likely in smaller groups
- more likely when maintaining links is more costly

Hypotheses

- Assumption: Only egalitarian equilibria are stable.
- Egalitarian equilibria
- more likely in smaller groups
- more likely when maintaining links is more costly
- Egalitarian static equilibria
- more likely in smaller groups

Hypotheses

- Assumption: Only egalitarian equilibria are stable.
- Egalitarian equilibria
- more likely in smaller groups
- more likely when maintaining links is more costly
- Egalitarian static equilibria
- more likely in smaller groups
- Egalitarian alternating equilibria
- given group size: occurrence relative to their baseline probabilities

Experiment

- 11 sessions $\times 15$ subjects
- each subject obtains 4 treatments
- Group size of 3 and 5
- Link costs of 0 and 2
- Order is balanced over sessions
- 2 rounds $\times 20$ periods
- Action choices
- No relation, Give, Take
- Network visualization
- after first period

Experiment

Results

- Equilibria
- nearly all egalitarian

Results

- Equilibria
- nearly all egalitarian
- Egalitarian equilibria
- nearly all alternating

Results

- Equilibria
- nearly all egalitarian
- Egalitarian equilibria
- nearly all alternating
- more common in three-person groups

Results

- Equilibria
- nearly all egalitarian
- Egalitarian equilibria
- nearly all alternating
- more common in three-person groups
- equally common in both cost conditions

Results

Table: Logistic regression on whether a group converges to an egalitarian equilibrium. Models without (Model 1a) and with (Model 1b) correction for composition effect due to group size.

	Model 1a			Model 1b		
	Coeff.	s.e.	p	Coeff.	s.e.	p
Composition effect				(offset)		
Five-person group	-1.496	. 229	. 000	$-.673$. 229	. 003
Link costs	-. 102	. 187	. 583	-. 136	. 193	. 481
Rounds played	. 329	. 066	. 000	. 353	. 066	. 000
Group-size ordering ${ }^{\text {a }}$. 262	. 407	. 519	. 555	. 302	. 066
Link-costs ordering ${ }^{\text {b }}$. 694	. 426	. 103	. 444	. 305	. 147
Constant	-. 921	. 358	. 010	$-.466$. 341	. 172
Number of obs.	352			352		
Log likelihood	-205.328			-159.952		
$X^{2} \mathrm{c}$	81.00 ($p=.000$)			41.66 ($p=.000$)		
Df	5			5		

[^0]
Results

Table: Logistic regression on whether a group converges to an egalitarian equilibrium. Models without (Model 1a) and with (Model 1b) correction for composition effect due to group size.

	Model 1a			Model 1b		
	Coeff.	s.e.	p	Coeff.	s.e.	p
Composition effect				(offset)		
Five-person group	-1.496	. 229	. 000	$-.673$. 229	. 003
Link costs	-. 102	. 187	. 583	-. 136	. 193	. 481
Rounds played	. 329	. 066	. 000	. 353	. 066	. 000
Group-size ordering ${ }^{\text {a }}$. 262	. 407	. 519	. 555	. 302	. 066
Link-costs ordering ${ }^{\text {b }}$. 694	. 426	. 103	. 444	. 305	. 147
Constant	-. 921	. 358	. 010	$-.466$. 341	. 172
Number of obs.	352			352		
Log likelihood	-205.328			-159.952		
$X^{2} \mathrm{c}$	81.00 ($p=.000$)			41.66 ($p=.000$)		
Df	5			5		

[^1]
Results

Table: Logistic regression on whether a group converges to an egalitarian equilibrium. Models without (Model 1a) and with (Model 1b) correction for composition effect due to group size.

	Model 1a			Model 1b		
	Coeff.	s.e.	p	Coeff.	s.e.	p
Composition effect				(offset)		
Five-person group	-1.496	. 229	. 000	-. 673	. 229	. 003
Link costs	-. 102	. 187	. 583	-. 136	. 193	. 481
Rounds played	. 329	. 066	. 000	. 353	. 066	. 000
Group-size ordering ${ }^{\text {a }}$. 262	. 407	. 519	. 555	. 302	. 066
Link-costs ordering ${ }^{\text {b }}$. 694	. 426	. 103	. 444	. 305	. 147
Constant	$-.921$. 358	. 010	$-.466$. 341	. 172
Number of obs.	352			352		
Log likelihood	-205.328			-159.952		
$X^{2} \mathrm{c}$	81.00 ($p=.000$)			41.66 ($p=.000$)		
Df	5			5		

[^2]
Results

Table: Logistic regression on whether a group converges to an egalitarian equilibrium. Models without (Model 1a) and with (Model 1b) correction for composition effect due to group size.

	Model 1a			Model 1b		
	Coeff.	s.e.	p	Coeff.	s.e.	p
Composition effect				(offset)		
Five-person group	-1.496	. 229	. 000	$-.673$. 229	. 003
Link costs	-. 102	. 187	. 583	-. 136	. 193	. 481
Rounds played	. 329	. 066	. 000	. 353	. 066	. 000
Group-size ordering ${ }^{\text {a }}$. 262	. 407	. 519	. 555	. 302	. 066
Link-costs ordering ${ }^{\text {b }}$. 694	. 426	. 103	. 444	. 305	. 147
Constant	-. 921	. 358	. 010	$-.466$. 341	. 172
Number of obs.	352			352		
Log likelihood	-205.328			-159.952		
$X^{2} \mathrm{c}$	81.00 ($p=.000$)			41.66 ($p=.000$)		
Df	5			5		

[^3]
Results

Table: Logistic regression on whether a group converges to an egalitarian equilibrium. Models without (Model 1a) and with (Model 1b) correction for composition effect due to group size.

	Model 1a			Model 1b		
	Coeff.	s.e.	p	Coeff.	s.e.	p
Composition effect				(offset)		
Five-person group	-1.496	. 229	. 000	$-.673$. 229	. 003
Link costs	-. 102	. 187	. 583	-. 136	. 193	. 481
Rounds played	. 329	. 066	. 000	. 353	. 066	. 000
Group-size ordering ${ }^{\text {a }}$. 262	. 407	. 519	. 555	. 302	. 066
Link-costs ordering ${ }^{\text {b }}$. 694	. 426	. 103	. 444	. 305	. 147
Constant	-. 921	. 358	. 010	$-.466$. 341	. 172
Number of obs.	352			352		
Log likelihood	-205.328			-159.952		
$X^{2} \mathrm{c}$	81.00 ($p=.000$)			41.66 ($p=.000$)		
Df	5			5		

[^4]
Results

- Egalitarian alternating equilibria

Hypothesized probability
Observed probability

Results

$\begin{array}{cl}\text { s.d. } & \text { score } \\ 4.9 & (0,1,2) \\ 0 & (1,1,1) \\ 8.5 & (0,1,2,3,4) \\ 7.6 & (0,1,3,3,3) \\ 7.6 & (1,1,1,3,4) \\ & (0,2,2,2,4) \\ 6.6 & (0,2,2,3,3) \\ 5.4 & (1,1,2,2,4) \\ 3.8 & (1,1,2,3,3) \\ 0 & (2,2,2,2,3) \\ & \\ & \\ & \text { Hypothesized probability } \\ & \text { Observed probability }\end{array}$

- Egalitarian alternating equilibria
- Occurred more often than expected
- $(0,1,2)-.858$ versus .75
- ($0,1,2,3,4$) - . 512 versus .117
- $(0,2,2,2,4)-.116$ versus .039

Results

s.d.	score
4.9	$(0,1,2)$
0	$(1,1,1)$
8.5	$(0,1,2,3,4)$
	$(0,1,3,3,3)$
7.6	$(1,1,1,3,4)$
7.6	$(0,2,2,2,4)$
	$(0,2,2,3,3)$
6.6	$(1,1,2,2,4)$
5.4	$(1,1,2,3,3)$
3.8	$(1,2,2,2,3)$
0	$(2,2,2,2,2)$

Hypothesized probability Observed probability

- Egalitarian alternating equilibria
- Occurred more often than expected
- $(0,1,2)-.858$ versus .75
- ($0,1,2,3,4$) - . 512 versus .117
- $(0,2,2,2,4)-.116$ versus .039
- Did not occur
- $(0,1,3,3,3) /(1,1,1,3,4)$
- (2, 2, 2, 2, 2)

Results

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

	Model 2			Model 3		
	Coeff.	s.e.	p	Coeff.	s.e.	p
Baseline probability	(offset)			(offset)		
$(0,1,2)$	$\begin{array}{r} .702 \\ \text { (ref.) } \end{array}$. 315	. 026			
$(1,1,1)$						
(0, 1, 2, 3, 4)				1.838	. 451	. 000
$(0,1,3,3,3) /(1,1,1,3,4)^{\text {a }}$				-		
(0, 2, 2, 2, 4)				1.455	. 779	. 062
$(0,2,2,3,3) /(1,1,2,2,4)$				(ref.)		
(1, 1, 2, 3, 3)				-. 847	. 747	. 257
(1, 2, 2, 2, 3)				-. 308	. 632	. 626
$(2,2,2,2,2)^{\text {a }}$				-		
Number of obs.	268			215		
Log likelihood	-54.699			-58.014		
$x^{2} \mathrm{~b}$	4.96 ($\mathrm{p}=.026$)			33.82 ($\mathrm{p}=.000$)		
Df	1			4		

Note: Two-sided p-values for coefficients.
Note: Standard errors adjusted for multi-way clustering.
${ }^{\text {a }}$ Removed due to estimation problems caused by near-perfect prediction
${ }^{b}$ Wald test

Results

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

Note: Two-sided p-values for coefficients.
Note: Standard errors adjusted for multi-way clustering.
${ }^{\text {a }}$ Removed due to estimation problems caused by near-perfect prediction
${ }^{b}$ Wald test

Results

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

Note: Two-sided p-values for coefficients.
Note: Standard errors adjusted for multi-way clustering.
${ }^{\text {a }}$ Removed due to estimation problems caused by near-perfect prediction
${ }^{b}$ Wald test

Results

Table: Conditional logistic regressions on whether particular alternating equilibrium confgurations are more likely to occur than others after accounting for their hypothesized probability.

Note: Two-sided p-values for coefficients.
Note: Standard errors adjusted for multi-way clustering.
${ }^{\text {a }}$ Removed due to estimation problems caused by near-perfect prediction
${ }^{b}$ Wald test

Summary/Contributions

- Social game with partner-specific choices

Summary/Contributions

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes

Summary/Contributions

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes
- More likely to be established in small groups

Summary/ Contributions

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes
- More likely to be established in small groups
- Direct reciprocity is more common than indirect reciprocity

Summary/Contributions

- Social game with partner-specific choices
- Norms of reciprocity for egalitarian outcomes
- More likely to be established in small groups
- Direct reciprocity is more common than indirect reciprocity
- Preferred outcomes have egalitarian payoff distributions but hierarchical action configurations

[^0]: Note: Two-sided p-values for coefficients.
 Note: Standard errors adjusted for multi-way clustering.
 ${ }^{\text {a }}$ Reference: interacting in three-person groups first
 ${ }^{\text {b }}$ Reference: interacting in the no-cost condition first
 ${ }^{c}$ Wald test

[^1]: Note: Two-sided p-values for coefficients.
 Note: Standard errors adjusted for multi-way clustering.
 ${ }^{\text {a }}$ Reference: interacting in three-person groups first
 ${ }^{\text {b }}$ Reference: interacting in the no-cost condition first
 ${ }^{c}$ Wald test

[^2]: Note: Two-sided p-values for coefficients.
 Note: Standard errors adjusted for multi-way clustering.
 ${ }^{\text {a }}$ Reference: interacting in three-person groups first
 ${ }^{\mathrm{b}}$ Reference: interacting in the no-cost condition first
 ${ }^{c}$ Wald test

[^3]: Note: Two-sided p-values for coefficients.
 Note: Standard errors adjusted for multi-way clustering.
 ${ }^{\text {a }}$ Reference: interacting in three-person groups first
 ${ }^{\mathrm{b}}$ Reference: interacting in the no-cost condition first
 ${ }^{c}$ Wald test

[^4]: Note: Two-sided p-values for coefficients.
 Note: Standard errors adjusted for multi-way clustering.
 ${ }^{\text {a }}$ Reference: interacting in three-person groups first
 ${ }^{\mathrm{b}}$ Reference: interacting in the no-cost condition first
 ${ }^{c}$ Wald test

