Correlations between power law parameters in complex networks

Nelly Litvak
joint work with
Yana Volkovich, Werner Scheinhardt, Bert Zwart

University of Twente
COST meeting, 19-05-2011

Outline

- Power laws in complex networks
- Dependence between power law graph parameters
- Angular measure
- Example: in-degree and PageRank

Power laws: formal description

- Power laws: Internet, WWW, social networks, biological networks, etc...
- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=\#$ (it-/out-) links
- [fraction nodes degree at least k] $=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\alpha}, \alpha>0$.
- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=\#$ (it-/out-) links
- [fraction nodes degree at least k] $=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\alpha}, \alpha>0$.
- Regular variation:
- X is regularly varying random variable with index α
- $P(X>x) \sim L(x) x^{-\alpha}$ as $x \rightarrow \infty$
- $L(x)$ is slowly varying: for every $t>0, L(t x) / L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=\#$ (it-/out-) links
- [fraction nodes degree at least k] $=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\alpha}, \alpha>0$.
- Regular variation:
- X is regularly varying random variable with index α
- $P(X>x) \sim L(x) x^{-\alpha}$ as $x \rightarrow \infty$
- $L(x)$ is slowly varying: for every $t>0, L(t x) / L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power law is the model for high variability
- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=\#$ (it-/out-) links
- [fraction nodes degree at least k] $=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\alpha}, \alpha>0$.
- Regular variation:
- X is regularly varying random variable with index α
- $P(X>x) \sim L(x) x^{-\alpha}$ as $x \rightarrow \infty$
- $L(x)$ is slowly varying: for every $t>0, L(t x) / L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power law is the model for high variability
- $\log p_{k}=\log ($ const $)-\alpha \log k$
- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node $=\#$ (it-/out-) links
- [fraction nodes degree at least k] $=p_{k}$,
- Power law: $p_{k} \approx$ const $\cdot k^{-\alpha}, \alpha>0$.
- Regular variation:
- X is regularly varying random variable with index α
- $P(X>x) \sim L(x) x^{-\alpha}$ as $x \rightarrow \infty$
- $L(x)$ is slowly varying: for every $t>0, L(t x) / L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power law is the model for high variability
- $\log p_{k}=\log ($ const $)-\alpha \log k$
- Straight line on the log-log scale

Power laws in Internet graphs

- Network of routers (physical)
- Routers are grouped in autonomous systems (AS), or domains
- Faloutsos, Faloutsos, Faloutsos (1999):
- The degree of the nodes follow power laws, exponent 2.5
- The degree of the network of domains also follow power laws, exponent 2.1

Figure 5: The outdegree plots: $\log \log$ plot of frequency f_{d} versus the outdegree d.

But Power Law is not everything!

Example: Robustness of the Internet.

- Albert, Jeong and Barabasi (2000): Achille's heel of Internet: Internet is sensitive to targeted attack

But Power Law is not everything!

Example: Robustness of the Internet.

- Albert, Jeong and Barabasi (2000): Achille's heel of Internet: Internet is sensitive to targeted attack
- Doyle et al. (2005): Robust yet fragile nature of Internet: Internet is not a random graph, it is designed to be robust

But Power Law is not everything! (cont.)

Example: Spread of infections

- Classical epidemiology, e.g. Adnerson and May (1991): a virus turns into an epidemic if infection rate exceeds a certain critical value

But Power Law is not everything! (cont.)

Example: Spread of infections

- Classical epidemiology, e.g. Adnerson and May (1991): a virus turns into an epidemic if infection rate exceeds a certain critical value
- Vespignani et al. (2001): power law networks have a zero critical infection rate!

But Power Law is not everything! (cont.)

Example: Spread of infections

- Classical epidemiology, e.g. Adnerson and May (1991): a virus turns into an epidemic if infection rate exceeds a certain critical value
- Vespignani et al. (2001): power law networks have a zero critical infection rate!
- Eguiluz et al. (2002): a specially wired highly clustered network is resistant up to a certain critical infection rate.

How do we measure dependencies in networks

- Newman (2002): assortativity measure r

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$
- Problems?

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$
- Problems? YES!!!

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$
- Problems? YES!!!
- X and Y are power law r.v.'s, exponent $\alpha-1$

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$
- Problems? YES!!!
- X and Y are power law r.v.'s, exponent $\alpha-1$
- In real networks, $1<\alpha<2$, so $E(X)=\sum_{k} k \frac{k p_{k}}{E(\text { degree })}=\infty$

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$
- Problems? YES!!!
- X and Y are power law r.v.'s, exponent $\alpha-1$
- In real networks, $1<\alpha<2$, so $E(X)=\sum_{k} k \frac{k p_{k}}{E(\text { degree })}=\infty$
- ρ is not defined in the power law model!

How do we measure dependencies in networks

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$
\rho=\frac{E(X Y)-[E(X)]^{2}}{\operatorname{Var}(X)}
$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
- Social networks: assortative, $r>0$
- Engineering networks (Internet, WWW): disassortative, $r<0$
- Problems? YES!!!
- X and Y are power law r.v.'s, exponent $\alpha-1$
- In real networks, $1<\alpha<2$, so $E(X)=\sum_{k} k \frac{k p_{k}}{E(\text { degree })}=\infty$
- ρ is not defined in the power law model!
- Then: what are we measuring?

Google PageRank

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!

Google PageRank

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!
- PageRank r_{i} of page $i=1, \ldots, n$ is defined as a stationary distribution of a random walk with jumps:

$$
R_{i}=\sum_{j \rightarrow i} \frac{c}{d_{j}} R_{j}+(1-c) b_{i}, \quad i=1, \ldots, n
$$

$d_{j}=\#$ out-links of page j;
$c \in(0,1)$, originally 0.85 , probability of a random jump; b_{i} probability to jump to page i.

Google PageRank

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!
- PageRank r_{i} of page $i=1, \ldots, n$ is defined as a stationary distribution of a random walk with jumps:

$$
R_{i}=\sum_{j \rightarrow i} \frac{c}{d_{j}} R_{j}+(1-c) b_{i}, \quad i=1, \ldots, n
$$

$d_{j}=\#$ out-links of page j;
$c \in(0,1)$, originally 0.85 , probability of a random jump; b_{i} probability to jump to page i.

- A page is important when many important pages link to it

Google PageRank

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!
- PageRank r_{i} of page $i=1, \ldots, n$ is defined as a stationary distribution of a random walk with jumps:

$$
R_{i}=\sum_{j \rightarrow i} \frac{c}{d_{j}} R_{j}+(1-c) b_{i}, \quad i=1, \ldots, n
$$

$d_{j}=\#$ out-links of page j;
$c \in(0,1)$, originally 0.85 , probability of a random jump; b_{i} probability to jump to page i.

- A page is important when many important pages link to it
- Modifications of PageRank are used in search. Many other applications: clustering, spam detection, measuring node distances, citation analysis, etc.
- Pandurangan et al. (2002) PageRank, scaled with the number of pages, $R_{i} \rightarrow n R_{i}$, has a power law distribution

Power Law behaviour of PageRank

- Pandurangan et al. (2002) PageRank, scaled with the number of pages, $R_{i} \rightarrow n R_{i}$, has a power law distribution
- Data for Web, Wikipedia and Preferential Attachment graph

Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank
$R \stackrel{d}{=} c \sum_{j=1}^{N} \frac{1}{D_{j}} R_{j}+c p_{0}+(1-c) B$

- N is the in-degree of the randomly chosen page
- D is the out-degree of page that links to the randomly chosen page
- p_{0} is the fraction of pages with out-degree zero
- R_{j} is distributed as $R ; N, D, R_{j}$ are independent; N and B can be dependent

Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank
$R \stackrel{d}{=} c \sum_{j=1}^{N} \frac{1}{D_{j}} R_{j}+c p_{0}+(1-c) B$

- N is the in-degree of the randomly chosen page
- D is the out-degree of page that links to the randomly chosen page
- p_{0} is the fraction of pages with out-degree zero
- R_{j} is distributed as $R ; N, D, R_{j}$ are independent; N and B can be dependent

Theorem (V\&L 2010)

If $P(B>x)=o(P(N>x))$, then the following are equivalent:

- $P(N>x) \sim x^{-\alpha_{N}} L_{N}(x)$ as $x \rightarrow \infty$,
- $P(R>x) \sim C_{N} x^{-\alpha_{N}} L_{N}(x)$ as $x \rightarrow \infty$, where $C_{N}=(E(c / D))^{\alpha_{N}}\left[1-\mathbb{E}(N) \mathbb{E}\left((c / D)^{\alpha_{N}}\right)\right]^{-1}$

Extremal dependencies

- X, Y are r.v's; F_{X}, F_{Y} are distribution functions

Extremal dependencies

- X, Y are r.v's; F_{X}, F_{Y} are distribution functions
- $1-F_{X}(X)=$ fraction of occurrences of the value $>X$ (rank)

Extremal dependencies

- X, Y are r.v's; F_{X}, F_{Y} are distribution functions
- $1-F_{X}(X)=$ fraction of occurrences of the value $>X$ (rank)
- Define $(R, \Theta)=\operatorname{POLAR}\left(\frac{1}{1-F_{X}(X)}, \frac{1}{1-F_{Y}(Y)}\right)$

Extremal dependencies

- X, Y are r.v's; F_{X}, F_{Y} are distribution functions
- $1-F_{X}(X)=$ fraction of occurrences of the value $>X$ (rank)
- Define $(R, \Theta)=\operatorname{POLAR}\left(\frac{1}{1-F_{X}(X)}, \frac{1}{1-F_{Y}(Y)}\right)$
- Angular measure: $S(A)=\lim _{t \rightarrow \infty} t P(R>t, \Theta \in A)$

Extremal dependencies

- X, Y are r.v's; F_{X}, F_{Y} are distribution functions
- $1-F_{X}(X)=$ fraction of occurrences of the value $>X$ (rank)
- Define $(R, \Theta)=\operatorname{POLAR}\left(\frac{1}{1-F_{X}(X)}, \frac{1}{1-F_{Y}(Y)}\right)$
- Angular measure: $S(A)=\lim _{t \rightarrow \infty} t P(R>t, \Theta \in A)$

Dependence
S concentrated around $\pi / 4$

Independence
S concentrated around 0 and $\pi / 2$

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$
- rank transform:

$$
\left\{\left(X_{j}, Y_{j}\right), j=1, \ldots, n\right\} \rightarrow\left\{\left(r_{j}^{\times}, r_{j}^{y}\right), j=1, \ldots, n\right\}
$$

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$
- rank transform:

$$
\left\{\left(X_{j}, Y_{j}\right), j=1, \ldots, n\right\} \rightarrow\left\{\left(r_{j}^{x}, r_{j}^{y}\right), j=1, \ldots, n\right\}
$$

- r_{j}^{x} is the descending rank of X_{j} in $\left(X_{1}, \ldots, X_{n}\right)$ r_{j}^{y} is the descending rank of Y_{j} in $\left(Y_{1}, \ldots, Y_{n}\right)$

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$
- rank transform:

$$
\left\{\left(X_{j}, Y_{j}\right), j=1, \ldots, n\right\} \rightarrow\left\{\left(r_{j}^{\times}, r_{j}^{y}\right), j=1, \ldots, n\right\}
$$

- r_{j}^{X} is the descending rank of X_{j} in $\left(X_{1}, \ldots, X_{n}\right)$ r_{j}^{y} is the descending rank of Y_{j} in $\left(Y_{1}, \ldots, Y_{n}\right)$
- $\left(R_{j, k}, \Theta_{j, k}\right)=\operatorname{POLAR}\left(\frac{k}{r_{j}^{x}}, \frac{k}{r_{j}^{y}}\right)$
- $k=1, \ldots, n$ 'upper' order statistics

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$
- rank transform:

$$
\left\{\left(X_{j}, Y_{j}\right), j=1, \ldots, n\right\} \rightarrow\left\{\left(r_{j}^{x}, r_{j}^{y}\right), j=1, \ldots, n\right\}
$$

- r_{j}^{x} is the descending rank of X_{j} in $\left(X_{1}, \ldots, X_{n}\right)$
r_{j}^{y} is the descending rank of Y_{j} in $\left(Y_{1}, \ldots, Y_{n}\right)$
- $\left(R_{j, k}, \Theta_{j, k}\right)=\operatorname{POLAR}\left(\frac{k}{r_{j}^{\chi}}, \frac{k}{r_{j}^{y}}\right)$
- $k=1, \ldots, n$ 'upper' order statistics
- empirical distribution of Θ for k largest values of R
- cumulative distribution function $\left\{\Theta_{j, k}: R_{j, k}>1\right\}$

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$
- rank transform:

$$
\left\{\left(X_{j}, Y_{j}\right), j=1, \ldots, n\right\} \rightarrow\left\{\left(r_{j}^{x}, r_{j}^{y}\right), j=1, \ldots, n\right\}
$$

- r_{j}^{x} is the descending rank of X_{j} in $\left(X_{1}, \ldots, X_{n}\right)$
r_{j}^{y} is the descending rank of Y_{j} in $\left(Y_{1}, \ldots, Y_{n}\right)$
- $\left(R_{j, k}, \Theta_{j, k}\right)=\operatorname{POLAR}\left(\frac{k}{r_{j}^{\chi}}, \frac{k}{r_{j}^{y}}\right)$
- $k=1, \ldots, n$ 'upper' order statistics
- empirical distribution of Θ for k largest values of R
- cumulative distribution function $\left\{\Theta_{j, k}: R_{j, k}>1\right\}$
- We measure correlations on fraction k / n of the data.

Statistical procedure

- graph's parameters: $X=\left(X_{1}, \ldots, X_{n}\right)$ and $Y=\left(Y_{1}, \ldots, Y_{n}\right)$
- node $j:\left(X_{j}, Y_{j}\right)$
- rank transform:
$\left\{\left(X_{j}, Y_{j}\right), j=1, \ldots, n\right\} \rightarrow\left\{\left(r_{j}^{x}, r_{j}^{y}\right), j=1, \ldots, n\right\}$,
- r_{j}^{x} is the descending rank of X_{j} in $\left(X_{1}, \ldots, X_{n}\right)$
r_{j}^{y} is the descending rank of Y_{j} in $\left(Y_{1}, \ldots, Y_{n}\right)$
- $\left(R_{j, k}, \Theta_{j, k}\right)=\operatorname{POLAR}\left(\frac{k}{r_{j}^{\chi}}, \frac{k}{r_{j}^{y}}\right)$
- $k=1, \ldots, n$ 'upper' order statistics
- empirical distribution of Θ for k largest values of R
- cumulative distribution function $\left\{\Theta_{j, k}: R_{j, k}>1\right\}$
- We measure correlations on fraction k / n of the data. But same applies to power laws!

Dependencies between parameters of a node

- Measurements (Volkovich et al., 2008)

(c)

(d)

- (a) In-PR $(c=0.85),(b) \ln -P R(c=0.5)$,
(c) In-Out, (d) Out-PR

And how is our branching model doing?

$$
R \stackrel{d}{=} \sum_{i=1}^{N} A_{i} R_{i}+B
$$

And how is our branching model doing?

$R \stackrel{d}{=} \sum_{i=1}^{N} A_{i} R_{i}+B$

Lemma

As $u \rightarrow \infty$, for any constant $C>0$,

$$
P(N>u, R>C u) \sim \min \left\{\bar{F}_{N}(u),(\mathbb{E} A / C)^{\alpha} \bar{F}_{N}(u)\right\}
$$

And how is our branching model doing?

$R \stackrel{d}{=} \sum_{i=1}^{N} A_{i} R_{i}+B$

Lemma

As $u \rightarrow \infty$, for any constant $C>0$,

$$
P(N>u, R>C u) \sim \min \left\{\bar{F}_{N}(u),(\mathbb{E} A / C)^{\alpha} \bar{F}_{N}(u)\right\} .
$$

'Proof':
Recall $R \stackrel{d}{=} \sum_{i=1}^{N} A_{i} R_{i}+B$.
By the SLLN we have $R \approx \mathbb{E} A \cdot N$ when N is large.
Hence:

- When $\mathbb{E A}>C$, the event $\{R>C u\}$ is 'implied' by $\{N>u\}$, leading to $\mathrm{P}(N>u)$
- When $\mathbb{E} A<C, N$ needs to be larger for $R>C u$ to hold, leading to $\mathrm{P}(N>\mathrm{Cu} / \mathbb{E} A)$.

Obtaining tail dependence

$$
\bar{F}_{N}(x)=P(N>x), \bar{F}_{R}(x)=P(R>x) \sim C_{N} \bar{F}_{N}(x)
$$

Obtaining tail dependence

$$
\bar{F}_{N}(x)=P(N>x), \bar{F}_{R}(x)=P(R>x) \sim C_{N} \bar{F}_{N}(x)
$$

Theorem (L et al. 2009)

The function $r(x, y)$ for N and R is given by

$$
r(x, y):=\lim _{t \rightarrow 0} t^{-1} P\left(\bar{F}_{N}(N) \leq t x, \bar{F}_{R}(R) \leq t y\right)=\min \left\{x, \frac{y(\mathbb{E} A)^{\alpha}}{C_{N}}\right\}
$$

Obtaining tail dependence

$\bar{F}_{N}(x)=P(N>x), \bar{F}_{R}(x)=P(R>x) \sim C_{N} \bar{F}_{N}(x)$

Theorem (L et al. 2009)

The function $r(x, y)$ for N and R is given by

$$
r(x, y):=\lim _{t \rightarrow 0} t^{-1} P\left(\bar{F}_{N}(N) \leq t x, \bar{F}_{R}(R) \leq t y\right)=\min \left\{x, \frac{y(\mathbb{E} A)^{\alpha}}{C_{N}}\right\}
$$

'Proof': For fixed $x, y>0$,

$$
\begin{aligned}
& P\left(\bar{F}_{N}(N) \leq t x, \bar{F}_{R}(R) \leq t y\right) \\
& \quad=P\left(N \geq \bar{F}_{N}^{-1}(t x), R \geq \bar{F}_{R}^{-1}(t y)\right) \\
& \quad=P\left(N \geq \bar{F}_{N}^{-1}(t x), R \geq\left(\frac{y}{C_{N} x} \frac{L\left(\bar{F}_{1}^{-1}(t x)\right)}{L\left(\bar{F}_{R}^{-1}(t y)\right)}\right)^{-1 / \alpha} \bar{F}_{N}^{-1}(t x)\right) \\
& \quad \sim P\left(N \geq \bar{F}_{N}^{-1}(t x), R \geq\left(\frac{y}{C_{N} x}\right)^{-1 / \alpha} \bar{F}_{N}^{-1}(t x)\right)
\end{aligned}
$$

Analytical derivation of the angular measure

- Extreme value theory: A unique (nonnegative) measure $S(\cdot)$ exists on $\equiv=\left\{\omega \in \mathbb{R}_{+}^{2}:\|\omega\|_{1}=1\right\}$ s.t.

$$
\begin{gathered}
r(x, y)=\int_{0}^{1} \min \{w x,(1-w) y\} S(d w) \\
\int_{0}^{1} w S(d w)=\int_{0}^{1}(1-w) S(d w)=1
\end{gathered}
$$

Analytical derivation of the angular measure

- Extreme value theory: A unique (nonnegative) measure $S(\cdot)$ exists on $\equiv=\left\{\omega \in \mathbb{R}_{+}^{2}:\|\omega\|_{1}=1\right\}$ s.t.

$$
\begin{gathered}
r(x, y)=\int_{0}^{1} \min \{w x,(1-w) y\} S(d w) \\
\int_{0}^{1} w S(d w)=\int_{0}^{1}(1-w) S(d w)=1
\end{gathered}
$$

- From this and the shape of $r(x, y)$ we get a two-point measure

Analytical derivation of the angular measure

- Extreme value theory: A unique (nonnegative) measure $S(\cdot)$ exists on $\equiv=\left\{\omega \in \mathbb{R}_{+}^{2}:\|\omega\|_{1}=1\right\}$ s.t.

$$
\begin{gathered}
r(x, y)=\int_{0}^{1} \min \{w x,(1-w) y\} S(d w) \\
\int_{0}^{1} w S(d w)=\int_{0}^{1}(1-w) S(d w)=1
\end{gathered}
$$

- From this and the shape of $r(x, y)$ we get a two-point measure

Theorem

The angular measure with respect to the $\|\cdot\|_{1}$ norm of N and R is a two-point measure, with masses

$$
\begin{aligned}
& S(0)=1-\frac{(\mathbb{E} A)^{\alpha}}{C_{N}} \quad \text { in } 0, \\
& S(a)=1+\frac{(\mathbb{E} A)^{\alpha}}{C_{N}} \quad \text { in } a=\frac{C_{N}}{C_{N}+(\mathbb{E} A)^{\alpha}}
\end{aligned}
$$

Numerical results: Web

- EU-2005 data set due to the Laboratory for Web Algorithmics (LAW) of the Universit'a degli studi di Milano, Boldi and Vigna (2004)
- Total of 862,664 nodes and 19,235,140 links
- Fitting gives $\alpha=1.1$, both for In-degree and PageRanks, see \log-log plots, with $c=0.85$ and $c=0.5$

Numerical examples: Web data

With the graph parameters, $d=22.2974$, our results give the following angular measure:

c	a_{c}	$S\left(a_{c}\right) / 2$
0.5	0.6031	0.8290
0.85	0.7210	0.6934

Numerical examples: Web data

With the graph parameters, $d=22.2974$, our results give the following angular measure:

c	a_{c}	$S\left(a_{c}\right) / 2$
0.5	0.6031	0.8290
0.85	0.7210	0.6934

Comparison for $c=0.5$ and for $c=0.85$, respectively:

Interpretation of S is that high PR is due to high in-degree or a high PR of the neighbors. But reality is more complex...

Numerical results: PA graph

- Network of 10.000 nodes
- Constant out-degree $d=8$
- With prob. 0.1, new node links to random page, with prob. 0.9 , new node follows the preferential attachment rule

Numerical examples: Growing network

- Assuming $P\left(R_{i}>u\right)=o(P(N>u))$ we derive a one-point measure:

$$
a=1 / 2, \quad S(a)=2, \quad S(0)=0
$$

Numerical examples: Growing network

- Assuming $P\left(R_{i}>u\right)=o(P(N>u))$ we derive a one-point measure:

$$
a=1 / 2, \quad S(a)=2, \quad S(0)=0
$$

- Large PageRank always due to large In-degree

Numerical examples: Growing network

- Assuming $P\left(R_{i}>u\right)=o(P(N>u))$ we derive a one-point measure:

$$
a=1 / 2, \quad S(a)=2, \quad S(0)=0
$$

- Large PageRank always due to large In-degree
- Empirical and theoretical measures:

Conclusions

- Measuring dependencies in complex networks is a largely unresolved problem

Conclusions

- Measuring dependencies in complex networks is a largely unresolved problem
- Solution is needed, because mixing patterns play important role in network processes

Conclusions

- Measuring dependencies in complex networks is a largely unresolved problem
- Solution is needed, because mixing patterns play important role in network processes
- The models such as PA do not reflect the dependencies properly

Conclusions

- Measuring dependencies in complex networks is a largely unresolved problem
- Solution is needed, because mixing patterns play important role in network processes
- The models such as PA do not reflect the dependencies properly
- Extremal dependencies is a promising start for rigorous modelling and analysis

