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Power laws: formal description

Power laws: Internet, WWW, social networks, biological
networks, etc...

degree of the node = # (it-/out-) links

[fraction nodes degree at least k] = pk ,

Power law: pk ≈ const · k−α, α > 0.

Regular variation:
X is regularly varying random variable with index α
P(X > x) ∼ L(x)x−α as x →∞
L(x) is slowly varying: for every t > 0, L(tx)/L(x)→ 1 as
x →∞

Power law is the model for high variability

log pk = log(const)− α log k

Straight line on the log-log scale
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Power laws in Internet graphs

Network of routers (physical)

Routers are grouped in autonomous systems (AS), or domains

Faloutsos, Faloutsos, Faloutsos (1999):

The degree of the nodes follow power laws, exponent 2.5
The degree of the network of domains also follow power laws,
exponent 2.1
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But Power Law is not everything!

Example: Robustness of the Internet.

Albert, Jeong and Barabasi (2000): Achille’s heel of Internet:
Internet is sensitive to targeted attack

Doyle et al. (2005): Robust yet fragile nature of Internet:
Internet is not a random graph, it is designed to be robust
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But Power Law is not everything! (cont.)

Example: Spread of infections

Classical epidemiology, e.g. Adnerson and May (1991): a virus
turns into an epidemic if infection rate exceeds a certain
critical value

Vespignani et al. (2001): power law networks have a zero
critical infection rate!

Eguiluz et al. (2002): a specially wired highly clustered
network is resistant up to a certain critical infection rate.
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How do we measure dependencies in networks

Newman (2002): assortativity measure r

r is a statistical estimation for the coefficient of variation

ρ =
E (XY )− [E (X )]2

Var(X )
,

X and Y are the degrees of the nodes on the two ends of a
randomly chosen edge

Measurements by Newman (2002):

Social networks: assortative, r > 0
Engineering networks (Internet, WWW): disassortative, r < 0

Problems? YES!!!

X and Y are power law r.v.’s, exponent α− 1

In real networks, 1 < α < 2, so E (X ) =
∑
k

k
kpk

E (degree)
=∞

ρ is not defined in the power law model!
Then: what are we measuring?
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Google PageRank

S. Brin, L. Page, The anatomy of a large-scale hypertextual
Web search engine (1998)

Google ranking: use the information contained in the links!

PageRank ri of page i = 1, . . . , n is defined as a stationary
distribution of a random walk with jumps:

Ri =
∑
j → i

c

dj
Rj + (1− c)bi , i = 1, . . . , n

dj = # out-links of page j ;
c ∈ (0, 1), originally 0.85, probability of a random jump;
bi probability to jump to page i .

A page is important when many important pages link to it

Modifications of PageRank are used in search. Many other
applications: clustering, spam detection, measuring node
distances, citation analysis, etc.
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Power Law behaviour of PageRank

Pandurangan et al. (2002) PageRank, scaled with the number
of pages, Ri → nRi , has a power law distribution

Data for Web, Wikipedia and Preferential Attachment graph
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Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank

R
d
= c

N∑
j=1

1

Dj
Rj + cp0 + (1− c)B

N is the in-degree of the randomly chosen page

D is the out-degree of page that links to the randomly chosen
page

p0 is the fraction of pages with out-degree zero

Rj is distributed as R; N,D,Rj are independent; N and B can
be dependent

Theorem (V&L 2010)

If P(B > x) = o(P(N > x)), then the following are equivalent:

P(N > x) ∼ x−αNLN(x) as x →∞,
P(R > x) ∼ CNx

−αNLN(x) as x →∞,
where CN = (E (c/D))αN [1− E(N)E((c/D)αN )]−1
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Extremal dependencies

X ,Y are r.v’s; FX ,FY are distribution functions

1− FX (X ) = fraction of occurrences of the value > X (rank)

Define (R,Θ) = POLAR

(
1

1− FX (X )
,

1

1− FY (Y )

)
Angular measure: S(A) = limt→∞ tP(R > t,Θ ∈ A)

Dependence Independence
S concentrated around π/4 S concentrated around 0 and π/2
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Statistical procedure

graph’s parameters: X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn)

node j : (Xj ,Yj)

rank transform:
{(Xj ,Yj), j = 1, . . . , n} → {(r xj , r

y
j ), j = 1, . . . , n},

r xj is the descending rank of Xj in (X1, . . . ,Xn)

r yj is the descending rank of Yj in (Y1, . . . ,Yn)

(Rj ,k ,Θj ,k) = POLAR

(
k

r xj
,
k

r yj

)
k = 1, . . . , n ‘upper’ order statistics

empirical distribution of Θ for k largest values of R

cumulative distribution function {Θj ,k : Rj ,k > 1}
We measure correlations on fraction k/n of the data.
But same applies to power laws!
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Dependencies between parameters of a node

Measurements (Volkovich et al., 2008)

(a) In-PR (c = 0.85), (b) In-PR (c = 0.5),
(c) In-Out, (d) Out-PR

13



And how is our branching model doing?

R
d
=
∑N

i=1 AiRi + B

Lemma

As u →∞, for any constant C > 0,

P(N > u,R > Cu) ∼ min{F̄N(u), (EA/C )αF̄N(u)}.

‘Proof’:
Recall R

d
=
∑N

i=1 AiRi + B.
By the SLLN we have R ≈ EA · N when N is large.
Hence:

When EA > C , the event {R > Cu} is ‘implied’ by {N > u},
leading to P(N > u)

When EA < C , N needs to be larger for R > Cu to hold,
leading to P(N > Cu/EA).
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By the SLLN we have R ≈ EA · N when N is large.
Hence:

When EA > C , the event {R > Cu} is ‘implied’ by {N > u},
leading to P(N > u)

When EA < C , N needs to be larger for R > Cu to hold,
leading to P(N > Cu/EA).
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Obtaining tail dependence

F̄N(x) = P(N > x), F̄R(x) = P(R > x) ∼ CN F̄N(x)

Theorem (L et al. 2009)

The function r(x , y) for N and R is given by

r(x , y) := lim
t→0

t−1P(F̄N(N) ≤ tx , F̄R(R) ≤ ty) = min

{
x ,

y(EA)α

CN

}
‘Proof’: For fixed x , y > 0,

P(F̄N(N) ≤ tx , F̄R(R) ≤ ty)

= P(N ≥ F̄−1N (tx),R ≥ F̄−1R (ty))

= P

N ≥ F̄−1N (tx),R ≥

(
y

CNx

L(F̄−11 (tx))

L(F̄−1R (ty))

)−1/α
F̄−1N (tx)


∼ P

(
N ≥ F̄−1N (tx),R ≥

(
y

CNx

)−1/α
F̄−1N (tx)

)
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Analytical derivation of the angular measure

Extreme value theory: A unique (nonnegative) measure S(·)
exists on Ξ = {ω ∈ R2

+ : ||ω||1 = 1} s.t.

r(x , y) =

∫ 1

0
min{wx , (1− w)y}S(dw),∫ 1

0
wS(dw) =

∫ 1

0
(1− w)S(dw) = 1.

From this and the shape of r(x , y) we get a two-point measure

Theorem

The angular measure with respect to the || · ||1 norm of N and R is
a two-point measure, with masses

S(0) = 1− (EA)α

CN
in 0,

S(a) = 1 +
(EA)α

CN
in a =

CN

CN + (EA)α
.
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Numerical results: Web

EU-2005 data set due to the Laboratory for Web Algorithmics
(LAW) of the Universit‘a degli studi di Milano, Boldi and
Vigna (2004)

Total of 862,664 nodes and 19,235,140 links

Fitting gives α = 1.1, both for In-degree and PageRanks, see
log-log plots, with c = 0.85 and c = 0.5
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Numerical examples: Web data

With the graph parameters, d = 22.2974, our results give the
following angular measure:

c ac S(ac)/2

0.5 0.6031 0.8290
0.85 0.7210 0.6934

Comparison for c = 0.5 and for c = 0.85, respectively:

Interpretation of S is that high PR is due to high in-degree or a
high PR of the neighbors. But reality is more complex...
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Numerical results: PA graph

Network of 10.000 nodes

Constant out-degree d = 8

With prob. 0.1, new node links to random page, with prob.
0.9, new node follows the preferential attachment rule
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Numerical examples: Growing network

Assuming P(Ri > u) = o(P(N > u)) we derive a one-point
measure:

a = 1/2, S(a) = 2, S(0) = 0

Large PageRank always due to large In-degree

Empirical and theoretical measures:
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Conclusions

Measuring dependencies in complex networks is a largely
unresolved problem

Solution is needed, because mixing patterns play important
role in network processes

The models such as PA do not reflect the dependencies
properly

Extremal dependencies is a promising start for rigorous
modelling and analysis
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