Correlations between power law parameters in complex networks

Nelly Litvak

joint work with Yana Volkovich, Werner Scheinhardt, Bert Zwart

University of Twente

COST meeting, 19-05-2011

- Power laws in complex networks
- Dependence between power law graph parameters
- Angular measure
- Example: in-degree and PageRank

• Power laws: Internet, WWW, social networks, biological networks, etc...

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node = # (it-/out-) links
- [fraction nodes degree at least k] = p_k ,
- Power law: $p_k \approx const \cdot k^{-\alpha}$, $\alpha > 0$.

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node = # (it-/out-) links
- [fraction nodes degree at least k] = p_k ,
- Power law: $p_k \approx const \cdot k^{-\alpha}$, $\alpha > 0$.
- Regular variation:
 - X is regularly varying random variable with index lpha
 - $P(X>x) \sim L(x)x^{-lpha}$ as $x \to \infty$
 - L(x) is slowly varying: for every t > 0, $L(tx)/L(x) \rightarrow 1$ as $x \rightarrow \infty$

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node = # (it-/out-) links
- [fraction nodes degree at least k] = p_k ,
- Power law: $p_k \approx const \cdot k^{-\alpha}$, $\alpha > 0$.
- Regular variation:
 - X is regularly varying random variable with index lpha
 - $P(X>x) \sim L(x)x^{-lpha}$ as $x \to \infty$
 - L(x) is slowly varying: for every t > 0, $L(tx)/L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power law is the model for high variability

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node = # (it-/out-) links
- [fraction nodes degree at least k] = p_k ,
- Power law: $p_k \approx const \cdot k^{-\alpha}$, $\alpha > 0$.
- Regular variation:
 - X is regularly varying random variable with index α
 - $P(X > x) \sim L(x)x^{-lpha}$ as $x \to \infty$
 - L(x) is slowly varying: for every t > 0, $L(tx)/L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power law is the model for high variability

•
$$\log p_k = log(const) - \alpha \log k$$

- Power laws: Internet, WWW, social networks, biological networks, etc...
- degree of the node = # (it-/out-) links
- [fraction nodes degree at least k] = p_k ,
- Power law: $p_k \approx const \cdot k^{-\alpha}$, $\alpha > 0$.
- Regular variation:
 - X is regularly varying random variable with index α
 - $P(X > x) \sim L(x)x^{-lpha}$ as $x \to \infty$
 - L(x) is slowly varying: for every t > 0, $L(tx)/L(x) \rightarrow 1$ as $x \rightarrow \infty$
- Power law is the model for high variability
- $\log p_k = log(const) \alpha \log k$
- Straight line on the log-log scale

Power laws in Internet graphs

- Network of routers (physical)
- Routers are grouped in autonomous systems (AS), or domains
- Faloutsos, Faloutsos, Faloutsos (1999):
 - The degree of the nodes follow power laws, exponent 2.5
 - The degree of the network of domains also follow power laws, exponent 2.1

Figure 5: The outdegree plots: Log-log plot of frequency f_d versus the outdegree d.

But Power Law is not everything!

Example: Robustness of the Internet.

• Albert, Jeong and Barabasi (2000): Achille's heel of Internet: Internet is sensitive to targeted attack

But Power Law is not everything!

Example: Robustness of the Internet.

- Albert, Jeong and Barabasi (2000): Achille's heel of Internet: Internet is sensitive to targeted attack
- Doyle et al. (2005): Robust yet fragile nature of Internet: Internet is not a random graph, it is designed to be robust

Example: Spread of infections

• Classical epidemiology, e.g. Adnerson and May (1991): a virus turns into an epidemic if infection rate exceeds a certain critical value

Example: Spread of infections

- Classical epidemiology, e.g. Adnerson and May (1991): a virus turns into an epidemic if infection rate exceeds a certain critical value
- Vespignani et al. (2001): power law networks have a zero critical infection rate!

Example: Spread of infections

- Classical epidemiology, e.g. Adnerson and May (1991): a virus turns into an epidemic if infection rate exceeds a certain critical value
- Vespignani et al. (2001): power law networks have a zero critical infection rate!
- Eguiluz et al. (2002): a specially wired highly clustered network is resistant up to a certain critical infection rate.

• Newman (2002): assortativity measure r

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

• X and Y are the degrees of the nodes on the two ends of a randomly chosen edge

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0

Problems?

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0
- Problems? YES!!!

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0
- Problems? YES!!!
 - X and Y are power law r.v.'s, exponent lpha-1

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0
- Problems? YES!!!
 - X and Y are power law r.v.'s, exponent lpha-1

• In real networks,
$$1 < lpha < 2$$
, so $E(X) = \sum_k k \, rac{k p_k}{E(ext{degree})} = \infty$

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0
- Problems? YES!!!
 - X and Y are power law r.v.'s, exponent lpha-1
 - In real networks, $1 < \alpha < 2$, so $E(X) = \sum_{k} k \frac{kp_k}{E(\text{degree})} = \infty$
 - ρ is not defined in the power law model!

- Newman (2002): assortativity measure r
- r is a statistical estimation for the coefficient of variation

$$\rho = \frac{E(XY) - [E(X)]^2}{Var(X)},$$

- X and Y are the degrees of the nodes on the two ends of a randomly chosen edge
- Measurements by Newman (2002):
 - Social networks: assortative, r > 0
 - Engineering networks (Internet, WWW): disassortative, r < 0
- Problems? YES!!!
 - X and Y are power law r.v.'s, exponent lpha-1
 - In real networks, $1 < \alpha < 2$, so $E(X) = \sum_{k} k \frac{kp_k}{E(\text{degree})} = \infty$
 - ρ is not defined in the power law model!
 - Then: what are we measuring?

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!
- PageRank r_i of page i = 1, ..., n is defined as a stationary distribution of a random walk with jumps:

$$R_i = \sum_{j \rightarrow i} rac{c}{d_j} R_j + (1-c)b_i, \quad i = 1, \dots, n$$

 $d_j = \#$ out-links of page j; $c \in (0, 1)$, originally 0.85, probability of a random jump; b_i probability to jump to page i.

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!
- PageRank r_i of page i = 1,..., n is defined as a stationary distribution of a random walk with jumps:

$$R_i = \sum_{j \rightarrow i} rac{c}{d_j} R_j + (1-c)b_i, \quad i = 1, \dots, n$$

 $d_j = \#$ out-links of page j; $c \in (0, 1)$, originally 0.85, probability of a random jump; b_i probability to jump to page i.

• A page is important when many important pages link to it

- S. Brin, L. Page, The anatomy of a large-scale hypertextual Web search engine (1998)
- Google ranking: use the information contained in the links!
- PageRank r_i of page i = 1,..., n is defined as a stationary distribution of a random walk with jumps:

$$R_i = \sum_{j \rightarrow i} rac{c}{d_j} R_j + (1-c)b_i, \quad i = 1, \dots, n$$

 $d_j = \#$ out-links of page j;

- $c \in (0,1)$, originally 0.85, probability of a random jump;
- b_i probability to jump to page i.
- A page is important when many important pages link to it
- Modifications of PageRank are used in search. Many other applications: clustering, spam detection, measuring node distances, citation analysis, etc.

Power Law behaviour of PageRank

• Pandurangan et al. (2002) PageRank, scaled with the number of pages, $R_i \rightarrow nR_i$, has a power law distribution

Power Law behaviour of PageRank

- Pandurangan et al. (2002) PageRank, scaled with the number of pages, R_i → nR_i, has a power law distribution
- Data for Web, Wikipedia and Preferential Attachment graph

Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank

$$R \stackrel{d}{=} c \sum_{j=1}^{N} \frac{1}{D_j} R_j + c p_0 + (1-c) B$$

- N is the in-degree of the randomly chosen page
- *D* is the out-degree of page that links to the randomly chosen page
- p_0 is the fraction of pages with out-degree zero
- *R_j* is distributed as *R*; *N*, *D*, *R_j* are independent; *N* and *B* can be dependent

Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank

$$R \stackrel{d}{=} c \sum_{j=1}^{N} \frac{1}{D_j} R_j + c p_0 + (1-c) B$$

- N is the in-degree of the randomly chosen page
- *D* is the out-degree of page that links to the randomly chosen page
- p_0 is the fraction of pages with out-degree zero
- *R_j* is distributed as *R*; *N*, *D*, *R_j* are independent; *N* and *B* can be dependent

Theorem (V&L 2010)

If P(B > x) = o(P(N > x)), then the following are equivalent:

•
$$P(N>x) \sim x^{-lpha_N} L_N(x)$$
 as $x o \infty$,

•
$$P(R > x) \sim C_N x^{-\alpha_N} L_N(x)$$
 as $x \to \infty$,
where $C_N = (E(c/D))^{\alpha_N} [1 - \mathbb{E}(N)\mathbb{E}((c/D)^{\alpha_N})]^{-1}$

• X, Y are r.v's; F_X, F_Y are distribution functions

- X, Y are r.v's; F_X, F_Y are distribution functions
- $1 F_X(X) =$ fraction of occurrences of the value > X (rank)

- X, Y are r.v's; F_X, F_Y are distribution functions
- $1 F_X(X) =$ fraction of occurrences of the value > X (rank)

• Define
$$(R, \Theta) = \operatorname{POLAR}\left(\frac{1}{1 - F_X(X)}, \frac{1}{1 - F_Y(Y)}\right)$$

- X, Y are r.v's; F_X, F_Y are distribution functions
- $1 F_X(X) =$ fraction of occurrences of the value > X (rank)
- Define $(R, \Theta) = \operatorname{POLAR}\left(\frac{1}{1 F_X(X)}, \frac{1}{1 F_Y(Y)}\right)$

• Angular measure: $S(A) = \lim_{t \to \infty} tP(R > t, \Theta \in A)$

- X, Y are r.v's; F_X, F_Y are distribution functions
- $1 F_X(X) =$ fraction of occurrences of the value > X (rank)
- Define $(R, \Theta) = \text{POLAR}\left(\frac{1}{1 F_X(X)}, \frac{1}{1 F_Y(Y)}\right)$
- Angular measure: $S(A) = \lim_{t\to\infty} tP(R > t, \Theta \in A)$

Dependence

Independence S concentrated around $\pi/4$ S concentrated around 0 and $\pi/2$

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$
- rank transform:

$$\{(X_j, Y_j), j = 1, \ldots, n\} \rightarrow \{(r_j^x, r_j^y), j = 1, \ldots, n\},\$$

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$
- rank transform:

$$\{(X_j, Y_j), j = 1, \ldots, n\} \rightarrow \{(r_j^x, r_j^y), j = 1, \ldots, n\},\$$

• r_j^{x} is the descending rank of X_j in (X_1, \ldots, X_n) r_j^{y} is the descending rank of Y_j in (Y_1, \ldots, Y_n)

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$
- rank transform: $\{(X_j, Y_j), j = 1, \dots, n\} \rightarrow \{(r_j^x, r_j^y), j = 1, \dots, n\},$ • r_j^x is the descending rank of X_i in (X_1, \dots, X_n)
- r_j^x is the descending rank of X_j in (X_1, \ldots, X_n) r_j^y is the descending rank of Y_j in (Y_1, \ldots, Y_n)

•
$$(R_{j,k}, \Theta_{j,k}) = \text{POLAR}\left(\frac{k}{r_j^x}, \frac{k}{r_j^y}\right)$$

• $k = 1, \ldots, n$ 'upper' order statistics

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$
- rank transform: $\{(X_j, Y_j), j = 1, ..., n\} \rightarrow \{(r_j^x, r_j^y), j = 1, ..., n\},$
- r_j^x is the descending rank of X_j in (X_1, \ldots, X_n) r_j^y is the descending rank of Y_j in (Y_1, \ldots, Y_n)

•
$$(R_{j,k}, \Theta_{j,k}) = \text{POLAR}\left(\frac{k}{r_j^x}, \frac{k}{r_j^y}\right)$$

- $k = 1, \ldots, n$ 'upper' order statistics
- empirical distribution of Θ for k largest values of R
- cumulative distribution function $\{\Theta_{j,k} : R_{j,k} > 1\}$

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$
- rank transform: ${(X_j, Y_j), j = 1, ..., n} \rightarrow {(r_j^x, r_j^y), j = 1, ..., n},$
- r_j^x is the descending rank of X_j in (X_1, \ldots, X_n) r_j^y is the descending rank of Y_j in (Y_1, \ldots, Y_n)

•
$$(R_{j,k}, \Theta_{j,k}) = \text{POLAR}\left(\frac{k}{r_j^x}, \frac{k}{r_j^y}\right)$$

- $k = 1, \ldots, n$ 'upper' order statistics
- empirical distribution of Θ for k largest values of R
- cumulative distribution function $\{\Theta_{j,k} : R_{j,k} > 1\}$
- We measure correlations on fraction k/n of the data.

- graph's parameters: $X = (X_1, \ldots, X_n)$ and $Y = (Y_1, \ldots, Y_n)$
- node $j: (X_j, Y_j)$
- rank transform: $\{(X_j, Y_j), j = 1, ..., n\} \rightarrow \{(r_j^x, r_j^y), j = 1, ..., n\},\$
- r_j^x is the descending rank of X_j in (X_1, \ldots, X_n) r_j^y is the descending rank of Y_j in (Y_1, \ldots, Y_n)

•
$$(R_{j,k}, \Theta_{j,k}) = \text{POLAR}\left(\frac{k}{r_j^x}, \frac{k}{r_j^y}\right)$$

- $k = 1, \ldots, n$ 'upper' order statistics
- empirical distribution of Θ for k largest values of R
- cumulative distribution function $\{\Theta_{j,k} : R_{j,k} > 1\}$
- We measure correlations on fraction k/n of the data. But same applies to power laws!

Dependencies between parameters of a node

• Measurements (Volkovich et al., 2008)

(a) In-PR (c = 0.85), (b) In-PR (c = 0.5),
 (c) In-Out, (d) Out-PR

And how is our branching model doing?

$$R \stackrel{d}{=} \sum_{i=1}^{N} A_i R_i + B$$

And how is our branching model doing?

$$R \stackrel{d}{=} \sum_{i=1}^{N} A_i R_i + B$$

Lemma

As $u \to \infty$, for any constant C > 0,

 $P(N > u, R > Cu) \sim \min\{\overline{F}_N(u), (\mathbb{E}A/C)^{\alpha}\overline{F}_N(u)\}.$

And how is our branching model doing?

$$R \stackrel{d}{=} \sum_{i=1}^{N} A_i R_i + B$$

Lemma

As
$$u \to \infty$$
, for any constant $C > 0$,

$$P(N > u, R > Cu) \sim \min\{\overline{F}_N(u), (\mathbb{E}A/C)^{lpha}\overline{F}_N(u)\}.$$

'Proof':

Recall $R \stackrel{d}{=} \sum_{i=1}^{N} A_i R_i + B$. By the SLLN we have $R \approx \mathbb{E}A \cdot N$ when N is large. Hence:

- When $\mathbb{E}A > C$, the event $\{R > Cu\}$ is 'implied' by $\{N > u\}$, leading to P(N > u)
- When EA < C, N needs to be larger for R > Cu to hold, leading to P(N > Cu/EA).

Obtaining tail dependence

$$\overline{F}_N(x) = P(N > x), \ \overline{F}_R(x) = P(R > x) \sim C_N \overline{F}_N(x)$$

Obtaining tail dependence

$$\overline{F}_N(x) = P(N > x), \ \overline{F}_R(x) = P(R > x) \sim C_N \overline{F}_N(x)$$

Theorem (L et al. 2009)

The function r(x, y) for N and R is given by

$$r(x,y) := \lim_{t \to 0} t^{-1} P(\bar{F}_N(N) \le tx, \bar{F}_R(R) \le ty) = \min\left\{x, \frac{y(\mathbb{E}A)^{\alpha}}{C_N}\right\}$$

Obtaining tail dependence

$$\overline{F}_N(x) = P(N > x), \ \overline{F}_R(x) = P(R > x) \sim C_N \overline{F}_N(x)$$

Theorem (L et al. 2009)

The function r(x, y) for N and R is given by

$$r(x,y) := \lim_{t \to 0} t^{-1} P(\bar{F}_N(N) \le tx, \bar{F}_R(R) \le ty) = \min\left\{x, \frac{y(\mathbb{E}A)^{\alpha}}{C_N}\right\}$$

Proof': For fixed
$$x, y > 0$$
,
 $P(\bar{F}_N(N) \le tx, \bar{F}_R(R) \le ty)$
 $= P(N \ge \bar{F}_N^{-1}(tx), R \ge \bar{F}_R^{-1}(ty))$
 $= P\left(N \ge \bar{F}_N^{-1}(tx), R \ge \left(\frac{y}{C_N x} \frac{L(\bar{F}_1^{-1}(tx))}{L(\bar{F}_R^{-1}(ty))}\right)^{-1/\alpha} \bar{F}_N^{-1}(tx)\right)$
 $\sim P\left(N \ge \bar{F}_N^{-1}(tx), R \ge \left(\frac{y}{C_N x}\right)^{-1/\alpha} \bar{F}_N^{-1}(tx)\right)$

Analytical derivation of the angular measure

Extreme value theory: A unique (nonnegative) measure S(·) exists on Ξ = {ω ∈ ℝ²₊ : ||ω||₁ = 1} s.t.

$$r(x,y) = \int_0^1 \min\{wx, (1-w)y\}S(dw),$$
$$\int_0^1 wS(dw) = \int_0^1 (1-w)S(dw) = 1.$$

Analytical derivation of the angular measure

Extreme value theory: A unique (nonnegative) measure S(·) exists on Ξ = {ω ∈ ℝ²₊ : ||ω||₁ = 1} s.t.

$$r(x,y) = \int_0^1 \min\{wx, (1-w)y\}S(dw),$$
$$\int_0^1 wS(dw) = \int_0^1 (1-w)S(dw) = 1.$$

• From this and the shape of r(x, y) we get a two-point measure

Analytical derivation of the angular measure

Extreme value theory: A unique (nonnegative) measure S(·) exists on Ξ = {ω ∈ ℝ²₊ : ||ω||₁ = 1} s.t.

$$r(x,y) = \int_0^1 \min\{wx, (1-w)y\}S(dw),$$
$$\int_0^1 wS(dw) = \int_0^1 (1-w)S(dw) = 1.$$

• From this and the shape of r(x, y) we get a two-point measure

Theorem

The angular measure with respect to the $|| \cdot ||_1$ norm of N and R is a two-point measure, with masses

$$\begin{split} S(0) &= 1 - \frac{(\mathbb{E}A)^{\alpha}}{C_N} & \text{in } 0, \\ S(a) &= 1 + \frac{(\mathbb{E}A)^{\alpha}}{C_N} & \text{in } a = \frac{C_N}{C_N + (\mathbb{E}A)^{\alpha}}. \end{split}$$

Numerical results: Web

- EU-2005 data set due to the Laboratory for Web Algorithmics (LAW) of the Universit'a degli studi di Milano, Boldi and Vigna (2004)
- Total of 862,664 nodes and 19,235,140 links
- Fitting gives $\alpha = 1.1$, both for In-degree and PageRanks, see log-log plots, with c = 0.85 and c = 0.5

Numerical examples: Web data

With the graph parameters, d = 22.2974, our results give the following angular measure:

С	a _c	$S(a_c)/2$
0.5	0.6031	0.8290
0.85	0.7210	0.6934

Numerical examples: Web data

With the graph parameters, d = 22.2974, our results give the following angular measure:

С	a _c	$S(a_c)/2$
0.5	0.6031	0.8290
0.85	0.7210	0.6934

Comparison for c = 0.5 and for c = 0.85, respectively:

Interpretation of S is that high PR is due to high in-degree or a high PR of the neighbors. But reality is more complex...

Numerical results: PA graph

- Network of 10.000 nodes
- Constant out-degree d = 8
- With prob. 0.1, new node links to random page, with prob. 0.9, new node follows the preferential attachment rule

Numerical examples: Growing network

Assuming P(R_i > u) = o(P(N > u)) we derive a one-point measure:

$$a = 1/2, \quad S(a) = 2, \quad S(0) = 0$$

Numerical examples: Growing network

Assuming P(R_i > u) = o(P(N > u)) we derive a one-point measure:

$$a = 1/2, \quad S(a) = 2, \quad S(0) = 0$$

• Large PageRank always due to large In-degree

Numerical examples: Growing network

Assuming P(R_i > u) = o(P(N > u)) we derive a one-point measure:

$$a = 1/2, \quad S(a) = 2, \quad S(0) = 0$$

- Large PageRank always due to large In-degree
- Empirical and theoretical measures:

• Measuring dependencies in complex networks is a largely unresolved problem

- Measuring dependencies in complex networks is a largely unresolved problem
- Solution is needed, because mixing patterns play important role in network processes

- Measuring dependencies in complex networks is a largely unresolved problem
- Solution is needed, because mixing patterns play important role in network processes
- The models such as PA do not reflect the dependencies properly

- Measuring dependencies in complex networks is a largely unresolved problem
- Solution is needed, because mixing patterns play important role in network processes
- The models such as PA do not reflect the dependencies properly
- Extremal dependencies is a promising start for rigorous modelling and analysis