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@ Power laws in complex networks
@ Dependence between power law graph parameters
@ Angular measure

@ Example: in-degree and PageRank
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Power laws: formal description

@ Power laws: Internet, WWW, social networks, biological
networks, etc...

degree of the node = # (it-/out-) links
[fraction nodes degree at least k] = p,

Power law: p, ~ const - k=%, a > 0.

Regular variation:
e X is regularly varying random variable with index «
o P(X >x)~L(x)x™*as x = o0
o L(x) is slowly varying: for every t > 0, L(tx)/L(x) — 1 as
X — 00
@ Power law is the model for high variability

o log px = log(const) — alog k

Straight line on the log-log scale



Power laws in Internet graphs

e Network of routers (physical)
@ Routers are grouped in autonomous systems (AS), or domains

e Faloutsos, Faloutsos, Faloutsos (1999):

o The degree of the nodes follow power laws, exponent 2.5
o The degree of the network of domains also follow power laws,
exponent 2.1
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Figure 5: The outdegree plots: Log-log plot of frequency fi versus the outdegree d.
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But Power Law is not everything!

Example: Robustness of the Internet.

@ Albert, Jeong and Barabasi (2000): Achille’s heel of Internet:
Internet is sensitive to targeted attack

@ Doyle et al. (2005): Robust yet fragile nature of Internet:
Internet is not a random graph, it is designed to be robust
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But Power Law is not everything! (cont.)

Example: Spread of infections

o Classical epidemiology, e.g. Adnerson and May (1991): a virus
turns into an epidemic if infection rate exceeds a certain
critical value

@ Vespignani et al. (2001): power law networks have a zero
critical infection rate!

e Eguiluz et al. (2002): a specially wired highly clustered
network is resistant up to a certain critical infection rate.
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How do we measure dependencies in networks

Newman (2002): assortativity measure r

r is a statistical estimation for the coefficient of variation

E(XY) — [E(X)P?
Var(X) ’

X and Y are the degrees of the nodes on the two ends of a
randomly chosen edge
e Measurements by Newman (2002):

o Social networks: assortative, r > 0
o Engineering networks (Internet, WWW): disassortative, r < 0

@ Problems? YESI!!

e X and Y are power law r.v.'s, exponent o — 1

kpx
o In real networks, 1 < a < 2, so E(X) = k——"—"—=00
Zk: E(degree)

@ p is not defined in the power law model!
e Then: what are we measuring?
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Google PageRank

@ S. Brin, L. Page, The anatomy of a large-scale hypertextual
Web search engine (1998)

@ Google ranking: use the information contained in the links!

@ PageRank r; of page i = 1,...,nis defined as a stationary
distribution of a random walk with jumps:

c .
R; —jz_;ideJ—i—(l c)bi, i=1,...,n
d; = # out-links of page j;
c € (0,1), originally 0.85, probability of a random jump;
b; probability to jump to page i.
@ A page is important when many important pages link to it
@ Modifications of PageRank are used in search. Many other

applications: clustering, spam detection, measuring node
distances, citation analysis, etc.
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Power Law behaviour of PageRank

e Pandurangan et al. (2002) PageRank, scaled with the number
of pages, R; — nR;, has a power law distribution
@ Data for Web, Wikipedia and Preferential Attachment graph
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Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank

N is the in-degree of the randomly chosen page

D is the out-degree of page that links to the randomly chosen
page

po is the fraction of pages with out-degree zero

R; is distributed as R; N, D, R; are independent; N and B can
be dependent
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Modelling the Power Law behaviour of PageRank

Stochastic equation for PageRank

@ N is the in-degree of the randomly chosen page

@ D is the out-degree of page that links to the randomly chosen
page

@ po is the fraction of pages with out-degree zero

@ Rjis distributed as R; N, D, R; are independent; N and B can
be dependent

Theorem (V&L 2010)

If P(B > x)=o(P(N > x)), then the following are equivalent:
@ P(N > x) ~ x~“NLy(x) as x — oo,

@ P(R > x)~ Cyx “NLy(x) as x — o0,
where Cy = (E(c/D))*[1 — E(N)E((c/D))]™
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Extremal dependencies

e X,Y arer.v's; Fx, Fy are distribution functions

e 1 — Fx(X) = fraction of occurrences of the value > X (rank)

o Define (R,©) = POLAR (

1

)
1—Fx(X) 1= Fy(Y)

e Angular measure: S(A) = limio0 tP(R > t,0 € A)

Dependence
S concentrated around 7 /4

UA-F(Y)) o i
L] / L] . #
t L%

o af1-Fx(X)

Independence

S concentrated around 0 and 7/2

1(1-F«(Y))

t

b A(1F00)
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Statistical procedure

graph's parameters: X = (X1,...,X,) and Y =(Y1,...

node j: (Xj, Y))

rank transform:

{(X, ;) j=1....n} = {(r,r/).j=1,....n},
r* is the descending rank of X; in (Xi,...,Xx)

J
ri is the descending rank of Yj in (Y1,...,Y;)

k k
(I?j’k,ej,k) = POLAR (rx’ H’)

i
k=1,...,n 'upper’ order statistics

empirical distribution of © for k largest values of R
cumulative distribution function {©; s : R , > 1}

We measure correlations on fraction k/n of the data.
But same applies to power laws!

» Yn)
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Dependencies between parameters of a node

e Measurements (Volkovich et al., 2008)
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RLITN AR +B
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And how is our branching model doing?

RLITN AR +B

As u — oo, for any constant C > 0,

P(N > u, R > Cu) ~ min{Fn(u), (EA/C)*Fn(u)}.

‘Proof’:
Recall R £ SN AR + B.
By the SLLN we have R ~ EA- N when N is large.
Hence:
e When EA > C, the event {R > Cu} is ‘implied’ by {N > u},
leading to P(N > u)
@ When EA < C, N needs to be larger for R > Cu to hold,
leading to P(N > Cu/EA).

14



Obtaining tail dependence

Fn(x) = P(N > x), Fr(x) = P(R > x) ~ CnyFn(x)
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Obtaining tail dependence

:EN(X) = P(N > x), /_:R(X) =P(R>x) ~ CNI_:N(X)
Theorem (L et al. 2009)

The function r(x,y) for N and R is given by
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Obtaining tail dependence

:EN(X) = P(N > x), /_:R(X) =P(R>x) ~ CNI_:N(X)
Theorem (L et al. 2009)

The function r(x,y) for N and R is given by

r(x,y) = lim t1P(Fy(N) < tx, Fr(R) < ty) = min {x, y(EA)a}

‘Proof’: For fixed x,y > 0,
P(Fn(N) < tx, Fr(R) < ty)
= P(N > Fy'(tx), R > Fg'(ty))

15



Analytical derivation of the angular measure

@ Extreme value theory: A unique (nonnegative) measure S(-)
existson == {w € R? : ||w|ls =1} s.t.

1
r(x,y) = /0 min{wx, (1 — w)y}S(dw),

/01 wS(dw) = /01(1 — w)S(dw) = 1.
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Analytical derivation of the angular measure

@ Extreme value theory: A unique (nonnegative) measure S(-)
existson == {w € R? : ||w|ls =1} s.t.

1
r(x,y) = /0 min{wx, (1 — w)y}S(dw),

/01 wS(dw) = /01(1 — w)S(dw) = 1.

@ From this and the shape of r(x,y) we get a two-point measure

The angular measure with respect to the || - ||1 norm of N and R is
a two-point measure, with masses

. (EA
50)=1 Cn in 0,
S(a)=1+ (EA) ina= Cw

Cn - Cy+ (EA)




Numerical results: Web

e EU-2005 data set due to the Laboratory for Web Algorithmics
(LAW) of the Universit'a degli studi di Milano, Boldi and
Vigna (2004)

@ Total of 862,664 nodes and 19,235,140 links

o Fitting gives a = 1.1, both for In-degree and PageRanks, see
log-log plots, with ¢ =0.85 and ¢ = 0.5
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Numerical examples: Web data

With the graph parameters, d = 22.2974, our results give the
following angular measure:

c ac S(ac)/2
0.5 0.6031  0.8290
0.85 0.7210 0.6934
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Numerical examples: Web data

With the graph parameters, d = 22.2974, our results give the
following angular measure:

c ac S(ac)/2
0.5 0.6031  0.8290
0.85 0.7210 0.6934

Comparison for ¢ = 0.5 and for ¢ = 0.85, respectively:

P
fraction ofpages

Interpretation of S is that high PR is due to high in-degree or a
high PR of the neighbors. But reality is more complex...
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Numerical results: PA graph

@ Network of 10.000 nodes
o Constant out-degree d = 8

@ With prob. 0.1, new node links to random page, with prob.
0.9, new node follows the preferential attachment rule

+ " + In-degree
g o PageRank (¢=0.5)
- PageRank (c=0.85)

Fraction of pages
=)

TPy |

10 10 10' 10° 10 10
In-degree, PageRank
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Numerical examples: Growing network

@ Assuming P(R; > u) = o(P(N > u)) we derive a one-point
measure:

a=1/2, S(a)=2, S(0)=0
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Numerical examples: Growing network

@ Assuming P(R; > u) = o(P(N > u)) we derive a one-point
measure:

a=1/2, S(a)=2, S(0)=0

o Large PageRank always due to large In-degree
@ Empirical and theoretical measures:

— AngMeasure
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Conclusions

@ Measuring dependencies in complex networks is a largely
unresolved problem
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Conclusions

@ Measuring dependencies in complex networks is a largely
unresolved problem

@ Solution is needed, because mixing patterns play important
role in network processes

@ The models such as PA do not reflect the dependencies
properly

@ Extremal dependencies is a promising start for rigorous
modelling and analysis
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