

Dynamics of public opinion under different conditions

Oleg I. Yordanov 1 and Vihra Iordanova 2

 1 Institute of Electronics, Bulgarian Academy of Sciences, Bulgaria 2 Faculty of Physics, Sofia University, Sofia, Bulgaria

COST MP0801 "Physics of Competition and Conflicts" Third Annual Meeting and Conference Eindhoven, May 18-20, 2011

OUTLINE OF THE TALK

- Short review of Galam's models
- Rational choice model
- Discussion group of two people, k = 2, case: fixed points and dynamics.
- Rational choice model with inflexibles.
- Case k = 2 with inflexibles: fixed points and dynamics.
- Conclusions.

Basic Galam's model for binary-state agents

N agents at time t:

the 'reds' fraction is p_t , the 'blues' fraction is $(1 - p_t)$. The local majority view.

If the group is at par, no changes occur.

EXAMPLE,
$$k = 3$$
: $p_{t+1} = p_t^3 + 3p_t^2 (1 - p_t)$

Three fixed points:

▶
$$p_0^{\star} = 0$$
 and $p_1^{\star} = 1$ are attractive.

►
$$p_2^{\star} = 1/2$$
 is repelling.

"Reds" fraction disappears if $p_0 < 1/2$ "Blues" fraction disappears if $p_0 > 1/2$

Contrarian effect S. Galam, Physica A (2004). There exist a specific (minority) of fraction *a* that takes the opinion opposite to the majority:

- At low $a < a_c$, both opinions coexist, two attracting fixed points and one repeling
- For $a > a_c$, the two attracting fixed points merge into one (attracting) fixed point.
- a_c depends on group's size; e.g. for k = 3 $a_c = 1/6$

Effect of inflexeble minorities, S.Galam and F. Jacobs, Physica A (2007); S. Galam, Physica A (2010).

For group's size k = 3.

- Not trivial attractors $p_0^{\star} > r_0$, $p_1^{\star} < 1 b_0$.
- Disappearance of one of the attractors.
- Creating a single attractor.

► Majority-minority model, M. Mobilia and S. Redner. Phys. Rev. E, (2003) With probability π the group adopts the local majority view With probability $1 - \pi$ the group adopts the local minority view

The results are obtained for groups of size k = 3.

- Two attractors 0 and 1 for $\pi > 2/3$
- Creating a single attractor at $p_2^{\star} = 1/2$ for $\pi < 2/3$

In any event of discussion, that is the sample include at least one of the "reds" and one of the "blues":

 π_r , probability for π_b , probability for

and hence,

 $1 - \pi_r$, probability for $1 - \pi_b$, probability for

"blue" \mapsto "red" "red" \mapsto "blue"

"blue" remains "blue" "red" remains "red"

Dynamics in the case of groups of two people, k = 2

At time t:

0	<i>r</i> -'reds'	p_t	<i>b</i> -'blues'	1

Draw *rr* with probability p_t^2 . At time $t + 1 \mapsto r$ *r* Draw *bb* with probability $(1 - p_t)^2$. At $t + 1 \mapsto bb$ Draw *rb* with probability $2p_t(1 - p_t)$, and count 'reds' at time t + 1:

$$\begin{bmatrix} (1-\pi_b)\pi_r + (1-\pi_b)(1-\pi_r)\left(\frac{1}{2}\right) + \pi_b\pi_r\left(\frac{1}{2}\right) \end{bmatrix}$$
rr rb br

Eindhoven, May, 2011 - p. 9/17

Introducing the difference of probabilities:

$$\lambda = \pi_r - \pi_b, -1 \le \lambda \le 1$$

$$p_{t+1} = f_2(\lambda, p_t) = (1+\lambda)p_t - \lambda p_t^2$$

Setting, $\lambda = 0$, the map reduces to the 'basic Galam's model' for k = 2.

Comparing with the "general Galam's model" (Europhysics Lett. 2005).

$$p_{t+1} = m_{2,2}p_t^2 + 2m_{2,1}p_t (1 - p_t) + m_{2,0} (1 - p_t)^2$$
$$p_{t+1} = (1 + \lambda)p_t - \lambda p_t^2$$

$$m_{2,2}=1,\,m_{2,1}=rac{1}{2}\,(1+\lambda)$$
 and $m_{2,0}=0.$

Eindhoven, May, 2011 - p. 11/17

Two fixed points:
$$p_0^{\star} = 0$$
 and $p_1^{\star} = 1$

•
$$p_0^{\star} = 0$$
 attractive for $\lambda < 0$ and repelling for $\lambda > 0$.

►
$$p_1^{\star} = 1$$
 attractive for $\lambda > 0$ and repelling for $\lambda < 0$.

REMARK: $p_t \mapsto \frac{1-\lambda}{\lambda} x_t + 1$ formally transforms f_2 into the logistic map, $\mu x_t(1-x_t)$, with $\mu = 1 - \lambda$.

Eindhoven, May, 2011 - p. 12/17

Graphical iterations of
$$f_2(\lambda, p_t) = (1 + \lambda)p_t - \lambda p_t^2$$

Eindhoven, May, 2011 - p. 13/17

Introducing 'inflexibles'; the case of k = 2

EXAMPLE: Draw r_0b_1 with probability $2r_0(1 - b_0 - p_t)$. This adds to the 'reds' fraction at time t + 1:

$$\begin{bmatrix} \pi_r + (1 - \pi_r) \left(\frac{1}{2}\right) \end{bmatrix}$$

$$r_0 r_1 \qquad r_0 b_1$$

Difference equation in the case k = 2 with inflexibles

Introducing:
$$\lambda = \pi_r - \pi_b$$
; $\beta_r = r_0 \pi_b$; $\beta_b = b_0 \pi_r$

$$p_{t+1} = f_2(\lambda, \beta_r, \beta_r; p_t) = \beta_r + (1 + \lambda - \beta_r - \beta_b) p_t - \lambda p_t^2$$

Fixed points:

$$p_{\pm}^{\star} = \frac{1}{2} \left[\left(1 - \frac{\beta_r}{\lambda} - \frac{\beta_b}{\lambda} \right) \pm \sqrt{\left(1 - \frac{\beta_r}{\lambda} - \frac{\beta_b}{\lambda} \right)^2 + \frac{4\beta_r}{\lambda}} \right]$$

Eindhoven, May, 2011 - p. 15/17

Iterations of $f_2(\lambda, \beta_r, \beta_b; p_t)$

 $f_2(\lambda, \beta_r, \beta_b; p_t) = \beta_r + (1 + \lambda - \beta_r - \beta_b)p_t - \lambda p_t^2$

Iterations of $f_2(\lambda, \beta_r, \beta_b; p_t)$

Eindhoven, May, 2011 - p. 17/17