Dynamics of public opinion under different conditions

Oleg I. Yordanov ${ }^{1}$ and Vihra lordanova ${ }^{2}$

${ }^{1}$ Institute of Electronics, Bulgarian Academy of Sciences, Bulgaria
${ }^{2}$ Faculty of Physics, Sofia University, Sofia, Bulgaria
COST MP0801 "Physics of Competition and Conflicts"
Third Annual Meeting and Conference
Eindhoven, May 18-20, 2011

OUTLINE OF THE TALK

- Short review of Galam's models
- Rational choice model
- Discussion group ot two people, $k=2$, case: fixed points and dynamics.
- Rational choice model with inflexibles.
- Case $k=2$ with inflexibles: fixed points and dynamics.
- Conclusions.

Basic Galam's model for binary-state agents

N agents at time t :
the 'reds' fraction is p_{t}, the 'blues' fraction is $\left(1-p_{t}\right)$. The local majority view.

If the group is at par, no changes occur.

Difference equation (discrete map)

$$
\operatorname{EXAMPLE}, k=3: p_{t+1}=p_{t}^{3}+3 p_{t}^{2}\left(1-p_{t}\right)
$$

Three fixed points:

- $p_{0}^{\star}=0$ and $p_{1}^{\star}=1$ are attractive.
- $p_{2}^{\star}=1 / 2$ is repelling.
"Reds" fraction disappears if $p_{0}<1 / 2$
"Blues" fraction disappears if $p_{0}>1 / 2$

Extensions of the model:

- Contrarian effect S. Galam, Physica A (2004).

There exist a specific (minority) of fraction a that takes the opinion opposite to the majority:

- At low $a<a_{c}$, both opinions coexist, two attracting fixed points and one repeling
- For $a>a_{c}$, the two attracting fixed points merge into one (attracting) fixed point.
- a_{c} depends on group's size; e.g. for $k=3 a_{c}=1 / 6$

Extensions of the model:

- Effect of infllexeble minorities, S.Galam and F. Jacobs, Physica A (2007); S. Galam, Physica A (2010).

For group's size $k=3$.

- Not trivial attractors $p_{0}^{\star}>r_{0}, p_{1}^{\star}<1-b_{0}$.
- Disappearance of one of the attractors.
- Creating a single attractor.

Extensions of the model:

- Majority-minority model, M. Mobilia and S.

Redner. Phys. Rev. E, (2003)
With probability π the group adopts the local majority view
With probability $1-\pi$ the group adopts the local minority view
The results are obtained for groups of size $k=3$.

- Two attractors 0 and 1 for $\pi>2 / 3$
- Creating a single attractor at $p_{2}^{\star}=1 / 2$ for $\pi<2 / 3$

Rational choice model: local rules

In any event of discussion, that is the sample include at least one of the "reds" and one of the "blues":

π_{r},	probability for	"blue" \longmapsto "red"
π_{b},	probability for	"red" \longmapsto "blue"

and hence,
$1-\pi_{r}, \quad$ probability for
$1-\pi_{b}, \quad$ probability for
"blue" remains "blue"
"red" remains "red"

Dynamics in the case of groups of two people, $k=2$

At time t :
0

0

r-'reds' p_{t} b-'blues' 1

Draw $r r$ with probability p_{t}^{2}. At time $t+1 \longmapsto r r$ Draw $b b$ with probability $\left(1-p_{t}\right)^{2}$. At $t+1 \longmapsto b b$
Draw $r b$ with probability $2 p_{t}\left(1-p_{t}\right)$, and count 'reds' at time $t+1$:

$$
\left[\begin{array}{cc}
\left(1-\pi_{b}\right) \pi_{r}+\left(1-\pi_{b}\right)\left(1-\pi_{r}\right)\left(\frac{1}{2}\right)+\pi_{b} \pi_{r}\left(\frac{1}{2}\right) \\
r r & r b
\end{array}\right.
$$

Difference equation in the case $k=2$

Introducing the difference of probabilities:

$$
\lambda=\pi_{r}-\pi_{b},-1 \leq \lambda \leq 1
$$

$$
p_{t+1}=f_{2}\left(\lambda, p_{t}\right)=(1+\lambda) p_{t}-\lambda p_{t}^{2}
$$

Setting, $\lambda=0$, the map reduces to the 'basic Galam's model' for $k=2$.

Difference equation in the case $k=2$

Comparing with the "general Galam's model" (Europhysics Lett. 2005).

$$
\begin{aligned}
& p_{t+1}=m_{2,2} p_{t}^{2}+2 m_{2,1} p_{t}\left(1-p_{t}\right)+m_{2,0}\left(1-p_{t}\right)^{2} \\
& p_{t+1}=(1+\lambda) p_{t}-\lambda p_{t}^{2}
\end{aligned}
$$

$$
m_{2,2}=1, m_{2,1}=\frac{1}{2}(1+\lambda) \text { and } m_{2,0}=0
$$

Fixed points in the case $k=2$

Two fixed points: $p_{0}^{\star}=0$ and $p_{1}^{\star}=1$

- $p_{0}^{\star}=0$ attractive for $\lambda<0$ and repelling for $\lambda>0$.
- $p_{1}^{\star}=1$ attractive for $\lambda>0$ and repelling for $\lambda<0$.

REMARK: $p_{t} \mapsto \frac{1-\lambda}{\lambda} x_{t}+1$ formally transforms f_{2} into the logistic map, $\mu x_{t}\left(1-x_{t}\right)$, with $\mu=1-\lambda$.

Graphical iterations of $f_{2}\left(\lambda, p_{t}\right)=(1+\lambda) p_{t}-\lambda p_{t}^{2}$

Red lines, $\lambda>0$, blue lines $\lambda<0 ; \lambda=\pi_{r}-\pi_{b}$

Introducing 'inflexibles'; the case of $k=2$

At time t :

Example:
Draw $r_{0} b_{1}$ with probability $2 r_{0}\left(1-b_{0}-p_{t}\right)$. This adds to the 'reds' fraction at time $t+1$:

$$
\left[\begin{array}{c}
{\left[\pi_{r}+\left(1-\pi_{r}\right)\left(\frac{1}{2}\right)\right]} \\
r_{0} r_{1} \\
r_{0} b_{1}
\end{array}\right.
$$

Difference equation in the case $k=2$ with inflexibles

Introducing: $\lambda=\pi_{r}-\pi_{b} ; \beta_{r}=r_{0} \pi_{b} ; \beta_{b}=b_{0} \pi_{r}$

$$
p_{t+1}=f_{2}\left(\lambda, \beta_{r}, \beta_{r} ; p_{t}\right)=\beta_{r}+\left(1+\lambda-\beta_{r}-\beta_{b}\right) p_{t}-\lambda p_{t}^{2}
$$

Fixed points:

$$
p_{ \pm}^{\star}=\frac{1}{2}\left[\left(1-\frac{\beta_{r}}{\lambda}-\frac{\beta_{b}}{\lambda}\right) \pm \sqrt{\left(1-\frac{\beta_{r}}{\lambda}-\frac{\beta_{b}}{\lambda}\right)^{2}+\frac{4 \beta_{r}}{\lambda}}\right]
$$

Iterations of $f_{2}\left(\lambda, \beta_{r}, \beta_{b} ; p_{t}\right)$

$$
\begin{aligned}
& f_{2}\left(\lambda, \beta_{r}, \beta_{b} ; p_{t}\right)=\beta_{r}+\left(1+\lambda-\beta_{r}-\beta_{b}\right) p_{t}-\lambda p_{t}^{2} \\
& \pi_{b}=0.2
\end{aligned}
$$

Iterations of $f_{2}\left(\lambda, \beta_{r}, \beta_{b} ; p_{t}\right)$

$$
\begin{aligned}
& f_{2}\left(\lambda, \beta_{r}, \beta_{b} ; p_{t}\right)=\beta_{r}+\left(1+\lambda-\beta_{r}-\beta_{b}\right) p_{t}-\lambda p_{t}^{2}
\end{aligned}
$$

