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Overview of Copulas

A bivariate copula C is a bivariate cdf defined on [0,1]2

with uniform marginal distributions on [0,1].

More precisely, a function C : [0,1]2 → [0,1] is called a
bivariate copula if

C(x ,0) = C(0, y) = 0 for any x , y ∈ [0,1]

C(x ,1) = x ,C(1, y) = y for any x , y ∈ [0,1]

C(x2, y2)− C(x1, y2)− C(x2, y1) + C(x1, y1) ≥ 0
for any x1, x2, y1, y2 ∈ [0,1] with x1 ≤ x2 and y1 ≤ y2
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Sklar’s Theorem:
Let H be a bivariate cdf with continuous marginal cdf’s

H(x ,∞) = F (x), H(∞, y) = G(y).

Then there exists a unique copula C such that

H(x , y) = C(F (x),G(y)). (1)

Conversely, for any univariate cdf’s F and G and any
copula C, (1) defines a bivariate cdf H with marginals F
and G.

C captures the dependence structure of two random
variables. It is used for dependence modeling in finance
and actuarial science.
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Goodness-of-Fit Testing

Given a sample (X1,Y1), . . . , (Xn,Yn) from an unknown
bivariate distribution H, with unknown continuous marginal
distributions F and G, and a corresponding copula C, how
can we decide if a given copula C0 or a given parametric
family of copulas {Cθ, θ ∈ Θ} is a good fit for the sample?

In other words, we would like to perform a hypothesis test
about C, with a null hypothesis of the form C = C0 or
C ∈ {Cθ, θ ∈ Θ}. For now, we consider the simple
hypothesis (C = C0) only.

A natural starting point for constructing goodness-of-fit
tests is the so-called empirical copula.
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Note that we can write

C(x , y) = H(F−1(x),G−1(y)), (x , y) ∈ [0,1]2,

with F−1(x) = inf{t ∈ R : F (t) ≥ x}, and similarly for G−1.

So a natural way of estimating the copula C is using the
empirical copula

Cn(x , y) = Hn(F−1
n (x),G−1

n (y)), (x , y) ∈ [0,1]2,

with

Hn(x , y) =
1
n

n∑
i=1

1{Xi ≤ x ,Yi ≤ y},

Fn(x) =
1
n

n∑
i=1

1{Xi ≤ x}, Gn(y) =
1
n

n∑
i=1

1{Yi ≤ y}
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It is known that the empirical copula process

Dn(x , y) =
√

n(Cn(x , y)− C(x , y)), (x , y) ∈ [0,1]2

converges weakly in `∞([0,1]2) to a C-Brownian pillow,
under the assumption that

Cx (x , y) is continuous on {(x , y) ∈ [0,1]2 : 0 < x < 1},
Cy (x , y) is continuous on {(x , y) ∈ [0,1]2 : 0 < y < 1}.

A C-Brownian sheet W (x , y) is a mean zero Gaussian
process with covariance function

Cov[W (x , y),W (x ′, y ′)] = C(x∧x ′, y∧y ′), x , x ′, y , y ′ ∈ [0,1].

A C-Brownian pillow D(x , y) is a mean zero Gaussian
process that is equal in distribution to the C-Brownian
sheet W , conditioned on W (x , y) = 0 for any
(x , y) ∈ [0,1]2 \ (0,1)2.
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We have

D(x , y) = W (x , y)− Cx (x , y)W (x ,1)− Cy (x , y)W (1, y)

− (C(x , y)− xCx (x , y)− yCy (x , y))W (1,1).

So we know the asymptotic distribution of the empirical
copula process

Dn(x , y) =
√

n(Cn(x , y)− C(x , y)),

and we can take a functional of Dn (such as the sup over
[0,1]2 or an appropriate integral) as a test statistic for a
goodness-of-fit test.

Problem: The asymptotic distribution of Dn, and that of the
test statistic, depends on C. We would like to have a
distribution-free goodness-of-fit test.
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Idea: Transform Dn into another process, say Zn, whose
asymptotic distribution is independent of C. Use an
appropriate functional of the new process Zn as a test
statistic for goodness-of-fit tests.

We use E. Khmaladze’s “scanning” idea to transform D into
a standard two-parameter Wiener process Z defined on
[0,1]2. The same transformation applied to Dn will then
produce a process Zn that will, hopefully, converge to Z .

Assumptions on C: Continuous first-order partial
derivatives on [0,1]2 \ {(0,0), (0,1), (1,0), (1,1)},
continuous second-order partial derivatives on (0,1)2,
strictly positive mixed partial Cxy on (0,1)2, and more (to
be determined).
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Define a grid {(xi , yj) : 0 ≤ i , j ≤ N} on [0,1]2 such that

0 = x0 < x1 < . . . < xN = 1
0 = y0 < y1 < . . . < yN = 1

and define filtrations

Fx (xi) = σ{D(xh, yk ) : 0 ≤ h ≤ i ,0 ≤ k ≤ N}, 0 ≤ i ≤ N
Fy (yj) = σ{D(xh, yk ) : 0 ≤ h ≤ N,0 ≤ k ≤ j}, 0 ≤ j ≤ N

“Scan” the process D with respect to the filtration {Fx}:

K (N)
1 (xi , yj) =

i−1∑
h=0

(
D(xh+1, yj)− D(xh, yj)

− E [D(xh+1, yj)− D(xh, yj)|Fx (xh)]
)
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We compute

K (N)
1 (xi , yj)

= D(xi , yj)−
i−1∑
h=0

D(xh, yj)

(
E [D(xh, yj)D(xh+1, yj)]

E [D(xh, yj)2]
− 1
)

Making the x-partitioning finer and finer, we obtain

K1(x , yj) = D(x , yj)−
∫ x

0
D(s, yj)ξ1(ds, yj)

as a limit in probability, where ξ1 is an absolutely
continuous measure whose density is determined by C
and its first- and second-order derivatives.
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Next, we scan K1 with respect to the filtration {Fy} and
take the limit as the y -partition gets finer and finer:

K (x , y) = D(x , y)−
∫ x

0
D(s, y)ξ1(ds, y)−

∫ y

0
D(x , t)ξ2(x ,dt)

+

∫ x

0

∫ y

0
D(s, t)ξ1(ds, t)ξ2(s,dt),

where ξ2 is another absolutely continuous measure whose
density is determined by C and its first- and second-order
derivatives.
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Theorem: K is a C-Brownian sheet.

Proof:

K is a mean zero Gaussian process since D is, so it
remains to show that K has the covariance structure of a
C-Brownian sheet.

K has independent (rectangle) increments by construction,
so it will suffice to show that Var[K (x , y)] = C(x , y) for all
(x , y) ∈ [0,1]2.

The variance of the K -increment over a small rectangle is
“close” to the variance of the D-increment over the same
rectangle, which is in turn “close” to the W -increment over
the same rectangle.
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Corollary: The process

Z (x , y) =

∫ x

0

∫ y

0

1√
Cxy (s, t)

dK (s, t), (x , y) ∈ [0,1]2

is a standard two-parameter Wiener process.

We have thus transformed the C-Brownian pillow D into a
standard two-parameter Wiener process Z , through a
two-step transformation:

D 7→ K 7→ Z .
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We apply the same two-step transformation to Dn, i.e. we
define

Kn(x , y) = Dn(x , y)−
∫ x

0
Dn(s, y)ξ1(ds, y)

−
∫ y

0
Dn(x , t)ξ2(x ,dt)

+

∫ x

0

∫ y

0
Dn(s, t)ξ1(ds, t)ξ2(s,dt),

Zn(x , y) =

∫ x

0

∫ y

0

1√
Cxy (s, t)

dKn(s, t)

for (x , y) ∈ [0,1]2.
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Theorem: Zn converges weakly to Z .
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goodness-of-fit tests. Consider composite null hypotheses
of the form C ∈ {Cθ : θ ∈ Θ} and consider m-dimensional
copulas with m > 2.
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