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Discretely observed Lévy processes

Let {Y; : t > 0} be a Lévy process; sample paths are cadlag;
stationary independent increments.
Observe this process at times t = 0,1,2,... and base inference on

Xi=Yi—Yi_1, i=1,...,n

Since {Y; : t > 0} is a Lévy process, the observations Xi, ..., X,
are i.i.d. with infinitely divisible distribution.
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Discretely observed Lévy processes

Infinitely divisible
The observations Xi, ..., X, are i.i.d. with infinitely divisible
distribution P, ., and characteristic function

= (eitX> — exp (iﬂt _ %Uztz + / [eitx — 1 — itxT <1 dv(X)) 5

where 1 € R, 0 > 0, and the Lévy measure v(-) is a measure on
R\ {0} satisfying

/ [x2 A 1] dv(x) < oo.
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Discretely observed Lévy processes

Infinitely divisible

The observations Xi, ..., X, are i.i.d. with infinitely divisible
distribution in P = {P,,, : p €R, 0 >0, v(-) Lévy measure} .
P defines a semiparametric model with p and o as Euclidean
parameters, and v(-) as Banach parameter.

| \

Parameter of interest

9. P — Rk
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Basics Semiparametrics
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Basics Semiparametrics

Crash Course Semiparametrically Efficient Estimation

@ Asymptotic bound on performance of estimators in a regular
parametric model (Local Asymptotic Normality):

e Hajek-LeCam Convolution Theorem
e Local Asymptotic Minimax Theorem
o Local Asymptotic Spread Theorem

@ Regular parametric submodels of semiparametric model
© Least favorable parametric submodel =- semiparametric bound
Techniques to obtain semiparam. efficient influence function:
e Projection of influence function on tangent space
o Projection of score function on subspace of tangent space
determined by nuisance parameters
@ Construction of estimator attaining bounds; i.e., of estimator
that is asymptotically linear in the efficient influence function
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Basics Semiparametrics

Hajek-LeCam Convolution Theorem

In a regular parametric model one has Local Asymptotic Normality

S - S s

under Ao with 8, = 6 + h/\/n, where fg,(-) is the score function.

Convolution theorem; under LAN

Vh /A (To = a(0n) 2o, L = L=N (0,3(60)! " (60)4" (60)) + M

}geoo

and L =N (0,G(60)/ ~*(60)g" (60)) iff

Vn { To— [q(9o) + % >~ a(00)! = (60) oy (X:)
i=1
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Basics Semiparametrics

Hajek-LeCam Convolution Theorem

(T,) is called (asymptotically) efficient iff

Vi { T, — [q(%) L 4001 60 (X)

i=1

}igoo

e Taking q(0) = (/,0) 6 one can study efficiency in presence of
nuisance parameters.

@ Taking regular parametric submodels of semiparametric
models one can study efficiency in presence of
infinite-dimensional nuisance parameters; try to get
a(00)!~1(00)g" (Ao) as large as possible.
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Basics Semiparametrics

Geometric Interpretation

(T,) is called (asymptotically) efficient iff
} ieo O

Vn { Tn— [q(@o) + % > i(Xxi)
i=1

with the efficient influence function being

0(-) = 4(00)1 = (00) gy (")

{e[ll=P cLS(Py), Poew by, £=1lg, Epl=0

The closed linear span of the components of é_(stem_ming from all
regular parametric submodels) is denoted by [¢] = P and is called
the tangent space of P at Pg.
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Basics Semiparametrics

Geometric Interpretation

Efficiency and linearity
(Th) is called (asymptotically) linear iff

Vn { Th— [q(OO) + % Z Y(Xi)

} E)eo 0
with 1 (+) the influence function. ) _
(T,) is called (asymptotically) efficient iff 1 = ¢ = G(60)/~1(60)¢s,
the efficient influence function. (6(P) «~ q(0) pathwise diff.)
Theorem For any model P with tangent space P at Py, and V ¢

w—ZJ_T? or g:H<w‘75)
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Basics Semiparametrics

Geometric Interpretation

Efficient influence function and tangent space

le[l]l=P cL3(Py)

@ Let P be a nonparametric, semiparametric, or parametric
model.

o Let Py € P and let € P be the corresponding efficient
influence function.

@ Let Ps be a submodel, parametric or not, with Py € Ps, and
let Zs € 755 denote the corresponding efficient influence
function.

PobePsCP, PCP
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Basics Semiparametrics

Geometric Interpretation

Projection efficient influence functions

PoePsCcP, IlsePsCcP, LePclLd(Py)

L=T1(7]| %)
Proof From the preceding Theorem we know
o I=T1(6]7)
and hence in view of P, C P

P=T16[») -ILAGI) [2) =110 ) @

Theorem
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Basics Semiparametrics

Geometric Interpretation

Projection efficient influence functions

PoePscP, lseP;cP, LePcli(P)
L=TI(7|%)

@ Py some infinitely divisible distribution

Theorem

@ Ps all infinitely divisible distributions
@ P all distributions

6P R 6(P)= /gdP, 0
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Basics Semiparametrics

Geometric Interpretation

Nonparametric tangent space

Lemma Py € P, all distributions.

P = L3 (Po)

Proof Let h € L3 (Py), and choose x : R — (0,2),
X(0)=x'(0)=1 0<x/x <2 Eg x(x)=2/(1+e7).

n s ﬁ(') _ x(h())
dPo [ x(nh(x)) dPo(x)

defines a regular parametric submodel with score function

0,y = Sh(e) ) — LT

‘n:o — h(x). O
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Basics Semiparametrics

Nonparametric efficient estimation

Py € P, all distributions, P = L9 (Py)

H(P)_/gdP, /gZdP<oo

Linear, asymptotically efficient estimator

n

Zg ) = 6(Po) + = -, [g(Xi)—/gdPo}

i:l

Indeed,

pV=g— /gdPoeLO(Po) P;»zp:Z:g—/gdPO
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Efficient Estimation for Discretely Observed Lévy Processes

Outline

© Efficient Estimation for Discretely Observed Lévy Processes
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Efficient Estimation for Discretely Observed Lévy Processes

Geometry

Increments Lévy process

@ Py some infinitely divisible distribution

@ P; all infinitely divisible distributions
o P all distributions; P = L9(Pp)

0 : P — R e(P):/gdP, Z:g—/gdPoefD

Projection efficient influence functions

PoePscP, lseP;cP, LePcli(P)

L=TI(7] %)

Theorem
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Basics Semiparametrics
Efficient Estimation for Discretely Observed Lévy Processes
Further comments

Efficient estimator for discretely observed Lévy process

Theorem
If o >0, then Ps=L3(Py)="P
and hence
Es:H(Z 735) ZH@ P) :Z:g—/gdPg
and hence
Zg —0(P)+ 7> |ax) - [ aeP]
i=1

is asymptotically efficient (under all asymptotically linear
estimators) in estimating 6(P) = [ g dP within the model P; of all
infinitely divisible distributions.
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem: score functions

Main theorem
Theorem |If o > 0, then

Ps = LY(Py) =P

Proof Fix g € R,0 > 0, and Lévy measure v, corresponding to
Py € Ps. Choose a probability measure Q on R\ {0}. Let
distribution P, , have characteristic function

Gun(t) =exp <i,ut — %021?2 +/ [eitx —-1- itXl[\x|<1]} d(v + nQ)(x))

Note P,y 0 = Po and P, has an everywhere positive density w.r.t.
Lebesgue measure, f,, say. Write ¢g = ¢,,0, fo = f0,0- Note

1 —itx
fum(x) = 271/6 X ppun(t) dt
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem: score functions

Gun(t) =exp (i,ut - %02152 +/ [eitx — 1 — itxI<qp] d(v + nQ)(X))

1 —Jitx
fun(x) = 27r/e Hppun(t) dt

Score function for location

Diog(rinb)|  =-Bq
op R p=pom=0  fo

9 i _ [ite ™go(t) dt
= @Iog (/e t ¢p,0(t)dt) L:MO = e mao(t) dt
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem: score functions

¢/M7(t) = exp (Iﬂt = %0'212 +/ [eitx —1- I'tX].”X|<1]] d(l/ I nQ)(X))

1 jtx f! it @ itx t) dt

Score function for Lévy measure v in direction Q@

f {f [eity —1—- I.ty].[‘y|<1]] dQ(y)} efitx(ﬁ/iom(t) dt’
J € bpon(t) dt =0
_ J{da(t) —1—itpo} e ™¢o(t) dt
fe—itx¢0( )

—1+MQ (X)

_ TP
— X (x)
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem: score functions

: o : .
Score function for location is —Tg(x). Score function for Lévy
. . . . fpxQ f!
measure v in direction Q is == (x) — 1 + g £ (x).

With @ degenerate at y # 0 this becomes

folx—y) fo
oy Trepk)
Conclusion
f5,\ fol- —y) fa ]
(), —= —-14+puo—-(); yeRr
802 1400y
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; orthogonality

To prove

We have shown

5. fl-—y) :
—00), B2 g yeR| C P
5 60 Y

We will prove
5(P)> gL P, = g=0

more precisely
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

To prove for g € L(Po)

Vy/g(x) {fo(g(;)y) - 1} dPy(x) =0 = g(x) = 0 Lebesgue a.a. x

or
Vy e R /g(x +y)dPo(x) =0 = g =0 Lebesgue a.e.

This is related to completeness of the location family of Py.
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; annihilating signed measures

Choose 0 < € < 1. For Lévy measure v define
1

Ce :/ dv(x), d. :/ x dv(x), G(y) = / dv(x)
e<|x| e<|x|<1 Ce Ix<y,e<|x|

ce and d. are finite, G, is distribution function. Define H. by

He(z) = e_c€j—' GY (z+d.). Then
j=0 '
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; annihilating signed measures

So, with
Ze‘cﬁ GY (z + d.) we have

/eitz dHE(Z) = exp (/ [eitx —-1- I.tX].[|X‘<1]] dI/(X))
e<|x|

Similarly (Enno), with

Z ec€ G*f (z — d.) we have

/eitz dH- (z) = exp (/ [eitx — 1 — itx1 <y dy(x))
e<|x|
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; annihilating signed measures

By multiplication we see that the Fourier-Stieltjes transform of the
convolution of the measure defined by H. and the signed measure
induced by H equals 1.

This means that the convolution corresponds to unit point mass at

0.
In a sense one could say that the signed measure induced by H

annihilates H..
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

X=p+oU+Y+2Z ~ Py

U, Y., and Z are independent
U is a standard normal random variable
Y. has characteristic function

E (eitYe) — exp </0<|x|<6 [eitx -1- itx1[|x|<1]] du(X))

Z. has characteristic function

E (e"fze) - / e dH,(z) = exp ( / [ — 1 — itx1 <y dV(X)>
e<Ix]

To prove for g € L(Po)
VyeR Eg(X+y)=0 = g =0 Lebesgue a.e.
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

X=p+oU+Y+2Z ~ Py
Define g*(z) = Eg(po + oU + Ye + z). Then for all y

0=Eg(X+y)=Eg"(Z +y)
and hence for all a € R (y = w + a)
0—/Eg*(ZE+W+a)dH€_(W)
// (z+ w + a) dH.(z) dH (w)
— g+ dHs () = £

Here we use g € L3(Py).
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

We have
0=g"(a) = Eg(po +oU+ Yc + a)
Define
g(z) = Eg(uo +oU + 2)
Then

0=g"(a) = E&(Ye +a)
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

0=Eg(Ye+a)

Let Yc and Y7 bei.id., let U, Y, Y7, and Z be independent, and
denote Y, + Z. = V.

Fix b € R and § > 0.

In view of E|g(V + b)| < E|g(X + b)| < oo holds, there exists a
continuous function x(-) with compact support satisfying

E|lg(V+b)—x(V+Db) <o
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

0=EZ(Y. +a), E|Jg(V+b)—x(V+b)| <6 V=Y. +Z

E&(V + b) :E{/|g(Ye+z+b)—Eg(YE*Jerrb)] ng(z)}

SE{/]g(YEJrz—i—b)—X(Ye—l—z—i—b)]
+E|g (Y ) +z+b)— x (Y +z+Db)]|
+’X(Ye+z+b)—Ex(YE*—i—z—i-b)’dHe(z)}
<20+ E|x(Yet Z +b) — x (Y + Z +b)].
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

E|lg(V+b)| <204+ E|x(Ye+Z +b)—x (Y +Z +b)|
By

E (eitYe) = exp </0<|x|<6 [eitx — 1 — itx1 <] du(X))

it follows that Y converges to 0 in probability as € | 0, and hence
(Ye, Y*, Z) = (Ye, Y2,V — Ye) converges in distribution to
(0,0, V). Since x(-) is bounded and continuous this implies

II$E|X(Y€+Z€+b)—X(YE*+ZE+b)|:O

So,
E|g(V + b)| < 2§ arbitrarily small
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Efficient Estimation for Discretely Observed Lévy Processes

Proof main theorem; completeness

E|g(V+b)|=0forall beR

Hence, we have e.g. E|g(V + U)| = 0.
Because V + U has a positive density with respect to Lebesgue
measure, this implies

g(y)=Eg(po+oU+y)=0

for Lebesgue almost all y € R. By completeness of the normal
location family
glpo+oU+y)=0

holds a.s. for all y € R and hence
g(mo+oU+ V) =g(X)=0

holds a.s. O
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Basics Semiparametrics
Efficient Estimation for Discretely Observed Lévy Processes
Further comments

Efficient estimator for discretely observed Lévy process

Theorem
If o >0, then Ps=L3(Py)="P
and hence
Es:H(Z 735) ZH@ P) :Z:g—/gdPg
and hence
Zg —0(P)+ 7> |ax) - [ aeP]
i=1

is asymptotically efficient (under all asymptotically linear
estimators) in estimating 6(P) = [ g dP within the model P; of all
infinitely divisible distributions.
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Further comments
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Further comments

Efficient estimator for discretely observed Lévy process

© Compound Poisson case has been treated by Enno Veerman

@ Remaining case, namely ¢ = 0 and v({|x| < €}) > 0 for all
€ > 0, still conjecture

© Further research needed for case of nonequidistant time points
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Further comments

Finite sample spread inequality

Definitions

9 random variable on R with density w(-)
Given ¥ =60, Xi,..., X, i.i.d. with parameter 6

1 1w
H(z)=P | — Lo(X; — () <
(2) (ﬁ; )6) + 72 >_z>
is the distribution function of the score statistic

G(y) =P (Vn(T, =) < y)

is the weighted distribution function of any estimator
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Further comments

Finite sample spread inequality

¥ random variable on R with density w(-)
Given ¥ =60, Xi,...,X, ii.d. with parameter 6

H(z) = (fzeﬁxnfw'w)gz)

G(y) =P (Vn(T, =) < y)

Spread inequality

Glv) -G Hu) > K (v) - K (u) = / le—ll(t)dtds

Chris A.J. Klaassen Enno Veerman Semiparametric Estimation Theory for Discretely Observed Lé



Further comments

Local asymptotic spread inequality

Fix 6y € R write ¢ = 0 + ﬁ( with ¢ random, density wy(+)

/
1w,

H”U(Z):P<\fzg90+\f< —l—UWO(C)Sz)

Gna(y)=P<ﬁ(Tneo\; ) gy)

Local asymptotic spread inequality

iminf i 6~ 6] = gm_ [
= . “Hv) - oY (u
=~ [0 - 7]
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Further comments

Local asymptotic spread inequality

Local asymptotic spread theorem

lim sup limsup [G,;- (v) — Gyt ()]
> liminfliminf [G, (V) — Gpot (u)]
, Y 1 1 “1 -1
> lim — ds = (@7 (v) — o (u)]
o,n—oo [, fs Hro (t)dt /(00)

with equalities for all 0 < u < v < 1 iff

I~ 1
\/E{Tn - 90 - niz_;w%)ego(x,')} —>p00 O
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