Semiparametric Estimation Theory for Discretely Observed Lévy Processes

Chris A.J. Klaassen Enno Veerman

Korteweg-de Vries Institute for Mathematics

University of Amsterdam

EURANDOM August 29, 2011

Discretely observed Lévy processes

Let $\{Y_t : t \ge 0\}$ be a Lévy process; sample paths are càdlàg; stationary independent increments.

Observe this process at times t = 0, 1, 2, ... and base inference on

$$X_i = Y_i - Y_{i-1}, \quad i = 1, ..., n.$$

Since $\{Y_t : t \ge 0\}$ is a Lévy process, the observations X_1, \dots, X_n are i.i.d. with infinitely divisible distribution.

Discretely observed Lévy processes

Infinitely divisible

The observations X_1, \ldots, X_n are i.i.d. with infinitely divisible distribution $P_{\mu,\sigma,\nu}$ and characteristic function

$$E\left(e^{itX}\right) = \exp\left(i\mu t - \frac{1}{2}\sigma^2 t^2 + \int \left[e^{itx} - 1 - itx\mathbf{1}_{[|x|<1]}\right]d\nu(x)\right),$$

where $\mu \in \mathbb{R}$, $\sigma \geq 0$, and the Lévy measure $\nu(\cdot)$ is a measure on $\mathbb{R} \setminus \{0\}$ satisfying

$$\int [x^2 \wedge 1] \, d\nu(x) < \infty.$$

Discretely observed Lévy processes

Infinitely divisible

The observations X_1,\ldots,X_n are i.i.d. with infinitely divisible distribution in $\mathcal{P}=\{P_{\mu,\sigma,\nu}:\mu\in\mathbb{R},\,\sigma\geq0,\,\nu(\cdot)\text{ Lévy measure}\}$. \mathcal{P} defines a semiparametric model with μ and σ as Euclidean parameters, and $\nu(\cdot)$ as Banach parameter.

Parameter of interest

$$\theta: \mathcal{P} \to \mathbb{R}^k$$

Outline

- Basics Semiparametrics
- 2 Efficient Estimation for Discretely Observed Lévy Processes
- 3 Further comments

Outline

- Basics Semiparametrics
- 2 Efficient Estimation for Discretely Observed Lévy Processes
- 3 Further comments

Crash Course Semiparametrically Efficient Estimation

- Asymptotic bound on performance of estimators in a regular parametric model (Local Asymptotic Normality):
 - Hájek-LeCam Convolution Theorem
 - Local Asymptotic Minimax Theorem
 - Local Asymptotic Spread Theorem
- Regular parametric submodels of semiparametric model
- 3 Least favorable parametric submodel ⇒ semiparametric bound Techniques to obtain semiparam. efficient influence function:
 - Projection of influence function on tangent space
 - Projection of score function on subspace of tangent space determined by nuisance parameters
- Onstruction of estimator attaining bounds; i.e., of estimator that is asymptotically linear in the efficient influence function

Hájek-LeCam Convolution Theorem

In a regular parametric model one has Local Asymptotic Normality

$$\sum_{i=1}^n \log \left[\frac{p(X_i; \theta_n)}{p(X_i; \theta_0)} \right] = \frac{h}{\sqrt{n}} \sum_{i=1}^n \dot{\ell}_{\theta_0}(X_i) - \frac{1}{2} h^T I(\theta_0) h + o_P(1)$$

under θ_0 with $\theta_n = \theta_0 + h/\sqrt{n}$, where $\dot{\ell}_{\theta_0}(\cdot)$ is the score function.

Convolution theorem; under LAN

$$\forall h \sqrt{n} (T_n - q(\theta_n)) \xrightarrow{\mathcal{D}}_{\theta_n} L \Rightarrow L = \mathcal{N} \left(0, \dot{q}(\theta_0) I^{-1}(\theta_0) \dot{q}^T(\theta_0) \right) * M$$

and
$$L = \mathcal{N}\left(0, \dot{q}(\theta_0)I^{-1}(\theta_0)\dot{q}^T(\theta_0)\right)$$
 iff

$$\sqrt{n}\left\{T_n-\left[q(\theta_0)+\frac{1}{n}\sum_{i=1}^n\dot{q}(\theta_0)I^{-1}(\theta_0)\dot{\ell}_{\theta_0}(X_i)\right]\right\}\stackrel{P}{\to}_{\theta_0}0$$

Hájek-LeCam Convolution Theorem

Efficiency

 (T_n) is called (asymptotically) efficient iff

$$\sqrt{n}\left\{T_n-\left[q(\theta_0)+\frac{1}{n}\sum_{i=1}^n\dot{q}(\theta_0)I^{-1}(\theta_0)\dot{\ell}_{\theta_0}(X_i)\right]\right\}\stackrel{P}{\to}_{\theta_0}0$$

- Taking $q(\theta) = (I, 0) \theta$ one can study efficiency in presence of nuisance parameters.
- Taking regular parametric submodels of semiparametric models one can study efficiency in presence of infinite-dimensional nuisance parameters; try to get $\dot{q}(\theta_0)I^{-1}(\theta_0)\dot{q}^T(\theta_0)$ as large as possible.

Efficiency

 (T_n) is called (asymptotically) efficient iff

$$\sqrt{n}\left\{T_n-\left[q(\theta_0)+\frac{1}{n}\sum_{i=1}^n\tilde{\ell}(X_i)\right]\right\}\stackrel{P}{\to}_{\theta_0}0$$

with the efficient influence function being

$$\tilde{\ell}(\cdot) = \dot{q}(\theta_0)I^{-1}(\theta_0)\dot{\ell}_{\theta_0}(\cdot)$$

$$\tilde{\ell} \in [\dot{\ell}] = \dot{\mathcal{P}} \subset L_2^0(P_0), \quad P_0 \iff \theta_0, \quad \dot{\ell} = \dot{\ell}_{\theta_0}, \quad E_{P_0}\dot{\ell} = 0$$

The closed linear span of the components of $\dot{\ell}$ (stemming from all regular parametric submodels) is denoted by $[\dot{\ell}] = \dot{\mathcal{P}}$ and is called the tangent space of \mathcal{P} at P_0 .

Efficiency and linearity

 (T_n) is called (asymptotically) linear iff

$$\sqrt{n}\left\{T_n-\left[q(\theta_0)+\frac{1}{n}\sum_{i=1}^n\psi(X_i)\right]\right\}\stackrel{P}{\to}_{\theta_0}0$$

with $\psi(\cdot)$ the *influence function*.

 (T_n) is called (asymptotically) efficient iff $\psi = \tilde{\ell} = \dot{q}(\theta_0)I^{-1}(\theta_0)\dot{\ell}_{\theta_0}$ the efficient influence function. $(\theta(P) \leftrightsquigarrow q(\theta))$ pathwise diff.)

Theorem For any model \mathcal{P} with tangent space $\dot{\mathcal{P}}$ at P_0 , and $\forall \ \psi$

$$\psi - \tilde{\ell} \perp \dot{\mathcal{P}} \quad \text{or} \quad \tilde{\ell} = \prod \left(\psi \, \middle| \, \dot{\mathcal{P}} \right)$$

Efficient influence function and tangent space

$$\tilde{\ell} \in [\dot{\ell}] = \dot{\mathcal{P}} \subset L_2^0(P_0)$$

- Let \mathcal{P} be a nonparametric, semiparametric, or parametric model.
- Let $P_0 \in \mathcal{P}$ and let $\tilde{\ell} \in \dot{\mathcal{P}}$ be the corresponding efficient influence function.
- Let \mathcal{P}_s be a submodel, parametric or not, with $P_0 \in \mathcal{P}_s$, and let $\tilde{\ell}_s \in \dot{\mathcal{P}}_s$ denote the corresponding efficient influence function.

Geometry

$$P_0 \in \mathcal{P}_s \subset \mathcal{P}, \quad \dot{\mathcal{P}}_s \subset \dot{\mathcal{P}}$$

Projection efficient influence functions

$$P_0 \in \mathcal{P}_s \subset \mathcal{P}, \quad \tilde{\ell}_s \in \dot{\mathcal{P}}_s \subset \dot{\mathcal{P}}, \quad \tilde{\ell} \in \dot{\mathcal{P}} \subset L_2^0(P_0)$$

Theorem

$$ilde{\ell}_{s} = \prod \left(ilde{\ell} \;\middle|\; \dot{\mathcal{P}}_{s}
ight)$$

Proof From the preceding Theorem we know

$$\forall \ \psi \quad \tilde{\ell} = \prod \left(\psi \ \middle| \dot{\mathcal{P}} \right)$$

and hence in view of $\dot{\mathcal{P}}_s \subset \dot{\mathcal{P}}$

$$\tilde{\ell}_{s} = \prod \left(\psi \middle| \dot{\mathcal{P}}_{s} \right) = \prod \left(\prod \left(\psi \middle| \dot{\mathcal{P}} \right) \middle| \dot{\mathcal{P}}_{s} \right) = \prod \left(\tilde{\ell} \middle| \dot{\mathcal{P}}_{s} \right) \qquad \Box$$

Projection efficient influence functions

$$P_0 \in \mathcal{P}_s \subset \mathcal{P}, \quad \tilde{\ell}_s \in \dot{\mathcal{P}}_s \subset \dot{\mathcal{P}}, \quad \tilde{\ell} \in \dot{\mathcal{P}} \subset L_2^0(P_0)$$

Theorem

$$ilde{\ell}_s = \prod \left(ilde{\ell} \;\middle|\; \dot{\mathcal{P}}_s
ight)$$

Increments Lévy process

- \bullet P_0 some infinitely divisible distribution
- \mathcal{P}_s all infinitely divisible distributions
- P all distributions

$$\theta: \mathcal{P} \to \mathbb{R}^k, \quad \theta(P) = \int g \, dP, \ F_P^{-1}(u)$$

Nonparametric tangent space

Lemma $P_0 \in \mathcal{P}$, all distributions.

$$\dot{\mathcal{P}}=L_{2}^{0}\left(P_{0}\right)$$

Proof Let $h \in L_2^0(P_0)$, and choose $\chi : \mathbb{R} \to (0,2)$, $\chi(0) = \chi'(0) = 1$, $0 < \chi'/\chi < 2$. E.g. $\chi(x) = 2/(1 + e^{-x})$.

$$\eta \mapsto \frac{dP_{\eta}}{dP_0}(\cdot) = \frac{\chi(\eta h(\cdot))}{\int \chi(\eta h(x)) dP_0(x)}$$

defines a regular parametric submodel with score function

$$\dot{\ell}_{\eta}(x)\Big|_{\eta=0} = \frac{\chi'}{\chi}(\eta h(x)) h(x) - \frac{\int \chi'(\eta h) h \, dP_0}{\int \chi(\eta h) \, dP_0}\Big|_{\eta=0} = h(x). \qquad \Box$$

Nonparametric efficient estimation

$$P_{0}\in\mathcal{P},$$
 all distributions, $\dot{\mathcal{P}}=L_{2}^{0}\left(P_{0}
ight)$

$$\theta(P) = \int g \, dP, \quad \int g^2 \, dP < \infty$$

Linear, asymptotically efficient estimator

$$T_n = \frac{1}{n} \sum_{i=1}^n g(X_i) = \theta(P_0) + \frac{1}{n} \sum_{i=1}^n \left[g(X_i) - \int g \ dP_0 \right]$$

Indeed.

$$\psi = g - \int g \, dP_0 \in L_2^0(P_0) = \dot{\mathcal{P}} \Rightarrow \psi = \tilde{\ell} = g - \int g \, dP_0$$

Outline

- Basics Semiparametrics
- 2 Efficient Estimation for Discretely Observed Lévy Processes

3 Further comments

Geometry

Increments Lévy process

- P₀ some infinitely divisible distribution
- \bullet \mathcal{P}_s all infinitely divisible distributions
- \mathcal{P} all distributions; $\dot{\mathcal{P}} = L_2^0(P_0)$

$$heta\,:\,\mathcal{P} o\mathbb{R}^k,\quad heta(P)=\int g\;dP,\quad ilde{\ell}=g-\int g\;dP_0\in\dot{\mathcal{P}}$$

Projection efficient influence functions

$$P_0 \in \mathcal{P}_s \subset \mathcal{P}, \quad \tilde{\ell}_s \in \dot{\mathcal{P}}_s \subset \dot{\mathcal{P}}, \quad \tilde{\ell} \in \dot{\mathcal{P}} \subset L_2^0(P_0)$$

Theorem

$$ilde{\ell}_s = \prod \left(ilde{\ell} \;\middle|\; \dot{\mathcal{P}}_s
ight)$$

Efficient estimator for discretely observed Lévy process

Main theorem

Theorem

If
$$\sigma > 0$$
, then $\dot{\mathcal{P}}_s = L_2^0(P_0) = \dot{\mathcal{P}}$

and hence

$$ilde{\ell}_s = \prod \left(ilde{\ell} \ \middle| \ \dot{\mathcal{P}}_s
ight) = \prod \left(ilde{\ell} \ \middle| \ \dot{\mathcal{P}}
ight) = ilde{\ell} = g - \int g \ dP_0$$

and hence

$$T_n = \frac{1}{n} \sum_{i=1}^n g(X_i) = \theta(P) + \frac{1}{n} \sum_{i=1}^n \left[g(X_i) - \int g \, dP \right]$$

is asymptotically efficient (under all asymptotically linear estimators) in estimating $\theta(P) = \int g \ dP$ within the model \mathcal{P}_s of all infinitely divisible distributions.

Main theorem

Theorem If $\sigma > 0$, then

$$\dot{\mathcal{P}}_s = L_2^0(P_0) = \dot{\mathcal{P}}$$

Proof Fix $\mu_0 \in \mathbb{R}, \sigma > 0$, and Lévy measure ν , corresponding to $P_0 \in \mathcal{P}_s$. Choose a probability measure Q on $\mathbb{R} \setminus \{0\}$. Let distribution $P_{\mu,\eta}$ have characteristic function

$$\phi_{\mu,\eta}(t) = \exp\left(i\mu t - rac{1}{2}\sigma^2 t^2 + \int \left[e^{itx} - 1 - itx \mathbf{1}_{[|x|<1]}\right] d(
u + \eta Q)(x)
ight)$$

Note $P_{\mu_0,0}=P_0$ and $P_{\mu,\eta}$ has an everywhere positive density w.r.t. Lebesgue measure, $f_{\mu,\eta}$ say. Write $\phi_0=\phi_{\mu_0,0}, f_0=f_{\mu_0,0}$. Note

$$f_{\mu,\eta}(x) = \frac{1}{2\pi} \int e^{-itx} \phi_{\mu,\eta}(t) dt$$

$$\phi_{\mu,\eta}(t) = \exp\left(i\mu t - rac{1}{2}\sigma^2 t^2 + \int \left[e^{itx} - 1 - itx\mathbf{1}_{[|x|<1]}
ight]d(
u + \eta Q)(x)
ight)$$
 $f_{\mu,\eta}(x) = rac{1}{2\pi}\int e^{-itx}\phi_{\mu,\eta}(t)\,dt$

Score function for location

$$\begin{split} \frac{\partial}{\partial \mu} \log \left(f_{\mu,\eta}(x) \right) \Big|_{\mu = \mu_0, \eta = 0} &= -\frac{f_0'}{f_0}(x) \\ &= \frac{\partial}{\partial \mu} \log \left(\int e^{-itx} \phi_{\mu,0}(t) dt \right) \Big|_{\mu = \mu_0} &= \frac{\int it \ e^{-itx} \phi_0(t) \ dt}{\int e^{-itx} \phi_0(t) \ dt} \end{split}$$

$$\phi_{\mu,\eta}(t) = \exp\left(i\mu t - \frac{1}{2}\sigma^2 t^2 + \int \left[e^{itx} - 1 - itx\mathbf{1}_{[|x|<1]}\right]d(\nu + \eta Q)(x)\right)$$

$$f_{\mu,\eta}(x) = \frac{1}{2\pi}\int e^{-itx}\phi_{\mu,\eta}(t)\,dt, \quad -\frac{f_0'}{f_0}(x) = \frac{\int it\,e^{-itx}\phi_0(t)\,dt}{\int e^{-itx}\phi_0(t)\,dt}$$

Score function for Lévy measure ν in direction Q

$$\begin{split} &\frac{\int \left\{ \int \left[e^{ity} - 1 - ity \mathbf{1}_{[|y| < 1]} \right] dQ(y) \right\} e^{-itx} \phi_{\mu_0, \eta}(t) dt}{\int e^{-itx} \phi_{\mu_0, \eta}(t) dt} \Big|_{\eta = 0} \\ &= \frac{\int \left\{ \phi_Q(t) - 1 - it\mu_Q \right\} e^{-itx} \phi_0(t) dt}{\int e^{-itx} \phi_0(t) dt} \\ &= \frac{f_{P_0 \star Q}}{f_0}(x) - 1 + \mu_Q \frac{f_0'}{f_0}(x) \end{split}$$

Score function for location is $-\frac{f_0'}{f_0}(x)$. Score function for Lévy measure ν in direction Q is $\frac{f_{P_0 \star Q}}{f_0}(x) - 1 + \mu_Q \frac{f_0'}{f_0}(x)$. With Q degenerate at $y \neq 0$ this becomes

$$\frac{f_0(x-y)}{f_0(x)}-1+\mu_Q\frac{f_0'}{f_0}(x).$$

Conclusion

$$\left[-\frac{f'_0}{f_0}(\cdot), \frac{f_0(\cdot - y)}{f_0(\cdot)} - 1 + \mu_Q \frac{f'_0}{f_0}(\cdot); \ y \in \mathbb{R} \right] \\
= \left[-\frac{f'_0}{f_0}(\cdot), \frac{f_0(\cdot - y)}{f_0(\cdot)} - 1; \ y \in \mathbb{R} \right] \subset \dot{\mathcal{P}}_s$$

Proof main theorem; orthogonality

To prove

$$\dot{\mathcal{P}}_s = L_2^0(P_0)$$

We have shown

$$\left[-\frac{f_0'}{f_0}(\cdot),\frac{f_0(\cdot-y)}{f_0(\cdot)}-1\,;\,\,y\in\mathbb{R}\right]\subset\dot{\mathcal{P}}_s$$

We will prove

$$L_2^0(P_0) \ni g \perp \dot{\mathcal{P}}_s \quad \Rightarrow \quad g = 0$$

more precisely

$$\forall y \quad g \perp \frac{f_0(\cdot - y)}{f_0(\cdot)} - 1 \quad \Rightarrow \quad g = 0$$

To prove for $g \in L_2^0(P_0)$

$$\forall y \int g(x) \left\{ \frac{f_0(x-y)}{f_0(x)} - 1 \right\} dP_0(x) = 0 \Rightarrow g(x) = 0$$
 Lebesgue a.a. x

or

$$\forall y \in \mathbb{R} \ \int g(x+y) \, dP_0(x) = 0 \ \Rightarrow \ g = 0$$
 Lebesgue a.e.

This is related to completeness of the location family of P_0 .

Proof main theorem; annihilating signed measures

Choose $0 < \epsilon < 1$. For Lévy measure ν define

$$c_{\epsilon} = \int_{\epsilon \leq |x|} d\nu(x), \ d_{\epsilon} = \int_{\epsilon \leq |x| < 1} x \, d\nu(x), \ G_{\epsilon}(y) = \frac{1}{c_{\epsilon}} \int_{x \leq y, \, \epsilon \leq |x|} d\nu(x)$$

 c_ϵ and d_ϵ are finite, G_ϵ is distribution function. Define H_ϵ by

$$H_{\epsilon}(z) = \sum_{j=0}^{\infty} e^{-c_{\epsilon}} \frac{c_{\epsilon}^{j}}{j!} G_{\epsilon}^{*j} (z + d_{\epsilon})$$
. Then

$$\int e^{itz} dH_{\epsilon}(z) = \sum_{j=0}^{\infty} e^{-c_{\epsilon}} \frac{c_{\epsilon}^{j}}{j!} \int e^{itz - itd_{\epsilon}} dG_{\epsilon}^{*j}(z)$$

$$= \exp\left(c_{\epsilon} E_{G_{\epsilon}} \left(e^{itY} - 1\right) - itd_{\epsilon}\right)$$

$$= \exp\left(\int_{\epsilon \le |x|} \left[e^{itx} - 1 - itx \mathbf{1}_{[|x| < 1]}\right] d\nu(x)\right).$$

Proof main theorem; annihilating signed measures

So, with

$$H_\epsilon(z)=\sum_{i=0}^\infty \mathrm{e}^{-c_\epsilon}rac{c_\epsilon^j}{j!}G_\epsilon^{*j}\left(z+d_\epsilon
ight)$$
 we have

$$\int e^{itz} dH_{\epsilon}(z) = \exp\left(\int_{\epsilon \leq |x|} \left[e^{itx} - 1 - itx \mathbf{1}_{[|x| < 1]} \right] d\nu(x) \right)$$

Similarly (Enno), with

$$H^-_\epsilon(z)=\sum_{i=0}^\infty {
m e}^{c_\epsilon}rac{(-c_\epsilon)^j}{j!}G^{*j}_\epsilon(z-d_\epsilon)$$
 we have

$$\int e^{itz} \ d\mathcal{H}_{\epsilon}^{-}(z) = \exp\left(-\int_{\epsilon \leq |x|} \left[e^{itx} - 1 - itx \mathbf{1}_{[|x| < 1]}
ight] \ d
u(x)
ight)$$

Proof main theorem; annihilating signed measures

By multiplication we see that the Fourier-Stieltjes transform of the convolution of the measure defined by H_{ϵ} and the signed measure induced by H_{ϵ}^- equals 1.

This means that the convolution corresponds to unit point mass at 0.

In a sense one could say that the signed measure induced by H_{ϵ}^- annihilates H_{ϵ} .

$$X = \mu_0 + \sigma U + Y_{\epsilon} + Z_{\epsilon} \sim P_0$$

 $U, Y_{\epsilon},$ and Z_{ϵ} are independent

U is a standard normal random variable

 Y_{ϵ} has characteristic function

$$E\left(e^{itY_{\epsilon}}\right) = \exp\left(\int_{0<|x|<\epsilon} \left[e^{itx} - 1 - itx\mathbf{1}_{[|x|<1]}\right] d\nu(x)\right)$$

 Z_{ϵ} has characteristic function

$$E\left(e^{itZ_{\epsilon}}\right) = \int e^{itz} dH_{\epsilon}(z) = \exp\left(\int_{\epsilon \leq |x|} \left[e^{itx} - 1 - itx\mathbf{1}_{[|x| < 1]}\right] d\nu(x)\right)$$

To prove for $g \in L_2^0(P_0)$

$$\forall y \in \mathbb{R} \quad Eg(X+y) = 0 \quad \Rightarrow \quad g = 0 \text{ Lebesgue a.e.}$$

$$X = \mu_0 + \sigma U + Y_{\epsilon} + Z_{\epsilon} \sim P_0$$
 Define $g^*(z) = Eg(\mu_0 + \sigma U + Y_{\epsilon} + z)$. Then for all y
$$0 = Eg(X + y) = Eg^*(Z_{\epsilon} + y)$$
 and hence for all $a \in \mathbb{R}$ $(y = w + a)$
$$0 = \int Eg^*(Z_{\epsilon} + w + a) \, dH_{\epsilon}^-(w)$$

$$= \int \int g^*(z + w + a) \, dH_{\epsilon}(z) \, dH_{\epsilon}^-(w)$$

$$= \int g^*(v + a) \, dH_{\epsilon} \star H_{\epsilon}^-(v) = g^*(a)$$

Here we use $g \in L_2^0(P_0)$.

We have

$$0 = g^*(a) = Eg(\mu_0 + \sigma U + Y_{\epsilon} + a)$$

Define

$$\tilde{g}(z) = Eg(\mu_0 + \sigma U + z)$$

Then

$$0 = g^*(a) = E\tilde{g}(Y_{\epsilon} + a)$$

$$0 = E\tilde{g}(Y_{\epsilon} + a)$$

Let Y_{ϵ} and Y_{ϵ}^* be i.i.d., let $U, Y_{\epsilon}, Y_{\epsilon}^*$, and Z_{ϵ} be independent, and denote $Y_{\epsilon} + Z_{\epsilon} = V$.

Fix $b \in \mathbb{R}$ and $\delta > 0$.

In view of $E|\tilde{g}(V+b)| \leq E|g(X+b)| < \infty$ holds, there exists a continuous function $\chi(\cdot)$ with compact support satisfying

$$E\left|\tilde{g}(V+b)-\chi(V+b)\right|<\delta$$

$$0 = E\tilde{g}(Y_{\epsilon} + a), \ E|\tilde{g}(V + b) - \chi(V + b)| < \delta, \ V = Y_{\epsilon} + Z_{\epsilon}$$

$$E|\tilde{g}(V + b)| = E\left\{\int |\tilde{g}(Y_{\epsilon} + z + b) - E\tilde{g}(Y_{\epsilon}^* + z + b)| \ dH_{\epsilon}(z)\right\}$$

$$\leq E\left\{\int |\tilde{g}(Y_{\epsilon} + z + b) - \chi(Y_{\epsilon} + z + b)| + |\tilde{g}(Y_{\epsilon}^* + z + b) - \chi(Y_{\epsilon}^* + z + b)| + |\chi(Y_{\epsilon} + z + b) - E\chi(Y_{\epsilon}^* + z + b)| \ dH_{\epsilon}(z)\right\}$$

$$< 2\delta + E|\chi(Y_{\epsilon} + Z_{\epsilon} + b) - \chi(Y_{\epsilon}^* + Z_{\epsilon} + b)|.$$

$$E\left|\tilde{g}(V+b)\right| < 2\delta + E\left|\chi\left(Y_{\epsilon} + Z_{\epsilon} + b\right) - \chi\left(Y_{\epsilon}^* + Z_{\epsilon} + b\right)\right|$$

Ву

$$E\left(e^{itY_{\epsilon}}\right) = \exp\left(\int_{0<|x|<\epsilon} \left[e^{itx} - 1 - itx\mathbf{1}_{[|x|<1]}\right] d\nu(x)\right)$$

it follows that Y_{ϵ} converges to 0 in probability as $\epsilon \downarrow 0$, and hence $(Y_{\epsilon}, Y_{\epsilon}^*, Z_{\epsilon}) = (Y_{\epsilon}, Y_{\epsilon}^*, V - Y_{\epsilon})$ converges in distribution to (0, 0, V). Since $\chi(\cdot)$ is bounded and continuous this implies

$$\lim_{\epsilon \downarrow 0} E \left| \chi \left(Y_{\epsilon} + Z_{\epsilon} + b \right) - \chi \left(Y_{\epsilon}^* + Z_{\epsilon} + b \right) \right| = 0$$

So,

$$E\left|\tilde{g}(V+b)\right| < 2\delta$$
 arbitrarily small

$$E|\tilde{g}(V+b)|=0$$
 for all $b\in\mathbb{R}$

Hence, we have e.g. $E|\tilde{g}(V+U)|=0$.

Because V + U has a positive density with respect to Lebesgue measure, this implies

$$\tilde{g}(y) = Eg(\mu_0 + \sigma U + y) = 0$$

for Lebesgue almost all $y \in \mathbb{R}$. By completeness of the normal location family

$$g(\mu_0 + \sigma U + y) = 0$$

holds a.s. for all $y \in \mathbb{R}$ and hence

$$g(\mu_0 + \sigma U + V) = g(X) = 0$$

holds a.s.

Efficient estimator for discretely observed Lévy process

Main theorem

Theorem

If
$$\sigma > 0$$
, then $\dot{\mathcal{P}}_s = L_2^0(P_0) = \dot{\mathcal{P}}$

and hence

$$ilde{\ell}_s = \prod \left(ilde{\ell} \ \middle| \ \dot{\mathcal{P}}_s
ight) = \prod \left(ilde{\ell} \ \middle| \ \dot{\mathcal{P}}
ight) = ilde{\ell} = g - \int g \ dP_0$$

and hence

$$T_n = \frac{1}{n} \sum_{i=1}^n g(X_i) = \theta(P) + \frac{1}{n} \sum_{i=1}^n \left[g(X_i) - \int g \, dP \right]$$

is asymptotically efficient (under all asymptotically linear estimators) in estimating $\theta(P) = \int g \ dP$ within the model \mathcal{P}_s of all infinitely divisible distributions.

Outline

- Basics Semiparametrics
- 2 Efficient Estimation for Discretely Observed Lévy Processes
- 3 Further comments

Efficient estimator for discretely observed Lévy process

- Ompound Poisson case has been treated by Enno Veerman
- **2** Remaining case, namely $\sigma = 0$ and $\nu(\{|x| < \epsilon\}) > 0$ for all $\epsilon > 0$, still conjecture
- 3 Further research needed for case of nonequidistant time points

Finite sample spread inequality

Definitions

 ϑ random variable on $\mathbb R$ with density $w(\cdot)$ Given $\vartheta = \theta$, X_1, \ldots, X_n i.i.d. with parameter θ

$$H(z) = P\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}\dot{\ell}_{\vartheta}(X_i) + \frac{1}{\sqrt{n}}\frac{w'}{w}(\vartheta) \leq z\right)$$

is the distribution function of the score statistic

$$G(y) = P\left(\sqrt{n}(T_n - \vartheta) \le y\right)$$

is the weighted distribution function of any estimator

Finite sample spread inequality

Definitions

 ϑ random variable on \mathbb{R} with density $w(\cdot)$ Given $\vartheta = \theta$, X_1, \dots, X_n i.i.d. with parameter θ

$$H(z) = P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\vartheta}(X_i) + \frac{1}{\sqrt{n}} \frac{w'}{w}(\vartheta) \le z\right)$$
$$G(y) = P\left(\sqrt{n}(T_n - \vartheta) \le y\right)$$

Spread inequality

$$G^{-1}(v) - G^{-1}(u) \ge K^{-1}(v) - K^{-1}(u) = \int_u^v \frac{1}{\int_s^1 H^{-1}(t)dt} ds$$

Local asymptotic spread inequality

Fix $\theta_0 \in \mathbb{R}$ write $\vartheta = \theta_0 + \frac{\sigma}{\sqrt{n}} \zeta$ with ζ random, density $w_0(\cdot)$

$$H_{n\sigma}(z) = P\left(\frac{1}{\sqrt{n}} \sum_{i=1}^{n} \dot{\ell}_{\theta_0 + \frac{\sigma}{\sqrt{n}} \zeta}(X_i) + \frac{1}{\sigma} \frac{w_0'}{w_0}(\zeta) \le z\right)$$
$$G_{n\sigma}(y) = P\left(\sqrt{n} \left(T_n - \theta_0 - \frac{\sigma}{\sqrt{n}} \zeta\right) \le y\right)$$

Local asymptotic spread inequality

$$\begin{aligned} \liminf_{\sigma \to \infty} \liminf_{n \to \infty} \left[G_{n\sigma}^{-1}(v) - G_{n\sigma}^{-1}(u) \right] &\geq \lim_{\sigma, n \to \infty} \int_{u}^{v} \frac{1}{\int_{s}^{1} H_{n\sigma}^{-1}(t) dt} ds \\ &= \frac{1}{\sqrt{I(\theta_{0})}} \left[\Phi^{-1}(v) - \Phi^{-1}(u) \right] \end{aligned}$$

Local asymptotic spread inequality

Local asymptotic spread theorem

$$\limsup_{\sigma \to \infty} \limsup_{n \to \infty} \left[G_{n\sigma}^{-1}(v) - G_{n\sigma}^{-1}(u) \right]$$

$$\geq \liminf_{\sigma \to \infty} \liminf_{n \to \infty} \left[G_{n\sigma}^{-1}(v) - G_{n\sigma}^{-1}(u) \right]$$

$$\geq \lim_{\sigma, n \to \infty} \int_{u}^{v} \frac{1}{\int_{s}^{1} H_{n\sigma}^{-1}(t) dt} ds = \frac{1}{\sqrt{I(\theta_{0})}} \left[\Phi^{-1}(v) - \Phi^{-1}(u) \right]$$

with equalities for all 0 < u < v < 1 iff

$$\sqrt{n}\left\{T_n-\theta_0-\frac{1}{n}\sum_{i=1}^n\frac{1}{I(\theta_0)}\dot{\ell}_{\theta_0}(X_i)\right\}\to_{P_{\theta_0}}0$$