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@ Option pricing method, based on Fourier-cosine expansions
» Focus on European options and calibration

@ Generalize to hybrid products
> Models with stochastic interest rate; stochastic volatility
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Financial industry; Banks at Work

@ Pricing approach:
1. Define some financial product

2. Model asset prices involved (SDEs)
3. Calibrate the model to market data (Numerics, Optimization)
4. Model product price correspondingly (PDE, Integral)
5. Price the product of interest (Numerics, MC)
6. Set up hedge to remove the risk related to the product (Optimization)
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Pricing: Feynman-Kac Theorem

Given the final condition problem

dv 1 2c28%v dv _
Ot + 70’5 852+r535 0,
v(§5,T) = given

Then the value, v(5(t), t), is the unique solution of
v(S,t) = e TTIREC{v(S(T), T)IS(1)}

with the sum of the first derivatives of the option square integrable.
and S satisfies the system of stochastic differential equations:

dS; = rSidt + oS, dWR,

@ Similar relations hold for other SDEs in Finance
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Numerical Pricing Approach

@ One can apply several numerical techniques to calculate the option price:
» Numerical integration,
» Monte Carlo simulation,
» Numerical solution of the partial-(integro) differential equation (P(I)DE)
@ Each of these methods has its merits and demerits.
@ Numerical challenges:

> Speed of solution methods (for example, for calibration)
» Early exercise feature (P(1)DE — free boundary problem)
» The problem’s dimensionality (not treated here)
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Motivation Fourier Methods

@ Derive pricing methods that

> are computationally fast
> are not restricted to Gaussian-based models
» should work as long as we have the characteristic function,

d(u) =E (efux> — '/OO e f(x)dx; f(x)= L /Ooo Re (¢(u)e ™ )du

— 00 .

(available for Lévy processes and also for Heston's model).
> In probability theory a characteristic function of a continuous random variable
X, equals the Fourier transform of the density of X.

@ Generalize basic method w.r.t. SDEs, contracts, applications
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Class of Affine Jump Diffusion (AJD) processes

Duffie, Pan, Singleton (2000): The following system of SDEs:
dXt = /,L(Xt)dt + U(Xt)th + dZt,

is of the affine form, if the drift, volatility, jump intensity and interest rate satisfy:

w(Xe) = ao+ ai1X; for (ag, a1) € R” x R™",

MX:) = bo+ b X, for (by,b1) € R x R,
o(Xe)o(Xe)T = (co)ij+ (1) Xe, (co, 1) € R™" x R,

r(X;) = ro+n Xy, for (rp,rn) € R x R".

The discounted characteristic function then has the following form:
(b(u, X, t, T) — eA(u7t7T)+B(U7t7T)Txt’

The coefficients A(u, t, T) and B(u,t, T)T satisfy a system of Riccati-type ODEs.
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The COS option pricing method,
based on Fourier Cosine Expansions
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Series Coefficients of the Density and the Ch.F.

@ Fourier-Cosine expansion of a density function on interval [a, b]:

f(x) = Z’:‘;OF,, cos <n7rz : z) ;

with x € [a, b] C R and the coefficients defined as

fR\[a b]

2 X —a
For A, = b_é)/ﬂ{{f(x)cos(mrb_a)dx
2 nm . nam
B b—aRe{(b(b—a)eXp(_lb—a)}'
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@ F, has a direct relation to ch.f., ¢(u) == [, f(x




Recovering Densities

@ Replace F, by A,, and truncate the summation:

2 N=1 nm . —a xX—a
f(x) ~ - az o RL{(/) (E) exp </nﬂ'b_ a) } cos (nﬂ'b — a> )

@ Example: f(x) = #eféxz, [a, b] = [-10,10] and x = {—5,—4,--- ,4,5}.

N 4 8 16 32 64
error 0.2538 | 0.1075 | 0.0072 | 4.04e-07 | 3.33e-16
cpu time (sec.) | 0.0025 | 0.0028 | 0.0025 0.0031 0.0032

Exponential error convergence in .

@ Similar behaviour for other Lévy processes.
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Pricing European Options
@ Start from the risk-neutral valuation formula:

v(x, ty) = e MAtEQ [v(y, T)|x] = efrAt/]R v(y, T)f(y|x)dy.

@ Truncate the integration range:

Vi 1) = e A /[ YO Ty 4=

@ Replace the density by the COS approximation, and interchange summation

and integration:
L i 2
;X) e_’””b—a} Vi,
—a

N—1
U(x, o) = e—f“Z' _ Re {¢ (b”

where the series coefficients of the payoff, V,, are analytic. W o
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Pricing European Options

@ Log-asset prices: x :=In(So/K) and y :=In(S7/K),
@ The payoff for European options reads

vy, T) = [a- K(er = 1)]".

@ For a call option, we obtain

2 P —
vel = b—a/o K(ey—l)cos<k7r}; a)dy

—a

_ %K(Xk(o,b) — (0, b)),

@ For a vanilla put, we find

.2
Ve = oK (—xu(a,0) + tu(a.0).
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Heston model

@ The Heston stochastic volatility model can be expressed by the following 2D
system of SDEs

dst = rfstdt + \/V_tstthfS,
dvy —k(ve — D)dt + v/ v dWY,

@ With x; = log S; this system is in the affine form.
= Ité's Lemma: multi-D partial differential equation
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Characteristic Functions Heston Model

@ For Lévy and Heston models, the ChF can be represented by

P(u;X) = Prey(u) - ™ with @, (1) = ¢(u;0),
P(uix,10) = phes(u; o) - €%,

@ The ChF of the log-asset price for Heston's model:
1— —DAt
Sahes(u; l/o) = exp <lUrAt + % <ﬁ> (K] — I,O’}/U — D)) .
= 1— G —DAt
exp <% (At(n —ipyu—D)— 2|og(%))),

with D = \/(x —ipyu)? + (¢ + iu)7? and G = S=E14p.
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Heston Model

@ We can present the V as V, = UrK, where

72 (xk(0, b) — 1« (0,b))  for a call

U =
- 7= (—x«(a,0) + ¥« (a,0)) for a put.

N |

@ The pricing formula simplifies for Heston and Lévy processes:

N—1 s
et Ke 2 Re {37 e (5755 ) - e |

where o(u) := ¢(u; 0)
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Numerical Results

Pricing 21 strikes K = 50,55, 60, - - - , 150 simultaneously under Heston's model.
Other parameters: So = 100,r=0,q=0,T =1,k = 1.5768,7 = 0.5751, v =
0.0398, 19 = 0.0175, p = —0.5711.

N 96 128 160
COoSs (msec.) 2.039 2.641 3.220
max. abs. err. | 4.52e-04 | 2.61e-05 | 4.40e — 06

Error analysis for the COS method is provided in the paper.
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Numerical Results within Calibration

@ Calibration for Heston’s model: Around 10 times faster than Carr-Madan.

The convergence plot of calibration algorithm {optimum:
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What do we do with the COS method?

@ Generalizations:
» Early-exercise options (Bermudan, barrier, American)
Context of CDS pricing (with Wim Schouten, Henrik Jénsson)
Swing options (commodity market)
Stochastic control problems, economic decision making (dikes, climate)
Asian options
Multi-asset options

@ Generalize to hybrid products (Rabobank, Ortec Finance)

» Models with stochastic interest rate; stochastic volatility
» Heston Hull-White, Heston SV-LMM

vV Yy VvV VvYy

C.W.Oosterlee (CWI) - Eurandom Workshop 29/8-2011 18 / 59



An exotic contract: A hybrid product

©

Based on sets of assets with different expected returns and risk levels.

[

Proper construction may give reduced risk and an expected return greater
than that of the least risky asset.

@ A simple example is a portfolio with a stock with a high risk and return and a
bond with a low risk and return.

[

Example:

T 1S 1B
—RQ (e Jo reds Z2r 2=t
V(S,t) =E <e max <0, >3, + > 0))
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Heston-Hull-White hybrid model

@ The Heston-Hull-White hybrid model can be expressed by the following 3D
system of SDEs

dSt = rtStdt—F \/V_tstthS,

dv, = —k(ve —D)dt + vy/vedWY,
dre = X0y —r;)dt +nrPdW/,

@ Full correlation matrix
@ System is not in the affine form. The symmetric instantaneous covariance
matrix is given by:

Ve Pxp WV PxrifEN/Ve
Vv prnrtTe
>k * 772 rt P
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Linearization

= By linearization of the non-affine terms in the covariance matrix, we find an
approximation (set p = 0):

Ve Pt Pxorl/Ve Ve pxp e prorWVe
Y e e Vv pu Ve
s Uk

Q

= We linearize the non-affine term /v, by W.:

V, =E(/v:) or V=N (E(/r), Var(y/rr)).
analytic ChF

4

The expectation for the CIR-type process is known analytically:

4

The model with the modified covariance structure, C, constitutes the affine
version of the non-affine model. W S
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Reformulated HHW Model

9 A well-defined Heston hybrid model with indirectly imposed correlation, py ,:

dSt = rfstdt + \/V_tstdW;( + Qtrtf)stthr + A\/V_tSdety, 50 > 0,
dvy = k(0 — ve)dt + v /vedWY, vy > 0,
dre = MO: — ry)dt +nrfdW/, o >0,
with
AWEAWY = pes,
dWXdW! = 0,
dWwydw! = 0,

@ We have included a time-dependent function, €;, and a parameter, A.
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Basics

@ Decompose a given general symmetric correlation matrix, C, as C = LL",
where L is a lower triangular matrix with strictly positive entries.

@ Rewrite a system of SDEs in terms of the independent Brownian motions
with the help of the lower triangular matrix L.
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“Equivalence”

@ The HHW and HCIR models have p,, =0, p«, # 0 and p,,, # 0 and read:

[ e VTiSe oS VTSH T2, -2, | [ dW ]

e T ) e

@ The reformulated hybrid model is given, in terms of the independent
Brownian motions, by: dX; = [...]dt+

Qt'rtpSt \/V_tst (pr,u + A) \/V_tst\/ 1- ﬁ)%,y dﬂ;
0 WP 0 dWy 1
nrf 0 0 dW;
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“Equivalence”

@ The reformulated HHW model is a well-defined Heston hybrid model with
non-zero correlation, py ., for:

Qt - px7rr;p\/ Vi,
2 2 2
px7u = pX,V + px,ra

A - px,u - ﬁx,u7

@ In order to satisfy the affinity constraints, we approximate {2; by a
deterministic time-dependent function:

Q; ~ px,E (r;p\/V_t) = px,E (r;p) E (\/V_t) )

assuming independence between r; and ;.

@ The model is in the affine class
= Fast pricing of options with the COS method
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Numerical Experiment; Implied vol

@ Implied volatilities for the HHW (obtained by Monte Carlo) and the
approximate (obtained by COS) models.

@ For short and long maturity experiments, we obtain a very good fit of the
approximate to the full-scale HHW model.

@ The parameters are § = 0.03, Kk = 1.2, 7 =0.08, v =0.09, A = 1.1, n = 0.1,
pPxv =—0.7, pxr =0.6, So =1, n =0.08, vop = 0.0625, a = 0.2813,
b= —0.0311 and ¢ = 1.1347.

Implied volalities for exact and approx. models (-5y)

= = @ — Heston-HW (Monte—Carlo)
07§ —@— Hi-HW (FFT)

o
£

implied volatility
o
o
a

035
02 04 06 08 1 12 14 16 18 2 [ ——
QT = 5y strike [K]
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Other applications

@ FX options (with Rabobank), although LMM are preferred for the IR
modeling.

@ Variable Annuities (with ING Insurance).

@ Inflation options (with Ortec Finance).
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Inflation options: Efficient calibration of the inflation model

@ A Heston type inflation model in combination with a Hull-White model for
nominal and real interest rates, and nonzero correlations.

@ An implied volatility skew/smile is present in inflation option market data.
@ Complete risk-neutral inflation model under Q,,:

di(t) = (ra(t) — (t)dt +/v(t)I(t dW’ (t), 1(0) >0,
{ dv(t) = k(v — dt+uv\/ t)dW"(t), v(0) >0,

with nominal and real interest rate processes given by:

{ dro(t) = (0n(t) — anra(t))dt + nadW™(t), r,(0) > 0,
dri(t) = (0:(t) — pr.rnr/v(t) — arri(t))dt + 0. dW™(t), r.(0) > 0,

@ Consumer Price Index /, variance process v, and nominal and real interest

rates, r, and r,.
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Inflation index and Year-on-Year options

@ Inflation index options; call/put options written on the CPI:

max (a(/(T) — K),0)
M,(T)

M, (t)E® \Fe| = Pa(t, T)E® [max (a(I7(T) — K),0)|7

@ Money savings account M, forward CPI I+(t) := I(t)P,(t, T)/P,(t. T).
@ Year-on-year option: Series of forward starting call/put options written on
the inflation rate.

@ A cap protects the buyer from inflation above a certain rate (strike level).
A floor gives downside protection. For 0 <t < T; < Ty :
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Conclusions

@ We presented the COS method, based on Fourier-cosine series expansions, for
European options.

@ The method also works efficiently for Bermudan and discretely monitored
barrier options.

@ COS method can be applied to affine approximations of HHW hybrid models.

@ Generalized to full set of correlations, to Heston-CIR, and
Heston-multi-factor models

@ Papers available: http://ta.twi.tudelft.nl/mf/users/oosterle /oosterlee/
http://ta.twi.tudelft.nl/mf/users/oosterle/oosterlee /oosterleerecent.html

= Top download in SIFIN !
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Summary

= The linearization method provides a high quality approximation;
= The projection procedure can be extended to high dimensions;

= The method is straightforward, and does not involve complex techniques;
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Pricing Bermudan Options

@ The pricing formulae

{ c(x,tm) = e At fR v(y, tmr1)f(y[x)dy
v(x,tm) = max(g(x, tm), c(x, tm))

and v(x, to) = e "2 [L v(y, ta)f(y|x)dy.
» Use Newton's method to locate the early exercise point x;,, which is the root
of g(x, tm) — c(x, tm) = 0.
> Recover V,(t1) recursively from V,(ty), Va(tm—1), -, Va(t2).
» Use the COS formula for v(x, to). W O
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V- Coefficients

@ Once we have x,, we split the integral, which defines Vi (t,):

(t) Ck(a, x5, tm) + G(x5, b), for a call,
Vi(tm) =
" Gi(a, xp) + Ck(xp, by tm), for a put,

form=M-—1M—2,--- 1. whereby

2 X2 —
Gi(x1, x2) == = a/ g(x, tm) cos (kﬂz a) dx.

X1 —a

and

2 X2 —
Ci(x1, x2, t) = y— / ¢(x, tm) cos <k7‘f'); — z> dx.

X1

Theorem

The Gi(x1,x2) are known analytically and the Cy(x1, %2, tm) can be computed in
O(N log,(N)) operations with the Fast Fourier Transform.
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Bermudan Details

@ Formula for the coefficients Ci(x1, x2, tm):

yN—1

i
Cu(x1, %0, tm) = e "A'Re {Z j—o Plew <ﬁ> Vi(tmi1) - Mk7j(X17X2)} ;

where the coefficients M, j(x1, x2) are given by

2 2 ,"ﬂ.ﬁ X —a
My j(x1, x2) = - a/ e’"b=a cos (kwb_ a) dx,

X1
@ With fundamental calculus, we can rewrite M, ; as

i
My j(x1, x2) = - (M j(x1, x2) + Mg j(x1, x2))

C.W.Oosterlee (CWI) - Eurandom Workshop 29/8-2011 34 /59



Hankel and Toeplitz

o Matrices M. = { Mg (x1,x)}} %y and My = {M; ;(x1,x)}} [, have special
structure for which the FFT can be employed: M. is a Hankel matrix,

mo my mo
m my
M. =
my—2 My—1
my—1 myn-—3
and M is a Toeplitz matrix,
mo m my—2
m_y mo ma
M, =
ma_n m_1 mo
m-_n Mma—pn m_y

C.W.Oosterlee (CWI) "

my—1
my

maN-—3

man—2 NxN

my—1
my—2

m

Mo | nyxn
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Bermudan puts with 10 early-exercise dates

Table: Test parameters for pricing Bermudan options

Test No. Model So K T r v Other Parameters
2 BS 100 110 1 0.1 0.2 -
3 CcGMY 100 80 1 0.1 0 C=1,G=5M=5Y=15
BS CGMY
-1 . : . , -1
—8— COS, L=8, N=32*d, d=1:5 =—8— COS, L=8, N=32*d, d=1:5
-2 k - # = CONV,3=20, N=2%, d=8:12 -2 "“ ~ « = CONV, 5=20, N=2¢, d=8:12
3% . T -3 i~ i
-4 TSl -4 Bl T P F
g -5 T g o
5 -6 & -e
° °
7 -7
8 -8
9 -9
10 -10
10 20 30 40 50 10 20 30 40 50 60
milliseconds milliseconds B
(a) BS (b) CGMY with Y =1.5
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Heston Model

Defines the dynamics of (log-stock), x;, and the variance, v;:

1
dx; = (;1, - Ellt) dt + p/redWy e + /1 — p?/redWha ¢
th = K}(D—Vt) dt""}/\/l/—tdW]_’t,

o Wi and W5, are independent; p is the correlation between the log-stock
and the variance processes.

@ The Feller condition, 2k > ~2, guarantees that v, stays positive.
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Bermudan Options

M
.: K
|

T

@ Based on backward recursion. The continuation value is given by
(Xms Vs tm) = € "AEL [V(Xmi1, Vit 1s tms1)]

which can be written as:

(Xm, Vm, tm) = e AL,

/ /V(Xm+17Vm+latm+1)px,y(xt7l/t|X57Vs)dxm+1dl/m+1-
R JR

followed by v(x, tn) = max (g(Xm, tm), €(Xms Vm, tm)) - o
@ Scaled log-asset price: x;, = In(Sp/K). W
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Joint Distribution of Log-Stock and Log-Variance

@ For path-dependent options, we need the joint distribution py (¢, V¢|Xs, Vs)
with 0 < s < t (log-stock and log-variance processes, given the information
at the current time):

px,u(Xt7Vt|X57Vs) = pXIl/(Xt|l/t7XS7VS) ) py(Vt|Vs)a

@ p,,: density of the log-stock process, given the variance value.
= Relevant information in the Fourier domain.

C.W.Oosterlee (CWI) - Eurandom Workshop 29/8-2011 39 / 59



The Left-Side Tail

o With g :=2kv/9% — 1, and ¢ := 2/ ((1 — e "(*=9))42) | [,(-) the modified,
order g, Bessel function of the first kind, the density of v; given v reads:

Vi
Vsefn(tfs)

g
f s 2
Py (Vt|Vs) CE_C(”SE )+Vr)< ) (2(6_5 (t—s) /—Vsl/t) )

@ The left-side tail is characterized by g € [~1,00). With « > 0\gZM and

A/ >0, a near—smgular problem occurs when ¢ € [—1, 0]
e Wera e 0] &



Transformation to Log-Variance Process

@ The density of the log-variance process reads:

Pin(v) (Ut|0's) =

aq
Cefc(eﬂse_x(r_SLFe”t) < et )2 eo'r/q (2Cefén(t*$) /ea'se(n) ,

e0s @—r(t—s)

where o, = In(vs) and pi,)(0¢|0s) denotes the density of the @g—variance,

""C.W.Oosterlee l'C-WIi -
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Joint Density

@ We have px,ln(u)(xta 0t|X57 Us) = Px| In(V)(Xt|Ut7 Xs, US) : pln(u)(o—t|0—s)y with
Px|In(v) the probability density of log-stock at a future time.

There is no closed-form expression for p,|in(,), but one can derive its
conditional characteristic function, ¢(w; xs, 0¢, 05),

H(w; Xs,0¢,05) = Eg[exp (iwxe|ot)]

= exp (iw {xs +p(t—s) + g (% — ™ — kin(t — s))D :

kp 1 1.5 2
[O) — - 1— . A0t AOs
(w(y 2)+2/w( po) e’ e ),

where ®(u; v, vs) is the ChF of the time-integrated variance.
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Heston Model

@ The ChF, ®(v; vy, vs), reads [Broadie-Kaya 2004]:

t
O(v; v, vs) = E{exp <iv/ V-,—d’T)
S

4y (v)e=21()(E=9)
/q |:\/VtVsA/2(1 B e*W(U)(tfs))
pr— S .
4nef§n(t75)
lq [\/Vtysm]
v(v)e*%(v(v)*n)(t%)(l — e—r(t=s)
k(1 — e 1(V)(t=9)) '

I/t7V5:|

,\/2 1 — e—rl(t—s) B 1 — e (W)(t=s)

with v(v) := /K2 — 2i7?v.
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Density Recovery by Fourier Cosine Expansions

@ Apply the COS method to approximate the conditional probability density,
Px|In(v)-
100 Xm+1 — a
Px| In(u)(Xm+1|Um+17 Xm, Um) = Z n:OPn(Um+1a Xm, Um) cos (nﬂ—n;)j) .
Coefficients P,, have a direct relation to the characteristic function and are

therefore known, i.e.

2 nm L _a
~ N . —inm 2
Pn(0m+1aXm70m) ~ ERQ 2 b_avaaUm+laUm e b=a o>,

with ¢(0; x, 0 m i1, 0m) given earlier.
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Quadrature Rule in Log-Variance Dimension
@ After truncating the integration region by [a,, b,] X [a, b], we compute

b,
c1(Xm, Tms tm) = e AL, / [
a

v

b
/ V(Xm+17 Om+1, tm+1)px\ In(v) (Xm+1| Om+1, Xm, Um) de+1}
a

Pin(v) (Omi1lom) domyt.

@ Apply J-point quadrature integration rule (like Gauss-Legendre quadrature,
composite Trapezoidal rule, etc.) to the outer integral:

J-1

2 (Xmy Om, tm) = e’rmsz-pm(y)(sﬂom)-
j=0

b
[/ V(Xm+la Sjs tm+l)px\ In(v) (Xm+1| Sjr Xm Um) de+1:| .
a

@ A Gauss-Legendre rule gives exponential error convergence W T
for smooth functions, such as pj,(,),
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COS Reconstruction in Log-Stock Dimension

@ Replace py|in(»), by the COS approximation, and interchange summation over
n and integration over X, .1:
IN— 1 ,
a } s

( nr oy
C3(Xm70'm) = e rAtZ WJZ n] tm+1)R {(,O (E,Q,Um) PRELE =

Jj=0

with

2 b Xm+1 — a
Vn,j (thrl) = b_ a/ V(Xm+17§ja tm+1) Ccos nﬂ—nz)j dXmt1,
a

and
(;9'((417 Om+1, Um) = pln(u)(0m+1|0m) - (wv 07 eO'm+17 eﬂm) .

@ Kernel ¢ characterizes the Heston model.

@ The Bessel function present in pj,(,) cancels with a Bessel function in the
denominator of ¢, leaving one Bessel-term. W R
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COS Reconstruction in Log-Stock Dimension

@ With early-exercise points, x*(o, tm), determined, recursion can be used to
compute the Bermudan option price:
> At tuy: v(xm, om, tm) = g(xm);
> At tp, with m=1,2,--- M —1:

; _ [ 80w) for x € [2, X" (m, tm)]
V(xm, Om, tm) = { i(xm,am m)  for x € (x*(om, tm), b] @

for a put option.
> At to: \’7(X0,(T07 to) = C3(X0,(To7 1.‘0).

@ By backward recursion, the cosine coefficients of ¥(x1, 01, t1) can be
recovered with the FFT, from those of U(xun, om, tm) in O (M —1)JN £)
operations, with ¢ = max [log,(N), J].

= As with the COS method for Bermudan options under Lévy processes
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European Test Results

@ Test No.1 (g =0.6): y=05,k=5,v=0.04,T =1,

@ Other parameters to determine the values of the put include
p=—0.9,1=0.04,5 =100, K = 100, r = 0.

@ Convergence in J for Test No.1 (g = 0.6) with N =27, M = 12 and the
European option reference value is 7.5789038982.

Cosine expansion plus Gauss-Legendre Rule
(J =29) TOL =107 TOL =108
d time(sec) error time(sec) error
4 0.12 1.02 1072 0.12 1.41
5 0.42 -1.8510°° 0.40 2.99 10—°
6 1.59 -1.54 107° 1.54 -6.41 10°°
7 7.07 -1.34 10°° 6.49 -6.32 1077

C.W.Oosterlee (CWI) -
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Numerical Results g < 0

¢ & 6 ¢

©

Convergence in J as g — —1;
Test No.2 (g = —0.84): v =0.5,x =0.5,7 = 0.04, T = 1,
Test No.3 (g = —0.96): v = 1,k = 0.5,7 = 0.04, T = 10.

Fourier cosine expansion plus Gauss-Legendre rule, N =28 M = 12,

TOL= 10",

European reference values are 6.2710582179 (Test No. 2) and

13.0842710701 (Test No.3).

Test No. 2 (g = —0.84) Test No. 3 (g = —0.96)
(J=29) time(sec) time(sec)
d total Init. Loop error total Init. Loop error
6 3.03 2.85 0.18 5.63 3.11 2.93 0.18 -22.7
7 133 | 12.78 | 0.56 | 6.89 10~ % || 12.1 | 11.55 | 0.53 | -8.51 10 2
8 56.4 | 52.32 4.07 -2.1210°° 55.7 51.74 4.00 -1.60 103
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Bermudan Option Result

@ A negative correlation coefficient, p, is often observed in market data.

o Test No. 4 (g = —0.47): Sp = {90,100,110}, K = 100, T = 0.25, r =
0.04,x = 1.15,v = 0.39, p = —0.64, 7 = 0.0348, vy = 0.0348.

So time (sec)
M 90 100 110 total | Init. | Loop
20 || 9.9783714 | 3.2047434 | 0.9273568 68.9 | 58.2 | 10.7
40 (| 9.9916484 | 3.2073345 | 0.9281068 81.9 | 59.3 | 22.6
60 (| 9.9957789 | 3.2079202 | 0.9280425 93.2 | 59.4 | 33.8

C.W.Oosterlee (CWI) 2
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Conclusions

@ Bermudan options under Heston's model with a Fourier-based method.

@ The near-singular problem in the left-side tail of the variance density has been
dealt with by a change of variables to the log-variance domain.

@ Pricing formula is derived by applying a Fourier series expansion technique to
the log-stock and a quadrature rule to the log-variance dimension.

@ With the Feller condition satisfied, we get highly accurate prices within a
fraction of a second.

@ The challenge is to price options for the Feller condition not satisfied.
Choosing 128 points in both dimensions is usually sufficient for an error
reduction of the order 104

@ The computation of the Bessel functions in the initialization step of the
algorithm dominates the overall computation time in that case.

| CvL
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Truncation Range [a,, b,] for Log-variance Density

@ Use Newton’'s method to determine the interval boundaries, according to a
pre-defined error tolerance, piy(,)(x|oo; T) <TOL for x € R\[a,, b,].
@ The derivative of pj,(,)(0t|0s) w.r.t. o with Maple:

dpln(y) (Ut|as)

o) (o~ -1 (2) o (/)]

A\ 9/2
CeumCeT o, (_Ce" ) :

u

with v = (e r(t=s),
@ Initial guess: We estimate the center by the logarithm of the mean value of

the variance
In(E(re)) = In (voe ™" + 7 (1— e "T)).

@ As the left tail usually decays much slower than the right tail and the speed
of decay seems closely related to the value of g, we use:
5 2

[a), b)] = [In(E(1t)) — Trq In(E(v:)) + Tt g
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V- Coefficients

@ Once we have x,, we split the integral, which defines Vi (t,):

(t) Ck(a, x5, tm) + G(x5, b), for a call,
Vi(tm) =
" Gi(a, xp) + Ck(xp, by tm), for a put,

form=M-—1M—2,--- 1. whereby

2 X2 —
Gi(x1, x2) == = a/ g(x, tm) cos (kﬂz a) dx.

X1 —a

and

2 X2 —
Ci(x1, x2, t) = y— / ¢(x, tm) cos <k7‘f'); — z> dx.

X1

Theorem

The Gi(x1,x2) are known analytically and the Cy(x1, %2, tm) can be computed in
O(N log,(N)) operations with the Fast Fourier Transform.
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Bermudan Details

@ Formula for the coefficients Ci(x1, x2, tm):

yN—1

i
Cu(x1, %0, tm) = e "A'Re {Z j—o Plew <ﬁ> Vi(tmi1) - Mk7j(X17X2)} ;

where the coefficients M, j(x1, x2) are given by

2 2 ,"ﬂ.ﬁ X —a
My j(x1, x2) = - a/ e’"b=a cos (kwb_ a) dx,

X1
@ With fundamental calculus, we can rewrite M, ; as

i
My j(x1, x2) = - (M j(x1, x2) + Mg j(x1, x2))
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Hankel and Toeplitz

o Matrices M. = { Mg (x1,x)}} %y and My = {M; ;(x1,x)}} [, have special
structure for which the FFT can be employed: M. is a Hankel matrix,

mo my mo
m my
M. =
my—2 My—1
my—1 myn-—3
and M is a Toeplitz matrix,
mo m my—2
m_y mo ma
M, =
ma_n m_1 mo
m-_n Mma—pn m_y

C.W.Oosterlee (CWI) "
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m
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Bermudan puts with 10 early-exercise dates

Table: Test parameters for pricing Bermudan options

Test No. Model So K T r o Other Parameters
2 BS 100 110 1 0.1 0.2 -
3 CcGMY 100 80 1 0.1 0 C=1,G=5M=5Y=15
BS CGMY
-1 . : . , -1
—8— COS, L=8, N=32*d, d=1:5 =—8— COS, L=8, N=32*d, d=1:5
-2 k - # = CONV,3=20, N=2%, d=8:12 -2 "“ ~ « = CONV, 5=20, N=2¢, d=8:12
3% . T -3 i~ i
-4 TSl -4 Bl T P F
g -5 T g o
5 -6 & -e
° °
7 -7
8 -8
9 -9
10 -10
10 20 30 40 50 10 20 30 40 50 60
milliseconds milliseconds B
(C) BS (d) CGMY with Y =1.5
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Pricing Discrete Barrier Options

@ The price of an M-times monitored up-and-out option satisfies

C(X, tm—l) — r(tm—tm— l)f X tm y|X)

—r(T—tm-1)
. {e

c(x, tm-1), x<h

where h = In(H/K), and v(x, to) = e~"(tn=tn=1) [ v(x, t;)f(y|x)dy
@ The technique:
> Recover V,(t1) recursively, from V,(ty), Va(tm—1), -, Va(t2) in
O((M — 1)N log,(N)) operations.
» Split the integration range at the barrier level (no Newton required)
> Insert V,(t1) in the COS formula to get v(x, to), in O(N) operations.
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Monthly-monitored Barrier Options

Table: Test parameters for pricing barrier options

Test No. | Model So K T r q Other Parameters
1 NIG | 100 | 100 | 1 | 0.05 | 0.02 | a =15,8= —5,6 = 0.5
Option Ref. Val. N time error
Type N | (milli-sec.)
DOP | 2139931117 | 27 3.7 1.28e-3
28 5.4 4.65e-5
29 8.4 1.39e-7
210 14.7 1.38e-12
DOC | 8.983106036 | 27 3.7 1.09e-3
28 5.3 3.99e-5
29 8.3 9.47¢-8
210 14.8 5.61e-13 w
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Conclusions

@ The COS method is highly efficient for density recovery, for pricing European,
Bermudan and discretely -monitored barrier options

@ Convergence is exponential, usually with small N
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