Emiliano A. Valdez

Introductio

Literature

Modeli

Random effects models Copula models

Continuous extension with jitters

Some properties

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Longitudinal Modeling of Claim Counts using Jitters

joint work with Peng Shi, Northern Illinois University

Eurandom Workshop on Actuarial and Financial Statistics Eindhoven, The Netherlands, 29-30 August 2011

Emiliano A. Valdez
Department of Mathematics
University of Connecticut
Storrs, Connecticut, USA

Emiliano A. Valdez

Introduction

Background Literature

Modeling

Random effects models

Continuous extension with

Some properties

Empirical analysis

Model specification

Singapore data

Inforono

Variable selection
Estimation results
Model validation

Concluding remarks

Selected reference

Outline

Introduction Background Literature

2 Modeling

Random effects models Copula models Continuous extension with jitters Some properties

- 3 Empirical analysis
 Model specification
 Singapore data
- 4 Inference
 Variable selection
 Estimation results
 Model validation
- **5** Concluding remarks
- **6** Selected reference

Background

Emiliano A. Valdez

Introducti

Background

Literature

.

Random effects models

Continuous extension with jitters

Some properties

Model specification
Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

- Two-part model for pure premium calculation: decompose total claims into claim frequency (number of claims) and claim severity (amount of claim, given a claim occurs).
- Several believe that the claim frequency, or claim counts, is the more important component.
- Past claims experience provide invaluable insight into some of the policyholder risk characteristics for experience rating or credibility ratemaking.
- Modeling longitudinal claim counts can assist to test economic hypothesis within the context of a multi-period contract.
- It might be insightful to explicitly measure the association of claim counts over time (intertemporal dependence).

Emiliano A. Valdez

Introducti

Background

Model

Random effects models
Copula models
Continuous extension with

Some properties

Empirical analysis

Singapore data

Interen

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Longitudinal data

- Assume we observe claim counts, N_{it} , for a group of policyholders i, for i = 1, 2, ..., m, in an insurance portfolio over T_i years.
- For each policyholder, the observable data is a vector of claim counts expressed as $(N_{i1}, \ldots, N_{iT_i})$.
- Data may be unbalanced: length of time T_i observed may differ among policyholders.
- Set of observable covariates x_{it} useful to sub-divide the portfolio into classes of risks with homogeneous characteristics.
- Here, we present an alternative approach to modeling longitudinal insurance claim counts using copulas and compare its performance with standard and traditional count regression models.

Emiliano A. Valdez

Introduction

Background

N.A. ala Bas

Rondom offeets

Random effects models

Copula models

Continuous extension with

Some properties

Model specification
Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Literature

- Alternative models for longitudinal counts:
 - Random effects models: the most popular approach
 - Marginal models with serial correlation
 - Autoregressive and integer-valued autoregressive models
 - Common shock models
- Useful books on count regression
 - Cameron and Trivedi (1998): Regression Analysis of Count Data
 - Denuit et al. (2007): Actuarial Modelling of Claim Counts:
 Risk Classification, Credibility and Bonus-Malus Systems
 - Frees (2009): Regression Modeling with Actuarial and Financial Applications
 - Winkelmann (2010): Econometric Analysis of Count Data
- The recent survey work of Boucher, Denuit and Guillén (2010) provides for a comparison of the various models.

Emiliano A. Valdez

Background

Literature

Modelin

Modelin

Random effects models
Copula models
Continuous extension with

Some properties

Empirical analys

Model specification Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Literature - continued

- Copula regression for multivariate discrete data:
 - Increasingly becoming popular
 - Applications found in various disciplines:
 - Economics: Prieger (2002), Cameron et al. (2004), Zimmer and Trivedi (2006)
 - Biostatistics: Song et al. (2008), Madsen and Fang (2010)
 - Actuarial science: Purcaru and Denuit (2003), Shi and Valdez (2011)
 - Modeling longitudinal insurance claim counts:
 - Frees and Wang (2006): model joint pdf of latent variables
 - Boucher, Denuit and Guillén (2010): model joint pmf of claim counts
- Be pre-cautious when using copulas for multivariate discrete observations: non-uniqueness of the copula, vague interpretation of the nature of dependence. See Genest and Nešlehová (2007).
- We adopt an approach close to Madsen and Fang (2010): joint regression analysis.

Emiliano A. Valdez

Introducti

Background Literature

Modeling

Random effects models

Copula models

Continuous extension with iitters

Some properties

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

- To capture the intertemporal dependence within subjects, the most popular approach is to introduce a common random effect, say α_i , to each observation.
- The joint pmf for $(N_{i1}, \ldots, N_{iT_i})$ can be expressed as

$$Pr(N_{i1} = n_{i1}, \dots, N_{iT_i} = n_{iT_i}) = \int_0^\infty Pr(N_{i1} = n_{i1}, \dots, N_{iT_i} = n_{iT_i} | \alpha_i) f(\alpha_i) d\alpha_i$$

where $f(\alpha_i)$ is the density function of the random effect.

Typical assumption is conditional independence as follows:

$$Pr(N_{i1} = n_{i1}, \dots, N_{iT_i} = n_{iT_i}|\alpha_i) = Pr(N_{i1} = n_{i1}|\alpha_i) \times \dots \times Pr(N_{iT_i} = n_{iT_i}|\alpha_i).$$

Copula models

Continuous extension with

Some properties

Model specification

Singapore data

Variable selection Estimation results Model validation

Selected reference

Some known random effects models

- Poisson $N_{it} \sim \text{Poisson}(\tilde{\lambda}_{it})$
 - $\tilde{\lambda}_{it} = \eta_i \lambda_{it} = \eta_i \omega_{it} \exp(\mathbf{x}'_{it}\beta)$, and $\eta_i \sim \text{Gamma}(\psi, \psi)$
 - $\tilde{\lambda}_{it} = \omega_{it} \exp(\alpha_i + \mathbf{x}_{it}'\beta)$, and $\alpha_i \sim N(0, \sigma^2)$
- Negative Binomial
 - NB1: $1 + 1/\nu_i \sim \text{Beta}(a, b)$

$$\Pr(N_{it} = n_{it}|\nu_i) = \frac{\Gamma(n_{it} + \lambda_{it})}{\Gamma(\lambda_{it})\Gamma(n_{it} + 1)} \left(\frac{\nu_i}{1 + \nu_i}\right)^{\lambda_{it}} \left(\frac{1}{1 + \nu_i}\right)^{n_{it}}$$

• NB2: $\alpha_i \sim N(0, \sigma^2)$

$$\Pr(N_{it} = n_{it}|\alpha_i) = \frac{\Gamma(n_{it} + \psi)}{\Gamma(\psi)\Gamma(n_{it} + 1)} \left(\frac{\psi}{\tilde{\lambda}_{it} + \psi}\right)^{\psi} \left(\frac{\tilde{\lambda}_{it}}{\tilde{\lambda}_{it} + \psi}\right)^{n_{it}}$$

- Zero-inflated models
 - $\bullet \ \mathsf{Pr}(N_{it} = n_{it} | \delta_i, \alpha_i) = \left\{ \begin{array}{ll} \pi_{it} + (1 \pi_{it}) f(n_{it} | \alpha_i) & \text{if } n_{it} = 0 \\ (1 \pi_{it}) f(n_{it} | \alpha_i) & \text{if } n_{it} > 0 \end{array} \right. .$
 - $\bullet \log\left(\frac{\pi_{it}}{1-\pi_{it}}\middle|\delta_{i}\right) = \delta_{i} + \mathbf{z}_{it}'\boldsymbol{\gamma},$
 - ZIP ($f \sim \text{Poisson}$) and ZINB ($f \sim NB$)

17

Introduction

Background Literature

Modelin

Random effects models

Copula models

Continuous extension with jitters

Some properties

Empirical analysis

Model specification

Singapore data

Inferenc

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Joint pmf using copula:

$$\Pr(N_{i1} = n_{i1}, \dots, N_{iT} = n_{iT}) = \sum_{j_1=1}^{2} \dots \sum_{j_T=1}^{2} (-1)^{j_1 + \dots + j_T} C(u_{1j_1}, \dots, u_{Tj_T})$$

Here, $u_{t1} = F_{it}(n_{it})$, $u_{t2} = F_{it}(n_{it} - 1)$, and F_{it} denotes the distribution of N_{it}

- Downside of the above specification:
 - contains 2^T terms and becomes unmanageable for large T
 - involves high-dimensional integration
 - other critiques for the case of multivariate discrete data: see Genest and Něslehová (2007)

Emiliano A. Valdez

Je u

Introductio Background

Literature

Modelin

Random effects models

Copula models

Continuous extension with jitters

Some properties

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Continuous extension with jitters

- Define $N_{it}^* = N_{it} U_{it}$ where $U_{it} \sim \text{Uniform}(0,1)$
- The joint pdf of jittered counts for the *i*th policyholder $(N_{i1}^*, N_{i2}^*, \dots, N_{iT}^*)$ may be expressed as:

$$f_i^*(n_{i1}^*,\ldots,n_{iT}^*)=c(F_{i1}^*(n_{i1}^*),\ldots,F_{iT}^*(n_{iT}^*);\theta)\prod_{t=1}^I f_{it}^*(n_{it}^*)$$

• Retrieve the joint pmf of $(N_{i1}, ..., N_{iT})$ by averaging over the jitters:

$$f_{i}(n_{i1},...,n_{iT}) = \\ \mathbb{E}_{U_{i}} \left[c(F_{i1}^{*}(n_{i1} - U_{i1}),...,F_{iT}^{*}(n_{iT} - U_{iT});\theta) \prod_{t=1}^{T} f_{it}^{*}(n_{it} - U_{it}) \right]$$

- Based on relations:
 - $F_{it}^*(n) = F_{it}([n]) + (n-[n])f_{it}([n+1])$
 - $f_{it}^*(n) = f_{it}([n+1])$

Background

Literature

Modelii

Random effects models

Continuous extension with

Some properties

Empirical analysis

Model specification

Singapore data

Inferen

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

It is interesting to note that with continuous extension with jitters, we preserve:

concordance ordering:

If
$$(N_{a1},N_{b1}) \prec_c (N_{a2},N_{b2})$$
, then $(N_{a1}^*,N_{b1}^*) \prec_c (N_{a2}^*,N_{b2}^*)$

• Kendall's tau coefficient:

$$au(N_{a1}, N_{b1}) = au(N_{a1}^*, N_{b1}^*)$$

Proof can be found in Denuit and Lambert (2005).

Emiliano A. Valdez

Introduction

Background Literature

Modelin

Random effects models

Copula models

Continuous extension with jitters

Some properties

Empirical analys

Model specification

Singapore data

Inferen

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Model specification

Assume f_{it} follows NB2 distribution:

$$f_{it}(n) = \Pr(N_{it} = n) = \frac{\Gamma(n + \psi)}{\Gamma(\psi)\Gamma(n + 1)} \left(\frac{\psi}{\lambda_{it} + \psi}\right)^{\psi} \left(\frac{\lambda_{it}}{\lambda_{it} + \psi}\right)^{n},$$

with $\lambda_{it} = \exp(\mathbf{x}_{it}^{\prime}\boldsymbol{\beta})$.

• Consider elliptical copulas for the jittered counts and examine three dependence structure (e.g. T=4):

autoregressive:
$$\Sigma_{AR} = \begin{pmatrix} 1 & \rho & \rho^2 & \rho^3 \\ \rho & 1 & \rho & \rho^2 \\ \rho^2 & \rho & 1 & \rho \\ \rho^3 & \rho^2 & \rho & 1 \end{pmatrix}$$
 exchangeable: $\Sigma_{EX} = \begin{pmatrix} 1 & \rho & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & 1 & \rho & \rho \\ \rho & \rho & 1 & \rho \\ \rho & \rho & \rho & 1 \end{pmatrix}$ Toeplitz: $\Sigma_{TOEP} = \begin{pmatrix} 1 & \rho_1 & \rho_2 & 0 \\ \rho_1 & 1 & \rho_1 & \rho_2 \\ \rho_2 & \rho_1 & 1 & \rho_1 \\ \rho_2 & \rho_1 & 1 & \rho_1 \end{pmatrix}$

- Likelihood based method is used to estimate the model.
- A large number of simulations are used to approximate the likelihood.

Emiliano A. Valdez

Introduction

Background Literature

Modeli

Random effects models
Copula models
Continuous extension with

Some properties

Model specification

Singapore data

merenc

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Singapore data

- For our empirical analysis, claims data are obtained from an automobile insurance company in Singapore
- Data was over a period of nine years 1993-2001.
- Data for years 1993-2000 was used for model calibration;
 year 2001 was our hold-out sample for model validation.
- Focus on "non-fleet" policy
- Limit to policyholders with comprehensive coverage

Number and Percentage of Claims by Count and Year

	Percentage by Year									Ove	Overall	
Count	1993	1994	1995	1996	1997	1998	1999	2000	2001	Number	Percent	
0	88.10	85.86	85.21	83.88	90.41	85.62	86.89	87.18	89.71	3480	86.9	
1	10.07	12.15	13.13	14.29	8.22	13.73	11.59	11.54	9.71	468	11.7	
2	1.47	2.00	1.25	1.83	0.00	0.65	1.37	0.92	0.57	50	1.25	
3	0.37	0.00	0.21	0.00	1.37	0.00	0.15	0.18	0.00	6	0.15	
4	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.18	0.00	2	0.05	
Number	546	601	480	273	73	306	656	546	525	4006	100	

Emiliano A. Valdez

Introduction

Background Literature

Modelin

Random effects models

Copula models

Continuous extension with litters

Some properties

Empirical analysi

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Summary statistics

- Data contain rating variables including:
 - vehicle characteristics: age, brand, model, make
 - policyholder characteristics: age, gender, marital status
 - experience rating scheme: no claim discount (NCD)

Number and Percentage of Claims by Age, Gender and NCD

	Percentage by Count					Ove	Overall	
	0	1	2	3	4	Number	Percent	
Person Age (in yea	ırs)							
25 and younger	73.33	23.33	3.33	0.00	0.00	30	0.75	
26-35	87.49	11.12	1.19	0.10	0.10	1007	25.14	
36-45	86.63	11.80	1.35	0.17	0.06	1780	44.43	
46-60	86.85	11.92	1.05	0.18	0.00	1141	28.48	
60 and over	91.67	6.25	2.08	0.00	0.00	48	1.20	
Gender								
Female	91.49	7.98	0.53	0.00	0.00	188	4.69	
Male	86.64	11.86	1.28	0.16	0.05	3818	95.31	
No Claims Discoun	t (NCD)							
0	84.83	13.17	1.61	0.26	0.13	1549	38.67	
10	86.21	12.58	1.20	0.00	0.00	747	18.65	
20	89.21	9.25	1.54	0.00	0.00	584	14.58	
30	89.16	9.49	1.08	0.27	0.00	369	9.21	
40	88.60	11.40	0.00	0.00	0.00	193	4.82	
50	88.83	10.46	0.53	0.18	0.00	564	14.08	
Number by Count	3480	468	50	6	2	4006	100	

Random effects models Copula models

Continuous extension with

Some properties

Model specification

Singapore data

Variable selection Estimation results Model validation

Selected reference

Variable selection

• Preliminary analysis chose:

young: 1 if below 25, 0 otherwise

• *midfemale*: 1 if mid-aged (between 30-50) female drivers, 0

otherwise

zeroncd: 1 if zero ncd, 0 otherwise

vage: vehicle age

vbrand1: 1 for vehicle brand 1

vbrand2: 1 for vehicle brand 2

 Variable selection procedure used is beyond scope of our work.

Emiliano A. Valdez

Background Literature

Litorator

Modelin

Random effects models

Copula models

Continuous extension with

jitters

Some properties

Model specification

Singapore data

Inference

Variable selection Estimation results

Model validation

Concluding remarks

Selected reference

Estimation Results

Estimates of standard longitudinal count regression models

	RE-Po	isson	RE-Ne	egBin	RE-	ZIP	RE-Z	RE-ZINB	
Parameter	Estimate	<i>p</i> -value							
intercept	-1.7173	<.0001	1.6404	0.1030	-1.6780	<.0001	-1.7906	<.0001	
young	0.6408	0.0790	0.6543	0.0690	0.6232	0.0902	0.6371	0.0853	
midfemale	-0.7868	0.0310	-0.7692	0.0340	-0.7866	0.0316	-0.7844	0.0319	
zeroncd	0.2573	0.0050	0.2547	0.0060	0.2617	0.0051	0.2630	0.0050	
vage	-0.0438	0.0210	-0.0442	0.0210	-0.0436	0.0227	-0.0438	0.0224	
vbrand1	0.5493	<.0001	0.5473	<.0001	0.5481	<.0001	0.5478	<.0001	
vbrand2	0.1831	0.0740	0.1854	0.0710	0.1813	0.0777	0.1827	0.0755	
LogLik	-1498.40		-1497	-1497.78		-1498.00		-1497.50	
AIC	3012.81		3013	3013.57		3016.00		3017.00	
BIC	3056.41		3062	3062.62		3070.50		3077.00	

Estimates of copula model with various dependence structures

	AR(Exchan	geable		Toeplitz(2)		
Parameter	Estimate	StdErr	Estimate	StdErr	Estimate	StdErr		
intercept	-1.8028	0.0307	-1.8422	0.0353	-1.7630	0.0284		
young	0.6529	0.0557	0.7130	0.0667	0.6526	0.0631		
midfemale	-0.6956	0.0588	-0.6786	0.0670	-0.7132	0.0596		
zeroncd	0.2584	0.0198	0.2214	0.0172	0.2358	0.0176		
vage	-0.0411	0.0051	-0.0422	0.0056	-0.0453	0.0042		
vbrand1	0.5286	0.0239	0.5407	0.0275	0.4962	0.0250		
vbrand2	0.1603	0.0166	0.1752	0.0229	0.1318	0.0198		
ϕ	2.9465	0.1024	2.9395	0.1130	2.9097	0.1346		
ρ_1	0.1216	0.0028	0.1152	0.0027	0.1175	0.0025		
ρ_2					0.0914	0.0052		
LogLik	-1473.25		-1454	-1454.04		-1468.74		
AIC	2964.49		2926	.08	2957.49			
BIC	3013.55		2975	.13	3011.99			

Introducti

Background Literature

Modelin

Random effects models
Copula models
Continuous extension with
jitters
Some properties

Empirical analysis

Model specification

Singapore data

Inforona

Variable selection Estimation results

Concluding remarks

Selected reference

Model validation

- Copula validation
 - The specification of the copula is validated using t-plot method as suggested in Sun et al. (2008) and Shi (2010).
 - In a good fit, we would expect to see a linear relationship in the t-plot.
- Out-of-sample validation: based on predictive distribution calculated using

$$f_{iT+1}(n_{iT+1}|n_{i1},...,n_{iT})$$

$$= \Pr(N_{iT+1} = n_{iT+1}|N_{i1} = n_{i1},...,N_{iT} = n_{iT})$$

$$= \frac{\varepsilon_{U_i} \left[c(F_{i1}^*(n_{i1} - U_{i1}),...,F_{iT}^*(n_{iT} - U_{iT}),F_{iT+1}^*(n_{iT+1} - U_{iT+1});\theta)\prod_{t=1}^{T+1} f_{it}^*(n_{it} - U_{it}) \right]}{\varepsilon_{U_i} \left[c(F_{i1}^*(n_{i1} - U_{i1}),...,F_{iT}^*(n_{iT} - U_{iT});\theta)\prod_{t=1}^{T} f_{it}^*(n_{it} - U_{it}) \right]}$$

- Performance measures used:
 - LogLik = $\sum_{i=1}^{M} \log (f_{iT+1}(n_{iT+1}|n_{i1},\cdots,n_{iT}))$
 - MSPE = $\sum_{i=1}^{M} [n_{iT+1} E(N_{iT+1}|N_{i1} = n_{i1}, \dots, N_{iT} = n_{iT})]^2$
 - MAPE = $\sum_{i=1}^{M} |n_{iT+1} E(N_{iT+1}|N_{i1} = n_{i1}, \cdots, N_{iT} = n_{iT})|$

Background Literature

Modeling

Random effects models Copula models

Continuous extension with jitters

Some properties

Model specification Singapore data

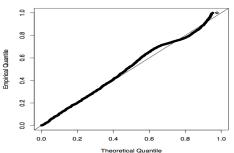
Inference

Variable selection Estimation results

Model validation

Selected reference

Results of model validation



Out-of-sample validation

	Standar	d Model	Copula Model				
	RE-Poisson	RE-NegBin	AR(1)	Exchangeable	Toeplitz(2)		
LogLik	-177.786	-177.782	-168.037	-162.717	-165.932		
MSPE	0.107	0.107	0.108	0.105	0.110		
MAPE	0.213	0.213	0.197	0.186	0.192		

Emiliano A. Valdez

Introductio

Literature

Modelin

Random effects models
Copula models
Continuous extension with

jitters Some properties

Model specification
Singapore data

Inferen

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Concluding remarks

- We examined an alternative way to model longitudinal count based on copulas:
 - employed a continuous extension with jitters
 - method preserves the concordance-based association measures
- The approach avoids the criticisms often made with using copulas directly on multivariate discrete observations.
- For empirical demonstration, we applied the approach to a dataset from a Singapore auto insurer. Our findings show:
 - better fit when compared with random-effect specifications
 - validated the copula specification based on t-plot and its performance based on hold-out observations
- Our contributions to the literature: (1) application to insurance data, and (2) application to longitudinal count data.

Emiliano A. Valdez

Background

Literature

Random effects models
Copula models
Continuous extension with
jitters
Some properties

Empirical analysis

Model specification

Singapore data

Inference

Variable selection Estimation results Model validation

Concluding remarks

Selected reference

Selected reference

- Denuit, M. and P. Lambert (2005). Constraints on concordance measures in bivariate discrete data. *Journal of Multivariate Analysis*, 93(1), 40-57.
- Genest, C. and J. Nešlehová (2007). A primer on copulas for count data. ASTIN Bulletin, 37(2), 475-515.
- Hausman, J., B. Hall, and Z. Griliches (1984). Econometric models for count data with an application to the patents-r&d relationship. *Econometrica*, 52(4), 909-938.
- Madsen, L. and Y. Fang (2010). Joint regression analysis for discrete longitudinal data. *Biometrics*. Early view.
- Song, P., M. Li, and Y. Yuan (2009). Joint regression analysis of correlated data using Gaussian copulas. *Biometrics*, 65(1), 60-68.
- Sun, J., E. W. Frees, and M. A. Rosenberg (2008). Heavy-tailed longitudinal data modeling using copulas. *Insurance: Mathematics and Economics*, 42(2),817-830.