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Background

I Continuous-time diffusion models are developed to capture
the dynamics of assets:

dXt = µ(t,Xt)dt + σ(t,Xt)dWt + JtdNt

I A European call option is one of the first derivatives that are
priced in closed-form within this framework. [Black and Scholes (1973)]

I This paper systematically develops a new option pricing
method.
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Review of Prior Work on Option Pricing Methods

I Closed-Form Pricing Formulas

I Log-Normal Class: Black-Scholes-Merton
[Black and Scholes (1973), Merton (1976), Black (1976)]

I Bessel Process Class: CIR, CEV
[Cox (1975), Cox et al. (1976, 1985), Goldenberg (1991)]

I Fourier Transform: Levy Process, Heston Model, Affine Model
[Heston(1993), Bakshi and Madan(1999), Bates(1996), Scott(1997), Carr and Madan(1998),

Duffie, Singleton and Pan(2000)]

I Closed-Form Expansions - This Paper

I Numerical Methods

I Monte Carlo Simulations
[Boyle(1977)]

I Numerical Solutions to PDE
[Schwartz(1977)]
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Review of Prior Work on Closed-Form Expansions

1. Density or Likelihood Expansion

I Diffusion, Multivariate Jump Diffusion, Inhomogeneous
[Äıt-Sahalia (1999, 2002, 2008), Yu (2007), Egorov et al. (2003)]

I Related Works and Applications
[Jensen and Poulsen (2002), Hurn et al. (2007), Stramer and Yan (2007), Bakshi et al. (2006),

Äıt-Sahalia and Kimmel (2007, 2009), Bakshi and Ju (2005), Kimmel et al. (2007)]

2. Expansion for Bond Prices
I Analytical Series [Kimmel (2009, 2010)]

3. Asymptotic Expansion of Option Prices
I Fail to converge
I Inappropriate for statistical inference

4. Option Price Expansion around Black-Scholes
[Kristensen and Mele (2010)]
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Why This Approach?

I Independent of special model structure
I Not necessarily affine
I No requirement on characteristic functions

I More insight
I Separation of the price contributions by volatility and jumps
I Explain how parameters are translated into option prices
I Relative importance of each component
I Model comparison

I Computationally efficient and accurate
I Done once and for all
I Two or three terms are enough
I Greeks, comparative statics, etc
I Optimization



Background Closed-Form Expansion Examples Conclusion

Why This Approach?

I Independent of special model structure
I Not necessarily affine
I No requirement on characteristic functions

I More insight
I Separation of the price contributions by volatility and jumps
I Explain how parameters are translated into option prices
I Relative importance of each component
I Model comparison

I Computationally efficient and accurate
I Done once and for all
I Two or three terms are enough
I Greeks, comparative statics, etc
I Optimization



Background Closed-Form Expansion Examples Conclusion

Why This Approach?

I Independent of special model structure
I Not necessarily affine
I No requirement on characteristic functions

I More insight
I Separation of the price contributions by volatility and jumps
I Explain how parameters are translated into option prices
I Relative importance of each component
I Model comparison

I Computationally efficient and accurate
I Done once and for all
I Two or three terms are enough
I Greeks, comparative statics, etc
I Optimization



Background Closed-Form Expansion Examples Conclusion

Why This Approach?

I Independent of special model structure
I Not necessarily affine
I No requirement on characteristic functions

I More insight
I Separation of the price contributions by volatility and jumps
I Explain how parameters are translated into option prices
I Relative importance of each component
I Model comparison

I Computationally efficient and accurate
I Done once and for all
I Two or three terms are enough
I Greeks, comparative statics, etc
I Optimization



Background Closed-Form Expansion Examples Conclusion

What can be Obtained
CEV Model: dXt = (r − δ)Xtdt + σX

γ
t dWQ
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Note: The black dotted line, red dashed line and blue dotted-dash line illustrate the

O(∆1/2), O(∆3/2) and O(∆5/2) order approximations respectively. The grey line

denotes the true prices. Y-axis of the right panel is on a logarithmic scale. The

parameters are: σ = 0.2, r = 4%, δ = 0.01, x = 20,∆ = 1, and γ = 1.4.
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Behind the Screen
CEV Model Expansion

Closed form expansion coefficients for a vanilla call option price:

Ψ(∆, x) = Φ

(
C (−1)(x)
√

∆

) ∞∑
k=0

B(k)(x)∆k +
√

∆φ

(
C (−1)(x)
√

∆

) ∞∑
k=0

C (k)(x)∆k

B(k)(x) =
(−1)k

k!
(xδk − Krk ), k ≥ 0

C (−1)(x) = −
K1−γ − x1−γ

σ − γσ

C (0)(x) =
Kγ (K − x)xγ (−1 + γ)σ

Kγx − Kxγ
, if x 6= K ; or Kγσ, if x = K .

C (1)(x) =
(Kx)γ (−1 + γ)σ

(−Kγx + Kxγ )3

(
K1+2γ rx2 + K3rx2γ − K2γx3

δ − K2x(2r(Kx)γ + x2γ
δ)

+e

(Kx)−2γ (K2γ x2−K2x2γ )(r−δ)

2(−1+γ)σ2
K

1+
3γ
2 x5γ/2(−1 + γ)σ2 − e

(Kx)−2γ (K2γ x2−K2x2γ )(r−δ)

2(−1+γ)σ2

K5γ/2x
1+

3γ
2 (−1 + γ)σ2

−x(Kx)2γ (−1 + γ)2
σ

2 + K(Kx)γ (2x2
δ + (Kx)γ (−1 + γ)2

σ
2)

)
, if x 6= K ; or

K−2−γ

24σ

(
12K4(r − δ)2 − 12K2+2γ (r + δ)σ2 + K4γ (−2 + γ)γσ4

)
, if x = K .
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Derivative Pricing 101

I Consider a derivative that pays f (XT ) at maturity T :
I Its price Ψ(∆, x ; θ) satisfies the Feymann-Kac PDE:

(− ∂

∂∆
+ L − r)Ψ(∆, x ; θ) = 0

with Ψ(0, x ; θ) = f (x)

where the operator is defined as

L = µ(x ; θ)
∂

∂x
+

1

2
σ(x ; θ)2 ∂

∂x2

I Its price also has the Feymann-Kac representation:

Ψ(∆, x ; θ) = e−r∆EQ(f (XT )|Xt = x ; θ)

= e−r∆

∫
f (s)pX (s|x ,∆; θ)ds
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How to Expand Option Prices?

I Bottom-Up Approach - Hermite Polynomials
I Construct the expansion of transition density.
I Calculate the conditional expectation.

I Top-Down Approach - Lucky Guess
I Postulate an expansion of the option price.
I Plug it into the pricing PDE and verify.
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Closed-Form Expansion of Options
Bottom-Up Approach

I Expansion Strategies:

1. Variable Transformations from X
γ→ Y → Z , such that Z is

sufficiently “close to” normal.

2. Expand the density of Z around normal using Hermite
Polynomials {Hj}.

3. Calculate conditional expectation.

Details

I For simplicity: do binary option with payoff f (x) = 1{x>K}.
I Equivalent to expanding the cumulative distribution function.
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Closed-Form Expansion of Binary Options
Bottom-Up Approach

I Theorem: There exists ∆̄ > 0 (could be ∞), such that for
every ∆ ∈ (0, ∆̄), the following sequence

Ψ(J)(∆, x) =e−r∆
(

Φ(
γ(x)− γ(K)
√

∆
) + φ(

γ(x)− γ(K)
√

∆
)

J∑
j=0

ηj+1(∆, γ(x))

Hj (
γ(x)− γ(K)
√

∆
)
)
−→ Ψ(∆, x)

uniformly in x over any compact set in DX , where Ψ(∆, x)
solves the Feymann-Kac equation with initial condition
Ψ(0, x) = 1{x>K} for any K > 0. Details

I Caveat: General case is doable but cumbersome! - Use
Top-down approach.
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Closed-Form Expansion of Options
Top-Down Approach

I Postulate the right form and plug it into the equation.
I How about this?

Ψ(∆, x) =
∞∑
k=0

fk(x)∆k

I f0(x) is non-smooth, e.g. 1{x>K}, ...does not work.
I Alternative forms?

Ψ(∆, x) = h(∆, x) + g(∆, x)
∞∑
k=0

fk(x)∆k

I h(∆, x) ≡ 0, g(∆, x)→ 1{x>K}, as ∆→ 0? Or
I h(∆, x)→ 1{x>K}, g(∆, x)→ 0, as ∆→ 0?

I How to make a lucky guess?

- You know it when you see it.
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Closed-Form Expansion of Binary Options
Top-Down Approach

I Postulate:

Ψ(∆, x) = e−r∆
(

Φ(
C (−1)(x)
√

∆
) +
√

∆φ(
C (−2)(x)
√

∆
)
∞∑
j=0

C (k)(x)∆k
)

I Verify:

C (−1)(x) =

∫ x

K

1

σ(s)
ds, C (−2)(x) =

1

2

(∫ x

K

1

σ(s)
ds
)2

For k ≥ −1,

C (k+1)(x)
(1

2
+ (k + 1) + LC (−2)(x)

)
+ σ2(x)

dC (k+1)(x)

dx

dC (−2)(x)

dx
= LC (k)(x)

I The two approaches agree with each other.
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Extensions
Jump Diffusion Models

I Jump Diffusion Models

dXt = µ(t,Xt)dt + σ(t,Xt)dW
Q
t + JtdNt

where jumps are of finite activity with intensity λ(x ; θ) and
jump size density ν(z ; θ).

I The PDE becomes:

0 =− ∂Ψ(∆, x)

∂∆
+ µ(x)

∂Ψ(∆, x)

∂x
+

1

2
σ2(x)

∂2Ψ(∆, x)

∂x2
− r(x)Ψ(∆, x)

+ λ(x)

∫ ∞
−∞

(
Ψ(∆, x + z)−Ψ(∆, x)

)
ν(x , z)dz

with initial condition:

Ψ(0, x) = f (x)
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Postulate the Expansion
Jump Diffusion Models

I By Bayes’ Rule, we have

p(y |x ,∆; θ) =
∞∑
k=0

p(y |x ,N∆ = k; θ) · p(N∆ = k|x ; θ)

I Also, Poisson process indicates

p(N∆ = 0|x ; θ) = O(1)

p(N∆ = 1|x ; θ) = O(∆)

p(N∆ ≥ 2|x ; θ) = o(∆)

I Postulate the following form:

Ψ(∆, x) =Φ(
C (−1)(x)√

∆
)
∞∑
k=0

B(k)(x)∆k + ∆
1
2 φ(

C (−1)(x)√
∆

)
∞∑
k=0

C (k)(x)∆k

+
∞∑
k=1

D(k)(x)∆k

Coefficients
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Implications
Jump Diffusion Models

I Remark: for any vanilla call option under jump diffusion
models, the option price can be expanded as

Ψ(∆, x) =Φ

(
∆−

1
2

∫ x

K

1

σ(s)
ds

)(
(x − K) + B(1)(x)∆

)
+ D(1)(x)∆

+ (x − K)

(∫ x

K

1

σ(s)
ds

)−1

φ

(
∆−

1
2

∫ x

K

1

σ(s)
ds

)
∆

1
2 + O(∆

3
2 )

I Volatility determines the leading terms, followed by jumps and
drift part which affect the first order terms.

I Possible to separate price contributions made by each part.
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Summary of Models
with Brownian Leading Terms

I Depends on the Model

I 1-D Diffusion Models

I 1-D Jump Diffusion Models (Finite Activity Only)

I Time-inhomogeneous Models

I Certain Multivariate Models (No Stochastic Volatility)

I and Payoff Structure

I No Path Dependent

I No American Option
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The Influence of Stochastic Interest Rate
Stock: CEV + Interest Rate: CIR

I How does stochastic interest rate affect option prices?

O(∆5/2)

dXt = rtXtdt + σX
3/2
t dWQ

t , E(dWQ
t dBQ

t ) = 0

drt = β(α− rt) + κ
√
rtdB

Q
t v.s. rt = α

Ψ(∆, x, r) = Φ

(
C (−1)(x, r)
√

∆

) ∞∑
k=0

B(k)(x, r)∆k +
√

∆φ

(
C (−1)(x, r)
√

∆

) ∞∑
k=0

C (k)(x, r)∆k

B(0)(x, r) = x − K , B(1)(x, r) = Kr

B(2)(x, r) =
−K

(
r2 + rβ − αβ

)
2

C (−1)(x, r) =
1

σ

(
2
√

K
−

2
√

x

)

C (0)(x, r) =
1

2

(
K
√
xσ +

√
Kxσ

)
C (1)(x, r) = −

1

8

(
√
K −
√

x
)2

(
− 2e

r(K−x)

Kxσ2 K7/4x7/4
σ

3 + K3/2xσ
(
− 4r + xσ2

)

+K2√xσ
(

4r + xσ2
))
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The Influence of Stochastic Interest Rate
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I How does stochastic interest rate affect option prices? O(∆5/2)

dXt = rtXtdt + σX
3/2
t dWQ

t , E(dWQ
t dBQ

t ) = 0

drt = β(α− rt) + κ
√
rtdB

Q
t v.s. rt = α

Ψ(∆, x, r) = Φ

(
C (−1)(x, r)
√

∆

) ∞∑
k=0

B(k)(x, r)∆k +
√

∆φ

(
C (−1)(x, r)
√

∆

) ∞∑
k=0

C (k)(x, r)∆k

B(0)(x, r) = x − K , B(1)(x, r) = Kr

B(2)(x, r) =
−K

(
r2 + rβ − αβ

)
2

C (−1)(x, r) =
1

σ

(
2
√
K
−

2
√
x

)

C (0)(x, r) =
1

2

(
K
√
xσ +

√
Kxσ

)
C (1)(x, r) = −

1

8

(
√
K −
√
x
)2

(
− 2e

r(K−x)

Kxσ2 K7/4x7/4
σ

3 + K3/2xσ
(
− 4r + xσ2

)

+K2√xσ
(

4r + xσ2
))
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The Effect of Mean-Reversion - SQR Model

I How does mean reversion affect option prices?

dVt = β(α− Vt)dt + σV
1/2
t dWQ

t

I Consider a binary option with payoff 1{v>K}:

Ψ
(1)
1 (∆, v) = Φ

(2
(√

v −
√
K
)

σ
√

∆

)
+
√

∆φ
(2
(√

v −
√
K
)

σ
√

∆

)
C (0)(v)

where

C (0)(v) =

(
−1 + e

(−K+v)β

σ2 K
− 1

4
+αβ
σ2 v

1
4
−αβ
σ2

)
σ

2
(√

K −
√
v
)

I The dominating O(1) term reflects the effect of moneyness.

I The O(
√

∆) term measures 1st order mean reversion effect.

I Indistinguishable from DMR model.

dαt =γ(α0 − αt)dt + κ
√
αtdB

Q
t
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The Impact of Jumps - Gaussian Jumps

I Benchmark Merton’s Jump

dXt

Xt
= (r − (m − 1)λ)dt + σdWQ

t + (eJ − 1)dNt

I Similarly, we have

Ψ(∆, x) =Φ

(
C (−1)(x)
√

∆

) ∞∑
k=0

B(k)(x)∆k +
√

∆φ

(
C (−1)(x)
√

∆

) ∞∑
k=0

C (k)(x)∆k

+
∞∑
k=1

D(k)(x)∆k

I First order contribution by jumps: O(∆).

mxλ

(
Φ
( log( x

K
) + log(m) + 1

2
ν2

ν

)
− Φ

( log( x
K

)

σ
√

∆

))
︸ ︷︷ ︸

asset-or-nothing portion

− K λ

(
Φ
( log( x

K
) + log(m)− ν2

2

ν

)
− Φ

( log( x
K

)

σ
√

∆

))
︸ ︷︷ ︸

cash-or-nothing portion

≥ 0
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The Impact of Jumps - Asymmetric Double Exponential Jumps

I Kou’s Jump Diffusion

d log(Xt) = µdt + σdWQ
t + JdNt

where the jump has double exponential distribution:

ν(z) = p · η1e
−η1z1{z≥0} + q · η2e

η2z1{z<0}

I Similarly, we have

Ψ(∆, x) =Φ

(
C (−1)(x)
√

∆

) ∞∑
k=0

B(k)(x)∆k +
√

∆φ

(
C (−1)(x)
√

∆

) ∞∑
k=0

C (k)(x)∆k

+

(
1− Φ

(
C (−1)(x)
√

∆

)) ∞∑
k=1

D(k)(x)∆k

I First order contribution by jumps: O(∆).

λK

(
q

1 + η2

(
K

x

)η2

Φ
( log( x

K
)

σ
√

∆

)
+

p

−1 + η1

( x

K

)η1
(

1− Φ
( log( x

K
)

σ
√

∆

)))
≥ 0
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The Impact of Jumps - Self-Exciting Jumps

I Hawkes’ Jump Diffusion

d log Xt = µdt + σdWQ
t + JdNt

dλt = α(λ∞ − λt)dt + βdNt

I The PDE is

−
∂Ψ(∆, x , λ)

∂∆
+ (r − (m − 1)λ̄)x

∂Ψ(∆, x , λ)

∂x
+

1

2
σ2x2 ∂

2Ψ(∆, x , λ)

∂x2
− rΨ(∆, x , λ)

+ α(λ∞ − λ)
∂Ψ(∆, x , λ)

∂λ
+ λ

∫ ∞
−∞

(
Ψ(∆, xez , β + λ)−Ψ(∆, x , λ)

)
ν(z)dz = 0

I Again, we have

Ψ(∆, x , λ) =Φ

(
C (−1)(x , λ)
√

∆

) ∞∑
k=0

B(k)(x , λ)∆k +
∞∑
k=1

D(k)(x , λ)∆k

+
√

∆φ

(
C (−1)(x , λ)
√

∆

) ∞∑
k=0

C (k)(x , λ)∆k
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The Impact of Jumps - Self-Exciting Jumps
The Role of β - Contagion Parameter

1. Will self-exciting jumps replace Brownian to become the leading
term? i.e. O(1)? - No.

2. Will β come into play once the first jump occurs? i.e. O(∆2)?
-No.

I β appears on the order of O(∆).

I µ = r − 1
2σ

2 − (m − 1) α
α−βλ∞
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Concluding Remarks

This paper proposes a series expansion, which

I Enlarges the class of models that have closed-form formulas

I Translates mode structure into option prices

I Offers insight on how model parameters affect option prices

Future work includes cases with

I Stochastic Volatility

I Infinite Activity Jumps
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