Dissecting and Deciphering European Option Prices using Closed-Form Series Expansion

Dacheng Xiu

University of Chicago Booth School of Business

EURANDOM, Eindhoven

Aug 30, 2011

Background

- Continuous-time diffusion models are developed to capture the dynamics of assets:

$$
d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}+J_{t} d N_{t}
$$

- A European call option is one of the first derivatives that are priced in closed-form within this framework. [Black and Scholes (1973)]
- This paper systematically develops a new option pricing method.

Review of Prior Work on Option Pricing Methods

- Closed-Form Pricing Formulas
- Log-Normal Class: Black-Scholes-Merton
[Black and Scholes (1973), Merton (1976), Black (1976)]
- Bessel Process Class: CIR, CEV [Cox (1975), Cox et al. $(1976,1985)$, Goldenberg (1991)]
- Fourier Transform: Levy Process, Heston Model, Affine Model [Heston(1993), Bakshi and Madan(1999), Bates(1996), Scott(1997), Carr and Madan(1998), Duffie, Singleton and Pan(2000)]
- Numerical Methods
- Monte Carlo Simulations
[Boyle(1977)]
- Numerical Solutions to PDE
[Schwartz(1977)]

Review of Prior Work on Option Pricing Methods

- Closed-Form Pricing Formulas
- Log-Normal Class: Black-Scholes-Merton
[Black and Scholes (1973), Merton (1976), Black (1976)]
- Bessel Process Class: CIR, CEV [Cox (1975), Cox et al. $(1976,1985)$, Goldenberg (1991)]
- Fourier Transform: Levy Process, Heston Model, Affine Model [Heston(1993), Bakshi and Madan(1999), Bates(1996), Scott(1997), Carr and Madan(1998), Duffie, Singleton and Pan(2000)]
- Closed-Form Expansions - This Paper
- Numerical Methods
- Monte Carlo Simulations
[Boyle(1977)]
- Numerical Solutions to PDE
[Schwartz(1977)]

Review of Prior Work on Closed-Form Expansions

1. Density or Likelihood Expansion

- Diffusion, Multivariate Jump Diffusion, Inhomogeneous
[Aït-Sahalia (1999, 2002, 2008), Yu (2007), Egorov et al. (2003)]
- Related Works and Applications
[Jensen and Poulsen (2002), Hurn et al. (2007), Stramer and Yan (2007), Bakshi et al. (2006),
Aït-Sahalia and Kimmel (2007, 2009), Bakshi and Ju (2005), Kimmel et al. (2007)]

2. Expansion for Bond Prices

- Analytical Series [Kimmel (2009, 2010)]

3. Asymptotic Expansion of Option Prices

- Fail to converge
- Inappropriate for statistical inference

4. Option Price Expansion around Black-Scholes
[Kristensen and Mele (2010)]

Why This Approach?

- Independent of special model structure
- Not necessarily affine
- No requirement on characteristic functions

Why This Approach?

- Independent of special model structure
- Not necessarily affine
- No requirement on characteristic functions
- More insight
- Separation of the price contributions by volatility and jumps
- Explain how parameters are translated into option prices
- Relative importance of each component
- Model comparison

Why This Approach?

- Independent of special model structure
- Not necessarily affine
- No requirement on characteristic functions
- More insight
- Separation of the price contributions by volatility and jumps
- Explain how parameters are translated into option prices
- Relative importance of each component
- Model comparison
- Computationally efficient and accurate
- Done once and for all
- Two or three terms are enough
- Greeks, comparative statics, etc
- Optimization

Why This Approach?

- Independent of special model structure
- Not necessarily affine
- No requirement on characteristic functions
- More insight
- Separation of the price contributions by volatility and jumps
- Explain how parameters are translated into option prices
- Relative importance of each component
- Model comparison
- Computationally efficient and accurate
- Done once and for all
- Two or three terms are enough
- Greeks, comparative statics, etc
- Optimization

What can be Obtained

CEV Model: $d X_{t}=(r-\delta) X_{t} d t+\sigma X_{t}^{\gamma} d W_{t}^{Q}$

Note: The black dotted line, red dashed line and blue dotted-dash line illustrate the $O\left(\Delta^{1 / 2}\right), O\left(\Delta^{3 / 2}\right)$ and $O\left(\Delta^{5 / 2}\right)$ order approximations respectively. The grey line denotes the true prices. Y -axis of the right panel is on a logarithmic scale. The parameters are: $\sigma=0.2, r=4 \%, \delta=0.01, x=20, \Delta=1$, and $\gamma=1.4$.

Behind the Screen

CEV Model Expansion

Closed form expansion coefficients for a vanilla call option price:

$$
\begin{aligned}
\Psi(\Delta, x)= & \Phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} B^{(k)}(x) \Delta^{k}+\sqrt{\Delta} \phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} C^{(k)}(x) \Delta^{k} \\
B^{(k)}(x)= & \frac{(-1)^{k}}{k!}\left(x \delta^{k}-K r^{k}\right), k \geq 0 \\
C^{(-1)}(x)= & -\frac{K^{1-\gamma}-x^{1-\gamma}}{\sigma-\gamma \sigma} \\
C^{(0)}(x)= & \frac{K^{\gamma}(K-x) x^{\gamma}(-1+\gamma) \sigma}{K^{\gamma} x-K x^{\gamma}}, \text { if } x \neq K ; \text { or } K^{\gamma} \sigma, \text { if } x=K . \\
C^{(1)}(x)= & \frac{(K x)^{\gamma}(-1+\gamma) \sigma}{\left(-K^{\gamma} x+K x^{\gamma}\right)^{3}}\left(K^{1+2 \gamma} r x^{2}+K^{3} r x^{2 \gamma}-K^{2 \gamma} x^{3} \delta-K^{2} x\left(2 r(K x)^{\gamma}+x^{2 \gamma} \delta\right)\right. \\
& +e^{\frac{(K x)^{-2 \gamma}\left(K^{2 \gamma} x^{2}-K^{2} x^{2 \gamma}\right)(r-\delta)}{2(-1+\gamma) \sigma^{2}}} K^{1+\frac{3 \gamma}{2} x^{5 \gamma / 2}(-1+\gamma) \sigma^{2}-e^{\frac{(K x)^{-2 \gamma}\left(K^{2 \gamma} x^{2}-K^{2} x^{2 \gamma}\right)(r-\delta)}{2(-1+\gamma) \sigma^{2}}}} \begin{aligned}
& K^{5 \gamma / 2} x^{1+\frac{3 \gamma}{2}}(-1+\gamma) \sigma^{2} \\
& \left.-x(K x)^{2 \gamma}(-1+\gamma)^{2} \sigma^{2}+K(K x)^{\gamma}\left(2 x^{2} \delta+(K x)^{\gamma}(-1+\gamma)^{2} \sigma^{2}\right)\right), \text { if } x \neq K ; \text { or } \\
& \frac{K^{-2-\gamma}}{24 \sigma}\left(12 K^{4}(r-\delta)^{2}-12 K^{2+2 \gamma}(r+\delta) \sigma^{2}+K^{4 \gamma}(-2+\gamma) \gamma \sigma^{4}\right), \text { if } x=K .
\end{aligned}
\end{aligned}
$$

Derivative Pricing 101

- Consider a derivative that pays $f\left(X_{T}\right)$ at maturity T :
- Its price $\Psi(\Delta, x ; \theta)$ satisfies the Feymann-Kac PDE:

$$
\begin{aligned}
\left(-\frac{\partial}{\partial \Delta}+\mathcal{L}-r\right) \Psi(\Delta, x ; \theta) & =0 \\
\text { with } \Psi(0, x ; \theta) & =f(x)
\end{aligned}
$$

where the operator is defined as

$$
\mathcal{L}=\mu(x ; \theta) \frac{\partial}{\partial x}+\frac{1}{2} \sigma(x ; \theta)^{2} \frac{\partial}{\partial x^{2}}
$$

- Its price also has the Feymann-Kac representation:

$$
\begin{aligned}
\Psi(\Delta, x ; \theta) & =e^{-r \Delta} E^{Q}\left(f\left(X_{T}\right) \mid X_{t}=x ; \theta\right) \\
& =e^{-r \Delta} \int f(s) p_{X}(s \mid x, \Delta ; \theta) d s
\end{aligned}
$$

How to Expand Option Prices?

- Bottom-Up Approach - Hermite Polynomials
- Construct the expansion of transition density.
- Calculate the conditional expectation.
- Top-Down Approach - Lucky Guess
- Postulate an expansion of the option price.
- Plug it into the pricing PDE and verify.

Closed-Form Expansion of Options

- Expansion Strategies:

1. Variable Transformations from $X \xrightarrow{\gamma} Y \rightarrow Z$, such that Z is sufficiently "close to" normal.
2. Expand the density of Z around normal using Hermite Polynomials $\left\{H_{j}\right\}$.
3. Calculate conditional expectation.

- Details

- For simplicity: do binary option with payoff $f(x)=1_{\{x>K\}}$.
- Equivalent to expanding the cumulative distribution function.

Closed-Form Expansion of Binary Options

- Theorem: There exists $\bar{\Delta}>0$ (could be ∞), such that for every $\Delta \in(0, \bar{\Delta})$, the following sequence

$$
\begin{aligned}
\Psi^{(J)}(\Delta, x)= & e^{-r \Delta}\left(\Phi\left(\frac{\gamma(x)-\gamma(K)}{\sqrt{\Delta}}\right)+\phi\left(\frac{\gamma(x)-\gamma(K)}{\sqrt{\Delta}}\right) \sum_{j=0}^{J} \eta_{j+1}(\Delta, \gamma(x))\right. \\
& \left.H_{j}\left(\frac{\gamma(x)-\gamma(K)}{\sqrt{\Delta}}\right)\right) \longrightarrow \Psi(\Delta, x)
\end{aligned}
$$

uniformly in x over any compact set in D_{X}, where $\Psi(\Delta, x)$ solves the Feymann-Kac equation with initial condition $\Psi(0, x)=1_{\{x>K\}}$ for any $K>0$.

- Caveat: General case is doable but cumbersome! - Use Top-down approach.

Closed-Form Expansion of Options

Top-Down Approach

- Postulate the right form and plug it into the equation.
- How about this?

$$
\Psi(\Delta, x)=\sum_{k=0}^{\infty} f_{k}(x) \Delta^{k}
$$

- $f_{0}(x)$ is non-smooth, e.g. $1_{\{x>K\}}$, ...does not work.
- Alternative forms?

$$
\Psi(\Delta, x)=h(\Delta, x)+g(\Delta, x) \sum_{k=0}^{\infty} f_{k}(x) \Delta^{k}
$$

- $h(\Delta, x) \equiv 0, g(\Delta, x) \rightarrow 1_{\{x>K\}}$, as $\Delta \rightarrow 0$? Or
- $h(\Delta, x) \rightarrow 1_{\{x>K\}}, g(\Delta, x) \rightarrow 0$, as $\Delta \rightarrow 0$?
- How to make a lucky guess?

Closed-Form Expansion of Options

Top-Down Approach

- Postulate the right form and plug it into the equation.
- How about this?

$$
\Psi(\Delta, x)=\sum_{k=0}^{\infty} f_{k}(x) \Delta^{k}
$$

- $f_{0}(x)$ is non-smooth, e.g. $1_{\{x>K\}}, \ldots$ does not work.
- Alternative forms?

$$
\Psi(\Delta, x)=h(\Delta, x)+g(\Delta, x) \sum_{k=0}^{\infty} f_{k}(x) \Delta^{k}
$$

- $h(\Delta, x) \equiv 0, g(\Delta, x) \rightarrow 1_{\{x>K\}}$, as $\Delta \rightarrow 0$? Or
- $h(\Delta, x) \rightarrow 1_{\{x>K\}}, g(\Delta, x) \rightarrow 0$, as $\Delta \rightarrow 0$?
- How to make a lucky guess? - You know it when you see it.

Closed-Form Expansion of Binary Options

Top-Down Approach

- Postulate:

$$
\Psi(\Delta, x)=e^{-r \Delta}\left(\Phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right)+\sqrt{\Delta} \phi\left(\frac{C^{(-2)}(x)}{\sqrt{\Delta}}\right) \sum_{j=0}^{\infty} C^{(k)}(x) \Delta^{k}\right)
$$

- Verify:

$$
C^{(-1)}(x)=\int_{K}^{x} \frac{1}{\sigma(s)} d s, \quad C^{(-2)}(x)=\frac{1}{2}\left(\int_{K}^{x} \frac{1}{\sigma(s)} d s\right)^{2}
$$

For $k \geq-1$,

$$
C^{(k+1)}(x)\left(\frac{1}{2}+(k+1)+\mathcal{L} C^{(-2)}(x)\right)+\sigma^{2}(x) \frac{d C^{(k+1)}(x)}{d x} \frac{d C^{(-2)}(x)}{d x}=\mathcal{L} C^{(k)}(x)
$$

- The two approaches agree with each other.

Extensions

Jump Diffusion Models

- Jump Diffusion Models

$$
d X_{t}=\mu\left(t, X_{t}\right) d t+\sigma\left(t, X_{t}\right) d W_{t}^{Q}+J_{t} d N_{t}
$$

where jumps are of finite activity with intensity $\lambda(x ; \theta)$ and jump size density $\nu(z ; \theta)$.

- The PDE becomes:

$$
\begin{aligned}
0= & -\frac{\partial \Psi(\Delta, x)}{\partial \Delta}+\mu(x) \frac{\partial \Psi(\Delta, x)}{\partial x}+\frac{1}{2} \sigma^{2}(x) \frac{\partial^{2} \Psi(\Delta, x)}{\partial x^{2}}-r(x) \Psi(\Delta, x) \\
& +\lambda(x) \int_{-\infty}^{\infty}(\Psi(\Delta, x+z)-\Psi(\Delta, x)) \nu(x, z) d z
\end{aligned}
$$

with initial condition:

$$
\Psi(0, x)=f(x)
$$

Postulate the Expansion

Jump Diffusion Models

- By Bayes' Rule, we have

$$
p(y \mid x, \Delta ; \theta)=\sum_{k=0}^{\infty} p\left(y \mid x, N_{\Delta}=k ; \theta\right) \cdot p\left(N_{\Delta}=k \mid x ; \theta\right)
$$

- Also, Poisson process indicates

$$
\begin{aligned}
& p\left(N_{\Delta}=0 \mid x ; \theta\right)=O(1) \\
& p\left(N_{\Delta}=1 \mid x ; \theta\right)=O(\Delta) \\
& p\left(N_{\Delta} \geq 2 \mid x ; \theta\right)=o(\Delta)
\end{aligned}
$$

- Postulate the following form:

$$
\begin{aligned}
\Psi(\Delta, x)= & \Phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} B^{(k)}(x) \Delta^{k}+\Delta^{\frac{1}{2}} \phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} C^{(k)}(x) \Delta^{k} \\
& +\sum_{k=1}^{\infty} D^{(k)}(x) \Delta^{k}
\end{aligned}
$$

Implications

Jump Diffusion Models

- Remark: for any vanilla call option under jump diffusion models, the option price can be expanded as

$$
\begin{aligned}
\Psi(\Delta, x)= & \Phi\left(\Delta^{-\frac{1}{2}} \int_{K}^{x} \frac{1}{\sigma(s)} d s\right)\left((x-K)+B^{(1)}(x) \Delta\right)+D^{(1)}(x) \Delta \\
& +(x-K)\left(\int_{K}^{x} \frac{1}{\sigma(s)} d s\right)^{-1} \phi\left(\Delta^{-\frac{1}{2}} \int_{K}^{x} \frac{1}{\sigma(s)} d s\right) \Delta^{\frac{1}{2}}+O\left(\Delta^{\frac{3}{2}}\right)
\end{aligned}
$$

- Volatility determines the leading terms, followed by jumps and drift part which affect the first order terms.
- Possible to separate price contributions made by each part.

Summary of Models

with Brownian Leading Terms

- Depends on the Model
- 1-D Diffusion Models
- 1-D Jump Diffusion Models (Finite Activity Only)
- Time-inhomogeneous Models
- Certain Multivariate Models (No Stochastic Volatility)
- and Payoff Structure
- No Path Dependent
- No American Option

The Influence of Stochastic Interest Rate

Stock: CEV + Interest Rate: CIR

- How does stochastic interest rate affect option prices?

$$
\begin{aligned}
d X_{t} & =r_{t} X_{t} d t+\sigma X_{t}^{3 / 2} d W_{t}^{Q}, \quad E\left(d W_{t}^{Q} d B_{t}^{Q}\right)=0 \\
d r_{t} & =\beta\left(\alpha-r_{t}\right)+\kappa \sqrt{r_{t}} d B_{t}^{Q} \quad \text { v.s. } \quad r_{t}=\alpha
\end{aligned}
$$

The Influence of Stochastic Interest Rate

Stock: CEV + Interest Rate: CIR

- How does stochastic interest rate affect option prices? $O\left(\Delta^{5 / 2}\right)$

$$
\begin{aligned}
d X_{t} & =r_{t} X_{t} d t+\sigma X_{t}^{3 / 2} d W_{t}^{Q}, \quad E\left(d W_{t}^{Q} d B_{t}^{Q}\right)=0 \\
d r_{t} & =\beta\left(\alpha-r_{t}\right)+\kappa \sqrt{r_{t}} d B_{t}^{Q} \quad \text { v.s. } \quad r_{t}=\alpha
\end{aligned}
$$

$$
\begin{aligned}
\Psi(\Delta, x, r)= & \Phi\left(\frac{C^{(-1)}(x, r)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} B^{(k)}(x, r) \Delta^{k}+\sqrt{\Delta} \phi\left(\frac{C^{(-1)}(x, r)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} C^{(k)}(x, r) \Delta^{k} \\
B^{(0)}(x, r)= & x-K, \quad B^{(1)}(x, r)=K r \\
B^{(2)}(x, r)= & \frac{-K\left(r^{2}+r \beta-\alpha \beta\right)}{2} \\
C^{(-1)}(x, r)= & \frac{1}{\sigma}\left(\frac{2}{\sqrt{K}}-\frac{2}{\sqrt{x}}\right) \\
C^{(0)}(x, r)= & \frac{1}{2}(K \sqrt{x} \sigma+\sqrt{K} x \sigma) \\
C^{(1)}(x, r)= & -\frac{1}{8(\sqrt{K}-\sqrt{x})^{2}}\left(-2 e^{\frac{r(K-x)}{K x \sigma^{2}}} K^{7 / 4} x^{7 / 4} \sigma^{3}+K^{3 / 2} x \sigma\left(-4 r+x \sigma^{2}\right)\right. \\
& \left.+K^{2} \sqrt{x} \sigma\left(4 r+x \sigma^{2}\right)\right)
\end{aligned}
$$

The Effect of Mean-Reversion - SQR Model

- How does mean reversion affect option prices?

$$
d V_{t}=\beta\left(\alpha-V_{t}\right) d t+\sigma V_{t}^{1 / 2} d W_{t}^{Q}
$$

- Consider a binary option with payoff $1_{\{v>K\}}$:

$$
\Psi_{1}^{(1)}(\Delta, v)=\Phi\left(\frac{2(\sqrt{v}-\sqrt{K})}{\sigma \sqrt{\Delta}}\right)+\sqrt{\Delta} \phi\left(\frac{2(\sqrt{v}-\sqrt{K})}{\sigma \sqrt{\Delta}}\right) C^{(0)}(v)
$$

where

$$
C^{(0)}(v)=\frac{\left(-1+e^{\frac{(-K+v) \beta}{\sigma^{2}}} K^{-\frac{1}{4}+\frac{\alpha \beta}{\sigma^{2}}} v^{\frac{1}{4}-\frac{\alpha \beta}{\sigma^{2}}}\right) \sigma}{2(\sqrt{K}-\sqrt{v})}
$$

- The dominating $O(1)$ term reflects the effect of moneyness.
- The $O(\sqrt{\Delta})$ term measures 1st order mean reversion effect.
- Indistinguishable from DMR model.

$$
d \alpha_{t}=\gamma\left(\alpha_{0}-\alpha_{t}\right) d t+\kappa \sqrt{\alpha_{t}} d B_{t}^{Q}
$$

The Impact of Jumps - Gaussian Jumps

- Benchmark Merton's Jump

$$
\frac{d X_{t}}{X_{t}}=(r-(m-1) \lambda) d t+\sigma d W_{t}^{Q}+\left(e^{J}-1\right) d N_{t}
$$

- Similarly, we have

$$
\begin{aligned}
\Psi(\Delta, x)= & \Phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} B^{(k)}(x) \Delta^{k}+\sqrt{\Delta} \phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} C^{(k)}(x) \Delta^{k} \\
& +\sum_{k=1}^{\infty} D^{(k)}(x) \Delta^{k}
\end{aligned}
$$

- First order contribution by jumps: $O(\Delta)$.

$$
\begin{aligned}
& \underbrace{m x \lambda\left(\Phi\left(\frac{\log \left(\frac{x}{K}\right)+\log (m)+\frac{1}{2} \nu^{2}}{\nu}\right)-\Phi\left(\frac{\log \left(\frac{x}{K}\right)}{\sigma \sqrt{\Delta}}\right)\right)}_{\text {asset-or-nothing portion }} \\
& -K \underbrace{K\left(\Phi\left(\frac{\log \left(\frac{x}{K}\right)+\log (m)-\frac{\nu^{2}}{2}}{\nu}\right)-\Phi\left(\frac{\log \left(\frac{x}{K}\right)}{\sigma \sqrt{\Delta}}\right)\right)}_{\text {cash-or-nothing portion }} \geq 0
\end{aligned}
$$

The Impact of Jumps - Asymmetric Double Exponential Jumps

- Kou's Jump Diffusion

$$
d \log \left(X_{t}\right)=\mu d t+\sigma d W_{t}^{Q}+J d N_{t}
$$

where the jump has double exponential distribution:

$$
\nu(z)=p \cdot \eta_{1} e^{-\eta_{1} z} 1_{\{z \geq 0\}}+q \cdot \eta_{2} e^{\eta_{2} z} 1_{\{z<0\}}
$$

- Similarly, we have

$$
\begin{aligned}
\Psi(\Delta, x)= & \Phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} B^{(k)}(x) \Delta^{k}+\sqrt{\Delta} \phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} C^{(k)}(x) \Delta^{k} \\
& +\left(1-\Phi\left(\frac{C^{(-1)}(x)}{\sqrt{\Delta}}\right)\right) \sum_{k=1}^{\infty} D^{(k)}(x) \Delta^{k}
\end{aligned}
$$

- First order contribution by jumps: $O(\Delta)$.

$$
\lambda K\left(\frac{q}{1+\eta_{2}}\left(\frac{K}{x}\right)^{\eta_{2}} \Phi\left(\frac{\log \left(\frac{x}{K}\right)}{\sigma \sqrt{\Delta}}\right)+\frac{p}{-1+\eta_{1}}\left(\frac{x}{K}\right)^{\eta_{1}}\left(1-\Phi\left(\frac{\log \left(\frac{x}{K}\right)}{\sigma \sqrt{\Delta}}\right)\right)\right) \geq 0
$$

The Impact of Jumps - Self-Exciting Jumps

- Hawkes' Jump Diffusion

$$
\begin{aligned}
d \log X_{t} & =\mu d t+\sigma d W_{t}^{Q}+J d N_{t} \\
d \lambda_{t} & =\alpha\left(\lambda_{\infty}-\lambda_{t}\right) d t+\beta d N_{t}
\end{aligned}
$$

- The PDE is

$$
\begin{aligned}
& -\frac{\partial \Psi(\Delta, x, \lambda)}{\partial \Delta}+(r-(m-1) \bar{\lambda}) x \frac{\partial \Psi(\Delta, x, \lambda)}{\partial x}+\frac{1}{2} \sigma^{2} x^{2} \frac{\partial^{2} \Psi(\Delta, x, \lambda)}{\partial x^{2}}-r \Psi(\Delta, x, \lambda) \\
& +\alpha\left(\lambda_{\infty}-\lambda\right) \frac{\partial \Psi(\Delta, x, \lambda)}{\partial \lambda}+\lambda \int_{-\infty}^{\infty}\left(\Psi\left(\Delta, x e^{z}, \beta+\lambda\right)-\Psi(\Delta, x, \lambda)\right) \nu(z) d z=0
\end{aligned}
$$

- Again, we have

$$
\begin{aligned}
\Psi(\Delta, x, \lambda)= & \Phi\left(\frac{C^{(-1)}(x, \lambda)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} B^{(k)}(x, \lambda) \Delta^{k}+\sum_{k=1}^{\infty} D^{(k)}(x, \lambda) \Delta^{k} \\
& +\sqrt{\Delta} \phi\left(\frac{C^{(-1)}(x, \lambda)}{\sqrt{\Delta}}\right) \sum_{k=0}^{\infty} C^{(k)}(x, \lambda) \Delta^{k}
\end{aligned}
$$

The Impact of Jumps - Self-Exciting Jumps

The Role of β - Contagion Parameter

1. Will self-exciting jumps replace Brownian to become the leading term? i.e. $O(1)$? - No.
2. Will β come into play once the first jump occurs? i.e. $O\left(\Delta^{2}\right)$? -No.

- β appears on the order of $O(\Delta)$.
- $\mu=r-\frac{1}{2} \sigma^{2}-(m-1) \frac{\alpha}{\alpha-\beta} \lambda_{\infty}$

Concluding Remarks

This paper proposes a series expansion, which

- Enlarges the class of models that have closed-form formulas
- Translates mode structure into option prices
- Offers insight on how model parameters affect option prices

Future work includes cases with

- Stochastic Volatility
- Infinite Activity Jumps

