Roadblocks revisited

Marko Boon
STAR Outreach day September 12, 2011

Outline

- Introduction
- Fixed green times
- Exhaustive control policy
- Maximum green time

TU/e

Introduction

- First traffic light: 10 december 1868, London
- First intersection with multiple traffic lights: 1914, Cleveland
- Orange
- Vehicle

Roadblock

Roadblock

- Model 1: fixed cycle time
\rightarrow slightly difficult
- Model 2: stay green until queue has vanished
\rightarrow more difficult

- Model 3: stay green for limited amount of time
\rightarrow impossible

Roadblock - Model 2

Model 2: stay green until queue has vanished Example:

$\lambda_{1}=300$ vehicles per hour
$\mu_{1}=1800$ vehicles per hour
$r_{1}=8$ seconds red time
$\lambda_{2}=600$ vehicles per hour
$\mu_{2}=1800$ vehicles per hour
$r_{2}=8$ seconds red time

Roadblock - Model 2

- Model 2: stay green until queue has vanished

Cycle:

- Stability condition?

$$
\rho_{1}=\frac{\lambda_{1}}{\mu_{1}}, \rho_{2}=\frac{\lambda_{2}}{\mu_{2}}, \rho=\rho_{1}+\rho_{2}<1
$$

Roadblock - Model 2

- Model 2: stay green until queue has vanished

Cycle:

- Mean cycle time?

$$
E(C)=\frac{r_{1}+r_{2}}{1-\rho}=\frac{16}{1 / 2}=32
$$

Roadblock - Model 2

\section*{| 0 |
| :--- |
| 0 |
| 0 |}

- Step 1: determine probability distribution of the cycle time
- Analysis using theory on branching processes
- Cycle time does not depend on the order in which cars in a queue are served

Roadblock - Model 2

Roadblock - Model 2

Roadblock - Model 2

- Branching process with immigration

Start green 1

Start red 2

Start green 2

TU/e

Roadblock - Model 2

d

Mean waiting time:

$$
\begin{aligned}
& E\left(W_{i}\right)=\left(1-\rho_{i}\right) E\left(C_{i}^{\text {res }}\right), \quad \text { for } i=1,2 \\
& E\left(W_{1}\right)=14.5, E\left(W_{2}\right)=11.6
\end{aligned}
$$

Roadblock - Model 3

In practice: time limited
Our model: limited number of vehicles may cross

TU/e

Roadblock - Model 3

Known:

time limited
fixed time

"vacation model"

Roadblock - Model 3

Example:

d

$\lambda_{1}=300$ vehicles per hour
$\mu_{1}=1800$ vehicles per hour
$r_{1}=8$ seconds red time
$k_{1}=$ max. 4 vehicles per green period
$\lambda_{2}=600$ vehicles per hour
$\mu_{2}=1800$ vehicles per hour
$r_{2}=8$ seconds red time
$k_{2}=$ max. 12 vehicles per green period

Roadblock - Model 3

Mean cycle time:

$$
E(C)=\frac{r_{1}+r_{2}}{1-\rho}
$$

Stability condition:

$$
\lambda_{i} E(C)<k_{i}
$$

$$
\text { for } i=1,2
$$

Roadblock - Model 3

Mean waiting times

Heavy traffic

The stable queue

Cycle:

TU/e

The stable queue: vacation model

The stable queue: approximation

The stable queue: approximation

The unstable queue

Pseudo-conservation law:

$$
\sum_{i=1}^{N} A_{i} E\left(W_{i}\right)=B+\sum_{i=1}^{N} C_{i} g_{i}
$$

For two lanes:

$A_{1} E\left(W_{1}\right)+A_{2} E\left(W_{2}\right)=B+C_{1} g_{1}+C_{2} g_{2}$
get from vacation model

The unstable queue

Pseudo-conservation law:

$$
\sum_{i=1}^{N} A_{i} E\left(W_{i}\right)=B+\sum_{i=1}^{N} C_{i} g_{i}
$$

For two lanes:

$$
A_{1} E\left(W_{1}\right)+A_{2} E\left(W_{2}\right)=B+C_{1} g_{1}+C_{2} g_{2}
$$

In Heavy Traffic: known

The unstable queue

Pseudo-conservation law:

$$
\sum_{i=1}^{N} A_{i} E\left(W_{i}\right)=B+\sum_{i=1}^{N} C_{i} g_{i}
$$

For two lanes:
$A_{1} E\left(W_{1}\right)+A_{2} E\left(W_{2}\right)=B+C_{1} g_{1}+C_{2} g_{2}$

TU/e

The unstable queue: approximation

The unstable queue: approximation

Comparison with real waiting times

TU/e

Mean waiting times in Example

- Exhaustive:

$$
E\left(W_{1}\right)=14.5, E\left(W_{2}\right)=11.6
$$

- \boldsymbol{k}-limited (simulated):

$$
E\left(W_{1}\right)=25.6, E\left(W_{2}\right)=12.1
$$

- \boldsymbol{k}-limited (approximated):

$$
E\left(W_{1}\right)=26.4, E\left(W_{2}\right)=12.7
$$

- Compare approximation with existing ones
- Prove HT limits for 2-lane model (without and with all-red times)
- Improve performance of approximations if utilisation of both queues is almost the same
- Scaling maximum green times if traffic intensity increases
- Models with more than 2 lanes
- Multiple lanes have green light simultaneously

