Loss

Stat-mech 0000000

 $\frac{Point}{00}$

Simulation 000000 Clans

Branching 0000

ション ふゆ マ キャット キャット しょう

Conclusions

Perfect simulation of loss networks and statistical mechanical models with exclusions

R. Fernández P. Ferrari N. Garcia Utrecht (Rouen) B. Aires (S. Paulo) Campinas

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
•0	0000000	00	000000	000	0000	
\mathbf{Setup}						

Setting

- ▶ Graph \mathbb{L} (e.g. \mathbb{Z}^d) with a countable family of links
- ► Countable family Γ of routes. Each route γ is defined by
 - A subset of links of \mathbb{L}
 - ▶ (Flow, current) numbers associated to each of these links

Process

- ► Calls request routes γ at independent Poissonian rate $w(\gamma)$
- A requested call is established if a test is passed
 - ▶ *Deterministic:* predefined link capacities not exceeded

- ▶ *Stochastic:* large uses of a link discouraged
- Once established there is an independent holding period

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
•0	0000000	00	000000	000	0000	
\mathbf{Setup}						

Setting

- ▶ Graph \mathbb{L} (e.g. \mathbb{Z}^d) with a countable family of links
- ► Countable family Γ of routes. Each route γ is defined by
 - A subset of links of \mathbb{L}
 - ▶ (Flow, current) numbers associated to each of these links

Process

- ► Calls request routes γ at independent Poissonian rate $w(\gamma)$
- A requested call is established if a test is passed
 - ▶ *Deterministic:* predefined link capacities not exceeded

- ▶ *Stochastic:* large uses of a link discouraged
- Once established there is an independent holding period

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
•0	0000000	00	000000	000	0000	
\mathbf{Setup}						

Setting

- ▶ Graph \mathbb{L} (e.g. \mathbb{Z}^d) with a countable family of links
- ► Countable family Γ of routes. Each route γ is defined by
 - \blacktriangleright A subset of links of \mathbbm{L}
 - ▶ (Flow, current) numbers associated to each of these links

Process

- Calls request routes γ at independent Poissonian rate $w(\gamma)$
- A requested call is established if a test is passed
 - ▶ *Deterministic:* predefined link capacities not exceeded
 - ▶ *Stochastic:* large uses of a link discouraged
- Once established there is an independent holding period

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
•0	0000000	00	000000	000	0000	
\mathbf{Setup}						

Setting

- ▶ Graph \mathbb{L} (e.g. \mathbb{Z}^d) with a countable family of links
- ► Countable family Γ of routes. Each route γ is defined by
 - \blacktriangleright A subset of links of \mathbbm{L}
 - ▶ (Flow, current) numbers associated to each of these links

Process

- \blacktriangleright Calls request routes γ at independent Poissonian rate $w(\gamma)$
- ▶ A requested call is established if a test is passed
 - ▶ *Deterministic:* predefined link capacities not exceeded

- ▶ *Stochastic:* large uses of a link discouraged
- Once established there is an independent holding period

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
•0	0000000	00	000000	000	0000	
\mathbf{Setup}						

Setting

- ▶ Graph \mathbb{L} (e.g. \mathbb{Z}^d) with a countable family of links
- ► Countable family Γ of routes. Each route γ is defined by
 - \blacktriangleright A subset of links of \mathbbm{L}
 - ▶ (Flow, current) numbers associated to each of these links

Process

- ► Calls request routes γ at independent Poissonian rate $w(\gamma)$
- ▶ A requested call is established if a test is passed
 - ▶ *Deterministic:* predefined link capacities not exceeded
 - ▶ *Stochastic:* large uses of a link discouraged
- ▶ Once established there is an independent holding period

Loss ○●	Stat-mech 0000000	\mathbf{Point}_{00}	Simulation 000000	Clans	Branching 0000	Conclusions
Issues						

Issues addressed

(I) For the process:

- (i) Existence (on the full \mathbb{L}) for finite times
- (ii) Existence of infinite-time limits

(II) For the invariant measures:

- (i) Existence
- (**ii**) Uniqueness
- iii) Properties: mixing, finite-region corrections, CLT

◆□▶ ◆□▶ ★□▶ ★□▶ ● ● ●

(III) Convergence of the process to the invariant measure

Loss ○●	Stat-mech 0000000	\mathbf{Point}_{00}	$\mathbf{Simulation}$	Clans	Branching 0000	Conclusions
Issues						

Issues addressed

- (I) For the process:
 - (i) Existence (on the full \mathbb{L}) for finite times
 - (ii) Existence of infinite-time limits
- (II) For the invariant measures:
 - (i) Existence
 - (ii) Uniqueness
 - (iii) Properties: mixing, finite-region corrections, CLT

うして ふゆう ふほう ふほう ふしつ

(III) Convergence of the process to the invariant measure

Loss ○●	Stat-mech	\mathbf{Point}_{00}	$\mathbf{Simulation}$	Clans	Branching 0000	Conclusions
Issues						

Issues addressed

- (I) For the process:
 - (i) Existence (on the full \mathbb{L}) for finite times
 - (ii) Existence of infinite-time limits
- (II) For the invariant measures:
 - (i) Existence
 - (ii) Uniqueness
 - (iii) Properties: mixing, finite-region corrections, CLT

うして ふゆう ふほう ふほう ふしつ

(III) Convergence of the process to the invariant measure

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusion				
00	000000	00	000000	000	0000					
Ising m	Ising model as a geometrical model									

Stat-mech models: the Ising model

Ingredients

- ► (Spin) Configurations: $\{-1,1\} \ni \sigma = (\sigma_x)_{x \in \mathbb{Z}^d}$
- ▶ Interaction $-\sigma_x \sigma_y$, for x, y nearest-neighbor (n.n.)

► Hamiltonian:

$$H_{\Lambda}(\sigma \mid \omega) \; = \; - \sum_{\{x,y\} \subset \Lambda \text{ n.n.}} \sigma_x \sigma_y - \sum_{\{x,y\} \text{ n.n.}, x \in \Lambda, y \not \in \Lambda} \sigma_x \omega_y$$

▶ (Conditional) probabilities:

 $\operatorname{Prob}_{\Lambda}(\sigma \mid \omega) = \exp\{-\beta H_{\Lambda}(\sigma \mid \omega)\}/\operatorname{Norm.}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusion			
00	000000	00	000000	000	0000				
Ising model as a geometrical model									

Stat-mech models: the Ising model

Ingredients

- ► (Spin) Configurations: $\{-1,1\} \ni \sigma = (\sigma_x)_{x \in \mathbb{Z}^d}$
- ► Interaction $-\sigma_x \sigma_y$, for x, y nearest-neighbor (n.n.)
- ▶ Hamiltonian:

$$H_{\Lambda}(\sigma \mid \omega) \; = \; - \sum_{\{x,y\} \subset \Lambda \text{ n.n.}} \sigma_x \sigma_y - \sum_{\{x,y\} \text{ n.n.}, \, x \in \Lambda, \, y \not \in \Lambda} \sigma_x \omega_y$$

▶ (Conditional) probabilities:

$$\operatorname{Prob}_{\Lambda}(\sigma \mid \omega) = \exp\{-\beta H_{\Lambda}(\sigma \mid \omega)\}/\operatorname{Norm.}$$

ション ふゆ マ キャット マックタン

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions				
00	000000	00	000000	000	0000					
Ising mod	Ising model as a geometrical model									

Ising model as a model with exclusions

Peierls representation

For "+" or "-" boundary conditions, map

$$\sigma_{\Lambda} \longleftrightarrow \Gamma_{\sigma} = \{\gamma\}$$

▶ Place a plaquette orthogonal to each link with $\sigma_x \sigma_y = -1$

- ▶ This yields closed surfaces (curves)
- A contour γ is a maximally connected closed surface
- Each contour has a weight $w(\gamma) = e^{-2\beta|\gamma|}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	000000	00	000000	000	0000				
Ising model as a geometrical model									

Ising model as a model with exclusions

Peierls representation

For "+" or "-" boundary conditions, map

$$\sigma_{\Lambda} \longleftrightarrow \Gamma_{\sigma} = \{\gamma\}$$

▶ Place a plaquette orthogonal to each link with $\sigma_x \sigma_y = -1$

- ▶ This yields closed surfaces (curves)
- A contour γ is a maximally connected closed surface
- Each contour has a weight $w(\gamma) = e^{-2\beta|\gamma|}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions				
00	000000	00	000000	000	0000					
Ising mod	Ising model as a geometrical model									

Ising model as a model with exclusions

Peierls representation

For "+" or "-" boundary conditions, map

$$\sigma_{\Lambda} \longleftrightarrow \Gamma_{\sigma} = \{\gamma\}$$

▶ Place a plaquette orthogonal to each link with $\sigma_x \sigma_y = -1$

- ▶ This yields closed surfaces (curves)
- A *contour* γ is a maximally connected closed surface
- Each contour has a weight $w(\gamma) = e^{-2\beta|\gamma|}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	000000	00	000000	000	0000	
Ising m	odel as a geome	trical model				

Contour measures

The map leads to measures

$$\mu_{\Lambda}(\Gamma) = \prod_{\gamma \in \Gamma} w(\gamma) \prod_{\gamma, \theta \in \Gamma} [1 - I(\gamma, \theta)] / \text{Norm.}$$
(1)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● □ のへで

with

$$I(\gamma, \theta) = \begin{cases} 1 & \text{if } \gamma \text{ incompatible with } \theta \\ 0 & \text{otherwise} \end{cases}$$

Incompatible: Share endpoints of links

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions				
00	000000	00	000000	000	0000					
Ising m	Ising model as a geometrical model									

Contour measures

The map leads to measures

$$\mu_{\Lambda}(\Gamma) = \prod_{\gamma \in \Gamma} w(\gamma) \prod_{\gamma, \theta \in \Gamma} [1 - I(\gamma, \theta)] / \text{Norm.}$$
(1)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

with

$$I(\gamma, \theta) = \begin{cases} 1 & \text{if } \gamma \text{ incompatible with } \theta \\ 0 & \text{otherwise} \end{cases}$$

Incompatible: Share endpoints of links

Loss	Stat-mech 000●000	Point 00	$\mathbf{Simulation}$	Clans	Branching 0000	Conclusions			
Ising model as a geometrical model									
			Issues						

Stat-mech questions:

As $\Lambda \to \mathbb{Z}^d$

- ▶ Do infinite contours develop?
- ▶ Are there increasing sequences of nested contours?

If the answer to both questions is no, then

▶ Typically: sea of one spin value with islands of the other

うして ふゆう ふほう ふほう ふしつ

Phase transition!

Probability questions:

- Does μ_{Λ} have a unique limit as $\Lambda \to \mathbb{Z}^d$?
- ▶ Properties of this limit (mixing, CLT,...)?

Stat-mech questions:

As $\Lambda \to \mathbb{Z}^d$

- ▶ Do infinite contours develop?
- ▶ Are there increasing sequences of nested contours?

If the answer to both questions is no, then

▶ Typically: sea of one spin value with islands of the other

ション ふゆ マ キャット マックシン

Phase transition!

Probability questions:

- Does μ_{Λ} have a unique limit as $\Lambda \to \mathbb{Z}^d$?
- ▶ Properties of this limit (mixing, CLT,...)?

Stat-mech questions:

As $\Lambda \to \mathbb{Z}^d$

- ▶ Do infinite contours develop?
- ▶ Are there increasing sequences of nested contours?

If the answer to both questions is no, then

▶ Typically: sea of one spin value with islands of the other

ション ふゆ マ キャット マックシン

Phase transition!

Probability questions:

- Does μ_{Λ} have a unique limit as $\Lambda \to \mathbb{Z}^d$?
- ▶ Properties of this limit (mixing, CLT,...)?

Loss network representation

Key: μ_{Λ} is invariant for a loss-network-like process:

- Each γ attempts birth at indep. Poissonian rate $w(\gamma)$
- ▶ Birth is successful in the absence of incompatibilities

ション ふゆ マ キャット マックシン

▶ Born γ 's live independent $\exp(1)$ times

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Other sta	t-mech models					

Random-cluster model

Ising with q colors = Potts

Fortuin-Kasteleyn representation yields μ_{Λ} as in (1) with

 γ = connected sets of bonds

and

$$w(\gamma) = \left(\frac{p}{1-p}\right)^{B(\gamma)} \left(\frac{1}{q}\right)^{V(\gamma)}$$

ション ふゆ マ キャット マックシン

with

$$\triangleright p = 1 - e^{-\beta}$$

 $\blacktriangleright B(\gamma) = \# \text{ links in } \gamma$

 \blacktriangleright $V(\gamma) = \#$ vertices in links in γ

Compatibility = no vertex sharing

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Other star	t-mech models					

Random-cluster model

Ising with q colors = Potts Fortuin-Kasteleyn representation yields μ_{Λ} as in (1) with

 γ = connected sets of bonds

and

$$w(\gamma) = \left(\frac{p}{1-p}\right)^{B(\gamma)} \left(\frac{1}{q}\right)^{V(\gamma)}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

with

Compatibility = no vertex sharing

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Other star	t-mech models					

Random-cluster model

Ising with q colors = Potts

Fortuin-Kasteleyn representation yields μ_{Λ} as in (1) with

 γ = connected sets of bonds

and

$$w(\gamma) = \left(\frac{p}{1-p}\right)^{B(\gamma)} \left(\frac{1}{q}\right)^{V(\gamma)}$$

with

p = 1 − e^{-β}
B(γ) = # links in γ
V(γ) = # vertices in links in γ
Compatibility = no vertex sharing

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	000000	00	000000	000	0000	
Other sta	t-mech models					

Other models with exclusion

- \blacktriangleright Low-T expansions
- High-T expansion
- ► General: Deffect expansions (= right variables)

All these models can be represented as invariant measures of loss networks.

ション ふゆ マ キャット マックシン

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	000000	00	000000	000	0000	
Other st	tat-mech models					

Other models with exclusion

- \blacktriangleright Low-T expansions
- High-T expansion
- ► General: Deffect expansions (= right variables)

All these models can be represented as invariant measures of loss networks.

ション ふゆ マ キャット マックシン

Loss 00	Stat-mech 0000000	\mathbf{Point}_{0}	Simulation 000000	Clans 000	Branching 0000	Conclusions		
Point processes as loss networks								

Point processes

Point process = random subset of \mathbb{L} (e.g. \mathbb{Z}^d or \mathbb{R}^d)

- \blacktriangleright Each *seed* x planted with independent Poissonian rate
- $\blacktriangleright x$ carries a grain G_x of deterministic or random shape
- ▶ The planting is successful if the emerging seed
 - ▶ satisfies a (deterministic) compatibility constraint, or

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

▶ passes a certain stochastic test

involving grains already present

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
Point processes as loss networks							

Point processes

Point process = random subset of \mathbb{L} (e.g. \mathbb{Z}^d or \mathbb{R}^d)

- \blacktriangleright Each seed x planted with independent Poissonian rate
- x carries a grain G_x of deterministic or random shape
- ▶ The planting is successful if the emerging seed
 - ▶ satisfies a (deterministic) compatibility constraint, or

うつう 山田 エル・エー・ 山田 うらう

▶ passes a certain stochastic test

involving grains already present

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	•0	000000	000	0000	
Point pro	cesses as loss ne	tworks				

Point processes

Point process = random subset of \mathbb{L} (e.g. \mathbb{Z}^d or \mathbb{R}^d)

- \blacktriangleright Each seed x planted with independent Poissonian rate
- x carries a grain G_x of deterministic or random shape
- ▶ The planting is successful if the emerging seed
 - ▶ satisfies a (deterministic) compatibility constraint, or

うして ふゆう ふほう ふほう ふしつ

passes a certain stochastic test

involving grains already present

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	000000	000	0000			
Point processes as loss networks								

Examples with stochastic conditions:

▶ Area-interacting processes (Baddeley - van Lieshout, 1995):
 Prob ∝ exp(overlapping area)

► Strauss processes (Strauss, 1975):

Prob $\propto \exp(\# \text{ seeds at distance } \leq r)$

・ロト ・ 日 ・ モ ・ ト ・ モ ・ うへぐ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	000000	000	0000		
Point processes as loss networks							

Examples with stochastic conditions:

▶ Area-interacting processes (Baddeley - van Lieshout, 1995):
 Prob ∝ exp(overlapping area)

► Strauss processes (Strauss, 1975):

 $\operatorname{Prob} \propto \exp(\# \text{ seeds at distance } \leq r)$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	● 00 000	000	0000		
Forward simulation							

Finite-region forward simulation

Natural simulation for a finite region Λ

- ► Choose an initial call-lifetime configuration (e.g. empty)
- ▶ Run clocks, at each ring check compatibility of perform test

うして ふゆう ふほう ふほう ふしつ

- ▶ If passed, generate lifetime
- ▶ Calls dissapear when lifetime exhausted
- ▶ Continue until desired endtime

Alternative: Independent death times; pick next one

Above: more economical; leads to cylinders

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	● 00 000	000	0000		
Forward simulation							

Finite-region forward simulation

Natural simulation for a finite region Λ

- ► Choose an initial call-lifetime configuration (e.g. empty)
- ▶ Run clocks, at each ring check compatibility of perform test

うして ふゆう ふほう ふほう ふしつ

- ▶ If passed, generate lifetime
- ▶ Calls dissapear when lifetime exhausted
- ▶ Continue until desired endtime

Alternative: Independent death times; pick next one Above: more economical; leads to cylinders

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	● 00 000	000	0000		
Forward simulation							

Finite-region forward simulation

Natural simulation for a finite region Λ

- ► Choose an initial call-lifetime configuration (e.g. empty)
- ▶ Run clocks, at each ring check compatibility of perform test

- ▶ If passed, generate lifetime
- ▶ Calls dissapear when lifetime exhausted
- ▶ Continue until desired endtime

Alternative: Independent death times; pick next one

Above: more economical; leads to cylinders

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	00000	000	0000	
Forward s	imulation					

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

▶ All calls are established

• With each call γ two variables are generated:

- Lifetime: $S_{\gamma} \approx \exp(1)$
- Test variable: $Z_{\gamma} \approx U(0,1)$

Free process: $(\gamma^{(i)}, S_{\gamma}^{(i)}, Z_{\gamma}^{(i)})$ $[\gamma^{(i)} = i$ -th occurrence of γ] Visualized as marked cylinders

$$\left(\gamma^{(i)} \times [t_i, t_i + S_{\gamma^{(i)}}], Z_{\gamma^{(i)}}\right)$$

うして ふゆう ふほう ふほう ふしつ

 $[t_i = \text{birth time of } \gamma^{(i)}]$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	00000	000	0000	
Forward s	imulation					

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

- ▶ All calls are established
- With each call γ two variables are generated:
 - Lifetime: $S_{\gamma} \approx \exp(1)$
 - Test variable: $Z_{\gamma} \approx U(0,1)$

Free process: $(\gamma^{(i)}, S^{(i)}_{\gamma}, Z^{(i)}_{\gamma})$ $[\gamma^{(i)} = i$ -th occurrence of γ] Visualized as marked cylinders

$$\left(\gamma^{(i)} \times [t_i, t_i + S_{\gamma^{(i)}}], Z_{\gamma^{(i)}}\right)$$

 $[t_i = \text{birth time of } \gamma^{(i)}]$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	00000	000	0000	
Forward s	imulation					

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

- ▶ All calls are established
- With each call γ two variables are generated:
 - Lifetime: $S_{\gamma} \approx \exp(1)$
 - Test variable: $Z_{\gamma} \approx U(0,1)$

Free process: $(\gamma^{(i)}, S_{\gamma}^{(i)}, Z_{\gamma}^{(i)})$ $[\gamma^{(i)} = i$ -th occurrence of γ] Visualized as marked cylinders

$$\left(\gamma^{(i)} \times [t_i, t_i + S_{\gamma^{(i)}}], Z_{\gamma^{(i)}}\right)$$

 $[t_i = \text{birth time of } \gamma^{(i)}]$
Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	000000	000	0000			
Forward simulation								

Forward-forward simulation (cont.)

Step 2: Cleaning (or thining)

- ▶ Keep 1st generation (eg. initial) cylinders
- ▶ Test or check 2nd generation and keep survivors.
- ► Continue

Features:

- ▶ Many mathematical properties can be directly derived from the simpler free process
- Free process = coupling between loss networks with same rates but different compatibility or survival conditions

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	000000	000	0000			
Forward simulation								

Forward-forward simulation (cont.)

Step 2: Cleaning (or thining)

- ▶ Keep 1st generation (eg. initial) cylinders
- ▶ Test or check 2nd generation and keep survivors.
- ► Continue

Features:

- Many mathematical properties can be directly derived from the simpler free process
- Free process = coupling between loss networks with same rates but different compatibility or survival conditions

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	00000	000	0000				
Back-forth simulation									

Previous construction useless in infinite volume (no first ring) Backwards-constructed free process:

- ▶ Time zero: start with empty finite window Λ
- ▶ Run $w(\gamma)$ -Poissonian cloks towards the past for $\gamma \cap \Lambda \neq \emptyset$
- Generate lifetimes and keep first call surviving up to t = 0

うして ふゆう ふほう ふほう ふしつ

• Alternative: Clocks with time-dependent rates $w(\gamma) e^{-t}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	00000	000	0000			
Back-forth simulation								

Previous construction useless in infinite volume (no first ring) Backwards-constructed free process:

- Time zero: start with empty finite window Λ
- ▶ Run $w(\gamma)$ -Poissonian cloks towards the past for $\gamma \cap \Lambda \neq \emptyset$
- Generate lifetimes and keep first call surviving up to t = 0

• Alternative: Clocks with time-dependent rates $w(\gamma) e^{-t}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	00000	000	0000			
Back-forth simulation								

Previous construction useless in infinite volume (no first ring) Backwards-constructed free process:

- ▶ Time zero: start with empty finite window Λ
- ▶ Run $w(\gamma)$ -Poissonian cloks towards the past for $\gamma \cap \Lambda \neq \emptyset$
- Generate lifetimes and keep first call surviving up to t = 0

► Alternative: Clocks with time-dependent rates $w(\gamma) e^{-t}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	00000	000	0000			
Back-forth simulation								

Previous construction useless in infinite volume (no first ring) Backwards-constructed free process:

- ▶ Time zero: start with empty finite window Λ
- ▶ Run $w(\gamma)$ -Poissonian cloks towards the past for $\gamma \cap \Lambda \neq \emptyset$
- Generate lifetimes and keep first call surviving up to t = 0

► Alternative: Clocks with time-dependent rates $w(\gamma) e^{-t}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Back-forth	h simulation					

Backward-forward simulation (cont.)

► Repeat changing $\Lambda \times \{0\} \longrightarrow \Lambda \times \{0\} \bigcup \gamma_1 \times [-t_1, 0]$: Rates $w(\gamma) e^{-[t-H(\gamma_1, \Lambda)]}$

with

$$H(\gamma_1, \Lambda) = \begin{cases} t_1 & \text{if } \gamma \text{ incomp. } \gamma_1 \\ 0 & \text{otherwise} \end{cases}$$

ション ふゆ マ キャット キャット しょう

► Continue

Stop when no more cylinders

Forward cleaning:

▶ Start from oldest cylinders and do the cleaning

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Back-forth	h simulation					

Backward-forward simulation (cont.)

► Repeat changing $\Lambda \times \{0\} \longrightarrow \Lambda \times \{0\} \bigcup \gamma_1 \times [-t_1, 0]$: Rates $w(\alpha) \alpha^{-[t-H(\gamma_1, \Lambda)]}$

$$w(\gamma) e^{-i\delta - in(\gamma_1, \alpha_2)}$$

with

$$H(\gamma_1, \Lambda) = \begin{cases} t_1 & \text{if } \gamma \text{ incomp. } \gamma_1 \\ 0 & \text{otherwise} \end{cases}$$

ション ふゆ マ キャット キャット しょう

► Continue

▶ Stop when no more cylinders

Forward cleaning:

▶ Start from oldest cylinders and do the cleaning

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Back-forth	h simulation					

Backward-forward simulation (cont.)

► Repeat changing $\Lambda \times \{0\} \longrightarrow \Lambda \times \{0\} \bigcup \gamma_1 \times [-t_1, 0]$: Rates $w(\alpha) \circ^{-[t-H(\gamma_1, \Lambda)]}$

$$w(\gamma)e^{-i\gamma}$$

with

$$H(\gamma_1, \Lambda) = \begin{cases} t_1 & \text{if } \gamma \text{ incomp. } \gamma_1 \\ 0 & \text{otherwise} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日)

► Continue

Stop when no more cylinders

Forward cleaning:

▶ Start from oldest cylinders and do the cleaning

Loss 00	Stat-mech 0000000	\mathbf{Point}_{00}	$\begin{array}{c} \mathbf{Simulation} \\ \circ \circ \circ \circ \bullet \end{array}$	Clans	Branching 0000	Conclusions			
Back-forth simulation									
		Б	c	1					

Perfect simulation

Result:

- ▶ Perfect sampling of Λ in the infinite-volume process
- ▶ Properties of inv. measure related to backwards cylinders

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへで

Big question: Conditions of feasibility

Loss 00	Stat-mech	$\operatorname{Point}_{00}$	Simulation ○○○○●	Clans	Branching 0000	Conclusions		
Back-for	th simulation							
Perfect simulation								

Perfect simulation

Result:

- ▶ Perfect sampling of Λ in the infinite-volume process
- ▶ Properties of inv. measure related to backwards cylinders

ション ふゆ マ キャット キャット しょう

Big question: Conditions of feasibility

Loss 00	Stat-mech 0000000	Point 00	Simulation ○○○○●	Clans	Branching 0000	Conclusions		
Back-for	rth simulation							
Perfect simulation								

Result:

- ▶ Perfect sampling of Λ in the infinite-volume process
- ▶ Properties of inv. measure related to backwards cylinders

ション ふゆ マ キャット マックシン

Big question: Conditions of feasibility

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	000000	● ○○	0000		
Ancestors							

Must track cylinders alive at moment of birth

 $\begin{array}{l} \begin{array}{l} \mbox{Definition} \\ \widetilde{C} = \widetilde{\gamma} \times [-\widetilde{t}, -\widetilde{t} + \widetilde{s}] \mbox{ is an ancestor of } C = \gamma \times [-t, -t+s] \mbox{ if} \\ \\ -\widetilde{t} \leq -t \\ -\widetilde{t} + \widetilde{s} \geq -t \\ \widetilde{\gamma} \mbox{ incomp. } \gamma \end{array}$

Then

$$\begin{split} A_1^C &= \{ \text{ancestors of } C \} \\ A_2^C &= A_1^{A_1^C} \end{split}$$

 $A^C_\infty = \bigcup_n A^C_n = \mbox{Clan of ancestors of } C$

[Likewise A_{∞}^{Λ}]

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	000000	● ○○	0000		
Ancestors							

Must track cylinders alive at moment of birth

 $\begin{array}{l} \label{eq:constraint} \begin{array}{l} \mathbf{\widehat{C}} = \widetilde{\gamma} \times [-\widetilde{t}, -\widetilde{t} + \widetilde{s}] \text{ is an ancestor of } C = \gamma \times [-t, -t+s] \text{ if} \\ \\ -\widetilde{t} \leq -t \\ -\widetilde{t} + \widetilde{s} \geq -t \\ \widetilde{\gamma} \text{ incomp. } \gamma \end{array}$

Then

$$\begin{split} A_1^C &= \{\text{ancestors of } C\} \\ A_2^C &= A_1^{A_1^C} \end{split}$$

 $A_{\infty}^{C} = \bigcup_{n} A_{n}^{C} = \mbox{Clan of ancestors of } C$

[Likewise A^{Λ}_{∞}]

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	000000	● ○○	0000		
Ancestors							

Must track cylinders alive at moment of birth

 $\begin{array}{l} \begin{array}{l} \mbox{Definition} \\ \widetilde{C} = \widetilde{\gamma} \times [-\widetilde{t}, -\widetilde{t} + \widetilde{s}] \mbox{ is an ancestor of } C = \gamma \times [-t, -t+s] \mbox{ if} \\ \\ -\widetilde{t} \leq -t \\ -\widetilde{t} + \widetilde{s} \geq -t \\ \widetilde{\gamma} \mbox{ incomp. } \gamma \end{array}$

Then

$$\begin{split} A_1^C &= \{ \text{ancestors of } C \} \\ A_2^C &= A_1^{A_1^C} \end{split}$$

 $A_{\infty}^{C}=\bigcup_{n}A_{n}^{C}=\mbox{Clan of ancestors of }C$

[Likewise A^{Λ}_{∞}]

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions	
00	0000000	00	000000	● ○○	0000		
Ancestors							

Must track cylinders alive at moment of birth

 $\begin{array}{l} \begin{array}{l} \mbox{Definition} \\ \widetilde{C} = \widetilde{\gamma} \times [-\widetilde{t}, -\widetilde{t} + \widetilde{s}] \mbox{ is an ancestor of } C = \gamma \times [-t, -t + s] \mbox{ if } \\ \\ -\widetilde{t} \leq -t \\ -\widetilde{t} + \widetilde{s} \geq -t \\ \widetilde{\gamma} \mbox{ incomp. } \gamma \end{array}$

Then

$$\begin{split} A_1^C &= \{\text{ancestors of } C\} \\ A_2^C &= A_1^{A_1^C} \end{split}$$

 $A_{\infty}^{C}=\bigcup_{n}A_{n}^{C}=\mbox{Clan of ancestors of }C$

[Likewise A^{Λ}_{∞}]

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty \quad \text{a.a.}$

If this condition holds,

- Back-forth construction works
- There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

うして ふゆう ふほう ふほう ふしつ

- Time-length of clans \rightarrow speed of convergence
- ▶ Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - ► finite-volume corrections
- $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty \quad \text{a.a.}$

If this condition holds,

- Back-forth construction works
- There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

うして ふゆう ふほう ふほう ふしつ

- Time-length of clans \rightarrow speed of convergence
- Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - ► finite-volume corrections
- $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty \quad \text{a.a.}$

If this condition holds,

- Back-forth construction works
- ▶ There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

- Time-length of clans \rightarrow speed of convergence
- Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - ► finite-volume corrections
- $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty \quad \text{a.a.}$

If this condition holds,

- Back-forth construction works
- ▶ There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

うして ふゆう ふほう ふほう ふしつ

- \blacktriangleright Time-length of clans \rightarrow speed of convergence
- Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - ► finite-volume corrections
- $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty$ a.a.

If this condition holds,

- Back-forth construction works
- ▶ There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

- ▶ Time-length of clans \rightarrow speed of convergence
- ▶ Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - ► finite-volume corrections
- $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty \quad \text{a.a.}$

If this condition holds,

- Back-forth construction works
- ▶ There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

うして ふゆう ふほう ふほう ふしつ

- ▶ Time-length of clans \rightarrow speed of convergence
- ▶ Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - finite-volume corrections

 $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	0000				
Finite families of ancestors									

Finite-clan condition of the free process: for each cylinder C,

 $|A_{\infty}^{C}| < \infty \quad \text{a.a.}$

If this condition holds,

- Back-forth construction works
- ▶ There exists a unique invariant measure
- ▶ The back-forth construction is a perfect-simulation scheme

ション ふゆ マ キャット マックシン

- ▶ Time-length of clans \rightarrow speed of convergence
- ▶ Space-time size of clans \rightarrow
 - mixing properties of the invariant measure
 - finite-volume corrections
- $\blacktriangleright \text{ Mixing} \rightarrow \text{TCL}$

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	000000	00	000000	000	0000			

Clans and mixing properties

More precisely

Time mixing

$$\left| E[f(\eta^t)] - \mu(f) \right| \propto \sum_{x \in \operatorname{supp} f} P[TL(A_{\infty}^{(x,0)} > t]]$$

E.g. $w(\gamma) \sim e^{-2\beta|\gamma|} \Rightarrow$ exponential speed

Space mixing

$$\left|\mu(fg) - \mu(f)\mu(g)\right| \propto P\left[A_{\infty}^{\operatorname{supp} f} \neq \widehat{A}_{\infty}^{\operatorname{supp} g}\right]$$

 $[A, \tilde{A} \text{ independent realizations}]$

$$\left|\mu(f) - \mu_{\Lambda}(f)\right| \propto P\left[A_{\infty}^{\operatorname{supp} f} \neq A_{\Lambda,\infty}^{\operatorname{supp} f}\right]$$

ション ふゆ マ キャット マックシン

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	000000	00	000000	000	0000				
Finite families of ancestors									

Clans and mixing properties

More precisely

Time mixing

$$\left| E[f(\eta^t)] - \mu(f) \right| \propto \sum_{x \in \operatorname{supp} f} P[TL(A_{\infty}^{(x,0)} > t]]$$

E.g. $w(\gamma) \sim e^{-2\beta|\gamma|} \Rightarrow$ exponential speed

Space mixing

$$\left|\mu(fg) - \mu(f)\mu(g)\right| \propto P\left[A_{\infty}^{\operatorname{supp} f} \neq \widehat{A}_{\infty}^{\operatorname{supp} g}\right]$$

 $[A, \widetilde{A} \text{ independent realizations}]$

$$\left|\mu(f) - \mu_{\Lambda}(f)\right| \propto P\left[A_{\infty}^{\operatorname{supp} f} \neq A_{\Lambda,\infty}^{\operatorname{supp} f}\right]$$

うして ふゆう ふほう ふほう ふしつ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	0000				
Finite families of ancestors									

Clans and mixing properties

More precisely

Time mixing

$$\left| E[f(\eta^t)] - \mu(f) \right| \propto \sum_{x \in \operatorname{supp} f} P[TL(A_{\infty}^{(x,0)} > t]]$$

E.g. $w(\gamma) \sim e^{-2\beta|\gamma|} \Rightarrow$ exponential speed

Space mixing

$$\left|\mu(fg) - \mu(f)\mu(g)\right| \propto P\left[A_{\infty}^{\operatorname{supp} f} \neq \widehat{A}_{\infty}^{\operatorname{supp} g}\right]$$

 $[A, \widetilde{A} \text{ independent realizations}]$

$$\left|\mu(f) - \mu_{\Lambda}(f)\right| \propto P\left[A_{\infty}^{\operatorname{supp} f} \neq A_{\Lambda,\infty}^{\operatorname{supp} f}\right]$$

うして ふゆう ふほう ふほう ふしつ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions				
00	0000000	00	000000	000	0000					
Backwa	Backwards oriented percolation									

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach: "Ancestor of" \rightarrow Backwards oriented percolation (BAP) of cylinders

うして ふゆう ふほう ふほう ふしつ

Finite clan \iff no percolation

BAP dominated by multitype branching

- Independent branches
- ▶ Branches associated to birth times

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions				
00	0000000	00	000000	000	●000					
Backwa	Backwards oriented percolation									

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach:

"Ancestor of" \rightarrow Backwards oriented percolation (BAP) of cylinders

ション ふゆ マ キャット マックシン

Finite clan \iff no percolation

BAP dominated by multitype branching

- Independent branches
- > Branches associated to birth times

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions				
00	0000000	00	000000	000	0000					
Backway	Backwards oriented percolation									

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach:

"Ancestor of" \rightarrow Backwards oriented percolation (BAP) of cylinders

ション ふゆ マ キャット キャット しょう

Finite clan \iff no percolation

BAP dominated by multitype branching

- ▶ Independent branches
- Branches associated to birth times

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions		
00	0000000	00	000000	000	000			
Multitype branching								

Branching rates

 $C = \gamma \times [t_B, t_D]$ produces a branch $\theta \times [t, t+s]$ $(t \le t_B)$ at rate

$$w(\theta) \mathbb{1}[\gamma \not\sim \theta] e^{-(t_B - t)}$$

 $[\neq = \text{incompatibile}]$

Total rate of branches of "basis" θ :

$$m(\gamma, \theta) = w(\theta) \mathbb{1}[\gamma \not\sim \theta] \int_{t_B}^{\infty} e^{-(t_B - t)} dt = w(\theta) \mathbb{1}[\gamma \not\sim \theta]$$

Mean total number of branches of each cylinder of base γ

$$\sum_{\theta} m(\gamma, \theta) = \sum_{\theta \not\sim \gamma} w(\theta) \le |\gamma| \sup_{\widetilde{\gamma}} \frac{1}{|\widetilde{\gamma}|} \sum_{\theta \not\sim \widetilde{\gamma}} w(\theta) =: |\gamma| a$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	000				
Multitype branching									

Branching rates

 $C = \gamma \times [t_B, t_D]$ produces a branch $\theta \times [t, t+s]$ $(t \leq t_B) \mathrm{at}$ rate

$$w(\theta) \mathbb{1}[\gamma \not\sim \theta] e^{-(t_B - t)}$$

 $[\not = \text{incompatibile}]$ Total rate of branches of "basis" θ :

$$m(\gamma, \theta) = w(\theta) \mathbb{1}[\gamma \not\sim \theta] \int_{t_B}^{\infty} e^{-(t_B - t)} dt = w(\theta) \mathbb{1}[\gamma \not\sim \theta]$$

Mean total number of branches of each cylinder of base γ

$$\sum_{\theta} m(\gamma, \theta) = \sum_{\theta \neq \gamma} w(\theta) \le |\gamma| \sup_{\widetilde{\gamma}} \frac{1}{|\widetilde{\gamma}|} \sum_{\theta \neq \widetilde{\gamma}} w(\theta) =: |\gamma| a$$

うして ふゆう ふほう ふほう ふしつ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions			
00	0000000	00	000000	000	000				
Multitype branching									

Branching rates

 $C = \gamma \times [t_B, t_D]$ produces a branch $\theta \times [t, t+s]$ $(t \le t_B)$ at rate

$$w(\theta) \mathbb{1}[\gamma \not\sim \theta] e^{-(t_B - t)}$$

 $[\not = \text{incompatibile}]$ Total rate of branches of "basis" θ :

$$m(\gamma, \theta) = w(\theta) \mathbb{1}[\gamma \not\sim \theta] \int_{t_B}^{\infty} e^{-(t_B - t)} dt = w(\theta) \mathbb{1}[\gamma \not\sim \theta]$$

Mean total number of branches of each cylinder of base γ

$$\sum_{\theta} m(\gamma, \theta) = \sum_{\theta \not\sim \gamma} w(\theta) \le |\gamma| \sup_{\widetilde{\gamma}} \frac{1}{|\widetilde{\gamma}|} \sum_{\theta \not\sim \widetilde{\gamma}} w(\theta) =: |\gamma| a$$

うして ふゆう ふほう ふほう ふしつ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Multitype	branching					

Mean branching numbers

Mean total number of grand-branches of each cylinder of base γ

$$\begin{split} \sum_{\theta} m^2(\gamma, \theta) &\leq \sum_{\delta} m(\gamma, \delta) \left| \delta \right| a \\ &\leq \left| \gamma \right| \sup_{\widetilde{\gamma}} \frac{1}{\left| \widetilde{\gamma} \right|} \sum_{\delta \neq \widetilde{\gamma}} \left| \delta \right| w(\delta) a \\ &=: \left| \gamma \right| \alpha a \quad (\leq \left| \gamma \right| \alpha^2) \end{split}$$

Mean total number of brances of the tree with root γ :

$$\sum_{\theta} m^n(\gamma, \theta) \le |\gamma| \, \alpha^n$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Multitype	branching					

Mean branching numbers

Mean total number of grand-branches of each cylinder of base γ

$$\begin{split} \sum_{\theta} m^{2}(\gamma, \theta) &\leq \sum_{\delta} m(\gamma, \delta) \left| \delta \right| a \\ &\leq \left| \gamma \right| \sup_{\widetilde{\gamma}} \frac{1}{\left| \widetilde{\gamma} \right|} \sum_{\delta \neq \widetilde{\gamma}} \left| \delta \right| w(\delta) a \\ &=: \left| \gamma \right| \alpha a \quad (\leq \left| \gamma \right| \alpha^{2}) \end{split}$$

Mean total number of brances of the tree with root γ :

$$\sum_{\theta} m^n(\gamma, \theta) \le |\gamma| \, \alpha^n$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Multitype	branching					

Extinction condition

By Borel Cantelli

finite branching
$$\iff \sum_{n} \sum_{\theta} m^{n}(\gamma, \theta) < \infty \ \forall \gamma \Longleftarrow \alpha < 1$$

Extinction \Rightarrow **lack of BAP** \Rightarrow **back-forth OK** if

$$\sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\sim \gamma} |\theta| w(\theta) < 1$$

C.f. usual cluster expansions

$$\sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\sim \gamma} e^{|\theta|} w(\theta) < 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Multitype	branching					

Extinction condition

By Borel Cantelli

finite branching
$$\iff \sum_{n} \sum_{\theta} m^{n}(\gamma, \theta) < \infty \ \forall \gamma \Longleftarrow \alpha < 1$$

$\textbf{Extinction} \Rightarrow \textbf{lack of BAP} \Rightarrow \textbf{back-forth OK} ~ \mathrm{if}$

$$\sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\sim \gamma} |\theta| w(\theta) < 1$$

C.f. usual cluster expansions

$$\sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\sim \gamma} e^{|\theta|} w(\theta) < 1$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?
Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	
Multitype branching						

Extinction condition

By Borel Cantelli

finite branching
$$\iff \sum_{n} \sum_{\theta} m^{n}(\gamma, \theta) < \infty \ \forall \gamma \Longleftarrow \alpha < 1$$

$\textbf{Extinction} \Rightarrow \textbf{lack of BAP} \Rightarrow \textbf{back-forth OK} ~ \mathrm{if}$

$$\sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\sim \gamma} |\theta| \, w(\theta) \; < \; 1$$

C.f. usual cluster expansions

$$\sup_{\gamma} \frac{1}{|\gamma|} \sum_{\theta \not\sim \gamma} e^{|\theta|} w(\theta) < 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	

Advantages of the ancestor's algorithm

Theoretical tool

Allows proof, for the invariant measure, of

- Existence and uniqueness
- Mixing properties
- Typical configurations

in a region larger than the default cluster-expansion approach (which, however, yields analyticity)

Simulation tool

- ▶ Perfect simulation scheme without monotonicity
- ► Fast convergence, without metastable traps
- Samples directly from full volume (no finite-volumen corrections)

うして ふゆう ふほう ふほう ふしつ

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	

Advantages of the ancestor's algorithm

Theoretical tool

Allows proof, for the invariant measure, of

- Existence and uniqueness
- Mixing properties
- Typical configurations

in a region larger than the default cluster-expansion approach (which, however, yields analyticity)

Simulation tool

- ▶ Perfect simulation scheme without monotonicity
- ▶ Fast convergence, without metastable traps
- Samples directly from full volume (no finite-volumen corrections)

ション ふゆ マ キャット キャット しょう

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	

Conclusions (cont.)

Drawbacks

- ▶ No access to non-uniqueness regimes (change variables?)
- ▶ Less effective in presence of monotonicity

Future

 Better control on lack of BAP
E.g. two-generation treatment improves existence for 1-d networks (Garcia-Maric)

うして ふゆう ふほう ふほう ふしつ

▶ Relation to other uniqueness criteria (e.g. Dobrushin)

Loss	Stat-mech	Point	Simulation	Clans	Branching	Conclusions
00	0000000	00	000000	000	0000	

Conclusions (cont.)

Drawbacks

- ▶ No access to non-uniqueness regimes (change variables?)
- ▶ Less effective in presence of monotonicity

Future

 Better control on lack of BAP
E.g. two-generation treatment improves existence for 1-d networks (Garcia-Maric)

うして ふゆう ふほう ふほう ふしつ

▶ Relation to other uniqueness criteria (e.g. Dobrushin)