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Setup

Loss networks with fixed routing

Setting

I Graph L (e.g. Zd) with a countable family of links
I Countable family Γ of routes. Each route γ is defined by

I A subset of links of L
I (Flow, current) numbers associated to each of these links

Process

I Calls request routes γ at independent Poissonian rate w(γ)
I A requested call is established if a test is passed

I Deterministic: predefined link capacities not exceeded
I Stochastic: large uses of a link discouraged

I Once established there is an independent holding period
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Issues

Issues addressed

(I) For the process:
(i) Existence (on the full L) for finite times

(ii) Existence of infinite-time limits
(II) For the invariant measures:

(i) Existence
(ii) Uniqueness
(iii) Properties: mixing, finite-region corrections, CLT

(III) Convergence of the process to the invariant measure
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Ising model as a geometrical model

Stat-mech models: the Ising model

Ingredients

I (Spin) Configurations: {−1, 1} 3 σ = (σx)x∈Zd

I Interaction −σxσy, for x, y nearest-neighbor (n.n.)
I Hamiltonian:

HΛ(σ | ω) = −
∑

{x,y}⊂Λ n.n.

σxσy −
∑

{x,y} n.n., x∈Λ, y 6∈Λ

σxωy

I (Conditional) probabilities:

ProbΛ(σ | ω) = exp{−β HΛ(σ | ω)}/Norm.
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Ising model as a geometrical model

Ising model as a model with exclusions

Peierls representation
For “+” or “−” boundary conditions, map

σΛ ←→ Γσ = {γ}

I Place a plaquette orthogonal to each link with σxσy = −1
I This yields closed surfaces (curves)
I A contour γ is a maximally connected closed surface
I Each contour has a weight w(γ) = e−2β|γ|
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Ising model as a geometrical model

Contour measures

The map leads to measures

µΛ(Γ) =
∏
γ∈Γ

w(γ)
∏
γ,θ∈Γ

[
1− I(γ, θ)

]
/Norm. (1)

with

I(γ, θ) =
{

1 if γ incompatible with θ
0 otherwise

Incompatible: Share endpoints of links
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Ising model as a geometrical model

Issues

Stat-mech questions:
As Λ→ Zd

I Do infinite contours develop?
I Are there increasing sequences of nested contours?

If the answer to both questions is no, then
I Typically: sea of one spin value with islands of the other
I Phase transition!

Probability questions:

I Does µΛ have a unique limit as Λ→ Zd?
I Properties of this limit (mixing, CLT,. . . )?
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Ising model as a geometrical model

Loss network representation

Key: µΛ is invariant for a loss-network-like process:
I Each γ attempts birth at indep. Poissonian rate w(γ)
I Birth is successful in the absence of incompatibilities
I Born γ’s live independent exp(1) times
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Other stat-mech models

Random-cluster model

Ising with q colors = Potts
Fortuin-Kasteleyn representation yields µΛ as in (1) with

γ = connected sets of bonds

and

w(γ) =
(

p

1− p

)B(γ)(1
q

)V (γ)

with
I p = 1− e−β

I B(γ) = # links in γ

I V (γ) = # vertices in links in γ

Compatibility = no vertex sharing
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Other stat-mech models

Other models with exclusion

I Low-T expansions
I High-T expansion
I General: Deffect expansions (= right variables)

All these models can be represented as invariant measures of
loss networks.
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Point processes as loss networks

Point processes

Point process = random subset of L (e.g. Zd or Rd)
I Each seed x planted with independent Poissonian rate
I x carries a grain Gx of deterministic or random shape
I The planting is successful if the emerging seed

I satisfies a (deterministic) compatibility constraint, or
I passes a certain stochastic test

involving grains already present
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Point processes as loss networks

Examples with stochastic conditions:

I Area-interacting processes (Baddeley - van Lieshout, 1995):

Prob ∝ exp(overlapping area)

I Strauss processes (Strauss, 1975):

Prob ∝ exp(# seeds at distance ≤ r)
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Forward simulation

Finite-region forward simulation

Natural simulation for a finite region Λ
I Choose an initial call-lifetime configuration (e.g. empty)
I Run clocks, at each ring check compatibility of perform test
I If passed, generate lifetime
I Calls dissapear when lifetime exhausted
I Continue until desired endtime

Alternative: Independent death times; pick next one
Above: more economical; leads to cylinders
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Forward simulation

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

I All calls are established
I With each call γ two variables are generated:

I Lifetime: Sγ ≈ exp(1)
I Test variable: Zγ ≈ U(0, 1)

Free process: (γ(i), S
(i)
γ , Z

(i)
γ ) [γ(i) = i-th occurrence of γ]

Visualized as marked cylinders(
γ(i) × [ti, ti + Sγ(i) ], Zγ(i)

)
[ti = birth time of γ(i)]
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Forward simulation

Forward-forward simulation (cont.)

Step 2: Cleaning (or thining)

I Keep 1st generation (eg. initial) cylinders
I Test or check 2nd generation and keep survivors.
I Continue

Features:

I Many mathematical properties can be directly derived from
the simpler free process

I Free process = coupling between loss networks with same
rates but different compatibility or survival conditions
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Back-forth simulation

Backward-forward simulation

Previous construction useless in infinite volume (no first ring)

Backwards-constructed free process:

I Time zero: start with empty finite window Λ
I Run w(γ)-Poissonian cloks towards the past for γ ∩ Λ 6= ∅
I Generate lifetimes and keep first call surviving up to t = 0
I Alternative: Clocks with time-dependent rates w(γ) e−t

Result: first-ring cylinder (γ1 × [−t1, 0], Zγ1)
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Back-forth simulation

Backward-forward simulation (cont.)

I Repeat changing Λ× {0} −→ Λ× {0}
⋃
γ1 × [−t1, 0]:

Rates
w(γ) e−[t−H(γ1,Λ)]

with

H(γ1,Λ) =
{
t1 if γ incomp. γ1

0 otherwise

I Continue
I Stop when no more cylinders

Forward cleaning:

I Start from oldest cylinders and do the cleaning
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Back-forth simulation

Perfect simulation

Result:

I Perfect sampling of Λ in the infinite-volume process
I Properties of inv. measure related to backwards cylinders

Big question: Conditions of feasibility
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Ancestors

Clan of ancestors

Must track cylinders alive at moment of birth

Definition
C̃ = γ̃ × [−t̃,−t̃+ s̃] is an ancestor of C = γ × [−t,−t+ s] if

−t̃ ≤ −t
−t̃+ s̃ ≥ −t
γ̃ incomp. γ

Then
AC1 = {ancestors of C}

AC2 = A
AC

1
1

. . .
AC∞ =

⋃
nA

C
n = Clan of ancestors of C

[Likewise AΛ
∞]
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Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL
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Finite families of ancestors

Clans and mixing properties
More precisely

Time mixing∣∣∣E[f(ηt)
]
− µ(f)

∣∣∣ ∝ ∑
x∈ supp f

P
[
TL(A(x,0)

∞ > t
]

E.g. w(γ) ∼ e−2β|γ| ⇒ exponential speed

Space mixing∣∣∣µ(fg)− µ(f)µ(g)
∣∣∣ ∝ P

[
Asupp f
∞ 6= Âsupp g

∞

]
[A, Ã independent realizations]∣∣∣µ(f)− µΛ(f)

∣∣∣ ∝ P
[
Asupp f
∞ 6= Asupp f

Λ,∞

]
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Backwards oriented percolation

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach:
“Ancestor of” → Backwards oriented percolation (BAP) of
cylinders
Finite clan ⇐⇒ no percolation
BAP dominated by multitype branching

I Independent branches
I Branches associated to birth times
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Multitype branching

Branching rates

C = γ × [tB, tD] produces a branch θ × [t, t+ s] (t ≤ tB)at rate

w(θ)11[γ 6∼ θ] e−(tB−t)

[ 6∼ = incompatibile]
Total rate of branches of “basis” θ:

m(γ, θ) = w(θ)11[γ 6∼ θ]
∫ ∞
tB

e−(tB−t)dt = w(θ)11[γ 6∼ θ]

Mean total number of branches of each cylinder of base γ∑
θ

m(γ, θ) =
∑
θ 6∼γ

w(θ) ≤ |γ| supeγ
1
|γ̃|
∑
θ 6∼eγ w(θ) =: |γ| a
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Multitype branching

Mean branching numbers

Mean total number of grand-branches of each cylinder of base γ∑
θ

m2(γ, θ) ≤
∑
δ

m(γ, δ) |δ| a

≤ |γ| supeγ
1
|γ̃|
∑
δ 6∼eγ |δ|w(δ) a

=: |γ|αa (≤ |γ|α2)

Mean total number of brances of the tree with root γ:∑
θ

mn(γ, θ) ≤ |γ|αn
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Multitype branching

Extinction condition

By Borel Cantelli

finite branching⇐⇒
∑
n

∑
θ

mn(γ, θ) <∞ ∀γ ⇐= α < 1

Extinction ⇒ lack of BAP ⇒ back-forth OK if

sup
γ

1
|γ|
∑
θ 6∼γ
|θ|w(θ) < 1

C.f. usual cluster expansions

sup
γ

1
|γ|
∑
θ 6∼γ

e|θ|w(θ) < 1
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Advantages of the ancestor’s algorithm

Theoretical tool
Allows proof, for the invariant measure, of

I Existence and uniqueness
I Mixing properties
I Typical configurations

in a region larger than the default cluster-expansion approach
(which, however, yields analyticity)

Simulation tool

I Perfect simulation scheme without monotonicity
I Fast convergence, without metastable traps
I Samples directly from full volume (no finite-volumen

corrections)



Loss Stat-mech Point Simulation Clans Branching Conclusions

Advantages of the ancestor’s algorithm

Theoretical tool
Allows proof, for the invariant measure, of

I Existence and uniqueness
I Mixing properties
I Typical configurations

in a region larger than the default cluster-expansion approach
(which, however, yields analyticity)

Simulation tool

I Perfect simulation scheme without monotonicity
I Fast convergence, without metastable traps
I Samples directly from full volume (no finite-volumen

corrections)



Loss Stat-mech Point Simulation Clans Branching Conclusions

Conclusions (cont.)

Drawbacks

I No access to non-uniqueness regimes (change variables?)
I Less effective in presence of monotonicity

Future

I Better control on lack of BAP
E.g. two-generation treatment improves existence for 1-d
networks (Garcia-Maric)

I Relation to other uniqueness criteria (e.g. Dobrushin)
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