
Loss Stat-mech Point Simulation Clans Branching Conclusions

Perfect simulation of loss networks
and statistical mechanical models

with exclusions

R. Fernández P. Ferrari N. Garcia
Utrecht (Rouen) B. Aires (S. Paulo) Campinas

Loss Stat-mech Point Simulation Clans Branching Conclusions

Setup

Loss networks with fixed routing

Setting

I Graph L (e.g. Zd) with a countable family of links
I Countable family Γ of routes. Each route γ is defined by

I A subset of links of L
I (Flow, current) numbers associated to each of these links

Process

I Calls request routes γ at independent Poissonian rate w(γ)
I A requested call is established if a test is passed

I Deterministic: predefined link capacities not exceeded
I Stochastic: large uses of a link discouraged

I Once established there is an independent holding period

Loss Stat-mech Point Simulation Clans Branching Conclusions

Setup

Loss networks with fixed routing

Setting

I Graph L (e.g. Zd) with a countable family of links
I Countable family Γ of routes. Each route γ is defined by

I A subset of links of L
I (Flow, current) numbers associated to each of these links

Process

I Calls request routes γ at independent Poissonian rate w(γ)
I A requested call is established if a test is passed

I Deterministic: predefined link capacities not exceeded
I Stochastic: large uses of a link discouraged

I Once established there is an independent holding period

Loss Stat-mech Point Simulation Clans Branching Conclusions

Setup

Loss networks with fixed routing

Setting

I Graph L (e.g. Zd) with a countable family of links
I Countable family Γ of routes. Each route γ is defined by

I A subset of links of L
I (Flow, current) numbers associated to each of these links

Process

I Calls request routes γ at independent Poissonian rate w(γ)
I A requested call is established if a test is passed

I Deterministic: predefined link capacities not exceeded
I Stochastic: large uses of a link discouraged

I Once established there is an independent holding period

Loss Stat-mech Point Simulation Clans Branching Conclusions

Setup

Loss networks with fixed routing

Setting

I Graph L (e.g. Zd) with a countable family of links
I Countable family Γ of routes. Each route γ is defined by

I A subset of links of L
I (Flow, current) numbers associated to each of these links

Process

I Calls request routes γ at independent Poissonian rate w(γ)
I A requested call is established if a test is passed

I Deterministic: predefined link capacities not exceeded
I Stochastic: large uses of a link discouraged

I Once established there is an independent holding period

Loss Stat-mech Point Simulation Clans Branching Conclusions

Setup

Loss networks with fixed routing

Setting

I Graph L (e.g. Zd) with a countable family of links
I Countable family Γ of routes. Each route γ is defined by

I A subset of links of L
I (Flow, current) numbers associated to each of these links

Process

I Calls request routes γ at independent Poissonian rate w(γ)
I A requested call is established if a test is passed

I Deterministic: predefined link capacities not exceeded
I Stochastic: large uses of a link discouraged

I Once established there is an independent holding period

Loss Stat-mech Point Simulation Clans Branching Conclusions

Issues

Issues addressed

(I) For the process:
(i) Existence (on the full L) for finite times

(ii) Existence of infinite-time limits
(II) For the invariant measures:

(i) Existence
(ii) Uniqueness
(iii) Properties: mixing, finite-region corrections, CLT

(III) Convergence of the process to the invariant measure

Loss Stat-mech Point Simulation Clans Branching Conclusions

Issues

Issues addressed

(I) For the process:
(i) Existence (on the full L) for finite times

(ii) Existence of infinite-time limits
(II) For the invariant measures:

(i) Existence
(ii) Uniqueness
(iii) Properties: mixing, finite-region corrections, CLT

(III) Convergence of the process to the invariant measure

Loss Stat-mech Point Simulation Clans Branching Conclusions

Issues

Issues addressed

(I) For the process:
(i) Existence (on the full L) for finite times

(ii) Existence of infinite-time limits
(II) For the invariant measures:

(i) Existence
(ii) Uniqueness
(iii) Properties: mixing, finite-region corrections, CLT

(III) Convergence of the process to the invariant measure

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Stat-mech models: the Ising model

Ingredients

I (Spin) Configurations: {−1, 1} 3 σ = (σx)x∈Zd

I Interaction −σxσy, for x, y nearest-neighbor (n.n.)
I Hamiltonian:

HΛ(σ | ω) = −
∑

{x,y}⊂Λ n.n.

σxσy −
∑

{x,y} n.n., x∈Λ, y 6∈Λ

σxωy

I (Conditional) probabilities:

ProbΛ(σ | ω) = exp{−β HΛ(σ | ω)}/Norm.

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Stat-mech models: the Ising model

Ingredients

I (Spin) Configurations: {−1, 1} 3 σ = (σx)x∈Zd

I Interaction −σxσy, for x, y nearest-neighbor (n.n.)
I Hamiltonian:

HΛ(σ | ω) = −
∑

{x,y}⊂Λ n.n.

σxσy −
∑

{x,y} n.n., x∈Λ, y 6∈Λ

σxωy

I (Conditional) probabilities:

ProbΛ(σ | ω) = exp{−β HΛ(σ | ω)}/Norm.

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Ising model as a model with exclusions

Peierls representation
For “+” or “−” boundary conditions, map

σΛ ←→ Γσ = {γ}

I Place a plaquette orthogonal to each link with σxσy = −1
I This yields closed surfaces (curves)
I A contour γ is a maximally connected closed surface
I Each contour has a weight w(γ) = e−2β|γ|

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Ising model as a model with exclusions

Peierls representation
For “+” or “−” boundary conditions, map

σΛ ←→ Γσ = {γ}

I Place a plaquette orthogonal to each link with σxσy = −1
I This yields closed surfaces (curves)
I A contour γ is a maximally connected closed surface
I Each contour has a weight w(γ) = e−2β|γ|

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Ising model as a model with exclusions

Peierls representation
For “+” or “−” boundary conditions, map

σΛ ←→ Γσ = {γ}

I Place a plaquette orthogonal to each link with σxσy = −1
I This yields closed surfaces (curves)
I A contour γ is a maximally connected closed surface
I Each contour has a weight w(γ) = e−2β|γ|

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Contour measures

The map leads to measures

µΛ(Γ) =
∏
γ∈Γ

w(γ)
∏
γ,θ∈Γ

[
1− I(γ, θ)

]
/Norm. (1)

with

I(γ, θ) =
{

1 if γ incompatible with θ
0 otherwise

Incompatible: Share endpoints of links

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Contour measures

The map leads to measures

µΛ(Γ) =
∏
γ∈Γ

w(γ)
∏
γ,θ∈Γ

[
1− I(γ, θ)

]
/Norm. (1)

with

I(γ, θ) =
{

1 if γ incompatible with θ
0 otherwise

Incompatible: Share endpoints of links

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Issues

Stat-mech questions:
As Λ→ Zd

I Do infinite contours develop?
I Are there increasing sequences of nested contours?

If the answer to both questions is no, then
I Typically: sea of one spin value with islands of the other
I Phase transition!

Probability questions:

I Does µΛ have a unique limit as Λ→ Zd?
I Properties of this limit (mixing, CLT,. . .)?

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Issues

Stat-mech questions:
As Λ→ Zd

I Do infinite contours develop?
I Are there increasing sequences of nested contours?

If the answer to both questions is no, then
I Typically: sea of one spin value with islands of the other
I Phase transition!

Probability questions:

I Does µΛ have a unique limit as Λ→ Zd?
I Properties of this limit (mixing, CLT,. . .)?

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Issues

Stat-mech questions:
As Λ→ Zd

I Do infinite contours develop?
I Are there increasing sequences of nested contours?

If the answer to both questions is no, then
I Typically: sea of one spin value with islands of the other
I Phase transition!

Probability questions:

I Does µΛ have a unique limit as Λ→ Zd?
I Properties of this limit (mixing, CLT,. . .)?

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ising model as a geometrical model

Loss network representation

Key: µΛ is invariant for a loss-network-like process:
I Each γ attempts birth at indep. Poissonian rate w(γ)
I Birth is successful in the absence of incompatibilities
I Born γ’s live independent exp(1) times

Loss Stat-mech Point Simulation Clans Branching Conclusions

Other stat-mech models

Random-cluster model

Ising with q colors = Potts
Fortuin-Kasteleyn representation yields µΛ as in (1) with

γ = connected sets of bonds

and

w(γ) =
(

p

1− p

)B(γ)(1
q

)V (γ)

with
I p = 1− e−β

I B(γ) = # links in γ

I V (γ) = # vertices in links in γ

Compatibility = no vertex sharing

Loss Stat-mech Point Simulation Clans Branching Conclusions

Other stat-mech models

Random-cluster model

Ising with q colors = Potts
Fortuin-Kasteleyn representation yields µΛ as in (1) with

γ = connected sets of bonds

and

w(γ) =
(

p

1− p

)B(γ)(1
q

)V (γ)

with
I p = 1− e−β

I B(γ) = # links in γ

I V (γ) = # vertices in links in γ

Compatibility = no vertex sharing

Loss Stat-mech Point Simulation Clans Branching Conclusions

Other stat-mech models

Random-cluster model

Ising with q colors = Potts
Fortuin-Kasteleyn representation yields µΛ as in (1) with

γ = connected sets of bonds

and

w(γ) =
(

p

1− p

)B(γ)(1
q

)V (γ)

with
I p = 1− e−β

I B(γ) = # links in γ

I V (γ) = # vertices in links in γ

Compatibility = no vertex sharing

Loss Stat-mech Point Simulation Clans Branching Conclusions

Other stat-mech models

Other models with exclusion

I Low-T expansions
I High-T expansion
I General: Deffect expansions (= right variables)

All these models can be represented as invariant measures of
loss networks.

Loss Stat-mech Point Simulation Clans Branching Conclusions

Other stat-mech models

Other models with exclusion

I Low-T expansions
I High-T expansion
I General: Deffect expansions (= right variables)

All these models can be represented as invariant measures of
loss networks.

Loss Stat-mech Point Simulation Clans Branching Conclusions

Point processes as loss networks

Point processes

Point process = random subset of L (e.g. Zd or Rd)
I Each seed x planted with independent Poissonian rate
I x carries a grain Gx of deterministic or random shape
I The planting is successful if the emerging seed

I satisfies a (deterministic) compatibility constraint, or
I passes a certain stochastic test

involving grains already present

Loss Stat-mech Point Simulation Clans Branching Conclusions

Point processes as loss networks

Point processes

Point process = random subset of L (e.g. Zd or Rd)
I Each seed x planted with independent Poissonian rate
I x carries a grain Gx of deterministic or random shape
I The planting is successful if the emerging seed

I satisfies a (deterministic) compatibility constraint, or
I passes a certain stochastic test

involving grains already present

Loss Stat-mech Point Simulation Clans Branching Conclusions

Point processes as loss networks

Point processes

Point process = random subset of L (e.g. Zd or Rd)
I Each seed x planted with independent Poissonian rate
I x carries a grain Gx of deterministic or random shape
I The planting is successful if the emerging seed

I satisfies a (deterministic) compatibility constraint, or
I passes a certain stochastic test

involving grains already present

Loss Stat-mech Point Simulation Clans Branching Conclusions

Point processes as loss networks

Examples with stochastic conditions:

I Area-interacting processes (Baddeley - van Lieshout, 1995):

Prob ∝ exp(overlapping area)

I Strauss processes (Strauss, 1975):

Prob ∝ exp(# seeds at distance ≤ r)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Point processes as loss networks

Examples with stochastic conditions:

I Area-interacting processes (Baddeley - van Lieshout, 1995):

Prob ∝ exp(overlapping area)

I Strauss processes (Strauss, 1975):

Prob ∝ exp(# seeds at distance ≤ r)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Finite-region forward simulation

Natural simulation for a finite region Λ
I Choose an initial call-lifetime configuration (e.g. empty)
I Run clocks, at each ring check compatibility of perform test
I If passed, generate lifetime
I Calls dissapear when lifetime exhausted
I Continue until desired endtime

Alternative: Independent death times; pick next one
Above: more economical; leads to cylinders

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Finite-region forward simulation

Natural simulation for a finite region Λ
I Choose an initial call-lifetime configuration (e.g. empty)
I Run clocks, at each ring check compatibility of perform test
I If passed, generate lifetime
I Calls dissapear when lifetime exhausted
I Continue until desired endtime

Alternative: Independent death times; pick next one
Above: more economical; leads to cylinders

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Finite-region forward simulation

Natural simulation for a finite region Λ
I Choose an initial call-lifetime configuration (e.g. empty)
I Run clocks, at each ring check compatibility of perform test
I If passed, generate lifetime
I Calls dissapear when lifetime exhausted
I Continue until desired endtime

Alternative: Independent death times; pick next one
Above: more economical; leads to cylinders

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

I All calls are established
I With each call γ two variables are generated:

I Lifetime: Sγ ≈ exp(1)
I Test variable: Zγ ≈ U(0, 1)

Free process: (γ(i), S
(i)
γ , Z

(i)
γ) [γ(i) = i-th occurrence of γ]

Visualized as marked cylinders(
γ(i) × [ti, ti + Sγ(i)], Zγ(i)

)
[ti = birth time of γ(i)]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

I All calls are established
I With each call γ two variables are generated:

I Lifetime: Sγ ≈ exp(1)
I Test variable: Zγ ≈ U(0, 1)

Free process: (γ(i), S
(i)
γ , Z

(i)
γ) [γ(i) = i-th occurrence of γ]

Visualized as marked cylinders(
γ(i) × [ti, ti + Sγ(i)], Zγ(i)

)
[ti = birth time of γ(i)]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Forward-forward simulation

Alternative two-step construction

Step 1: The free process

I All calls are established
I With each call γ two variables are generated:

I Lifetime: Sγ ≈ exp(1)
I Test variable: Zγ ≈ U(0, 1)

Free process: (γ(i), S
(i)
γ , Z

(i)
γ) [γ(i) = i-th occurrence of γ]

Visualized as marked cylinders(
γ(i) × [ti, ti + Sγ(i)], Zγ(i)

)
[ti = birth time of γ(i)]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Forward-forward simulation (cont.)

Step 2: Cleaning (or thining)

I Keep 1st generation (eg. initial) cylinders
I Test or check 2nd generation and keep survivors.
I Continue

Features:

I Many mathematical properties can be directly derived from
the simpler free process

I Free process = coupling between loss networks with same
rates but different compatibility or survival conditions

Loss Stat-mech Point Simulation Clans Branching Conclusions

Forward simulation

Forward-forward simulation (cont.)

Step 2: Cleaning (or thining)

I Keep 1st generation (eg. initial) cylinders
I Test or check 2nd generation and keep survivors.
I Continue

Features:

I Many mathematical properties can be directly derived from
the simpler free process

I Free process = coupling between loss networks with same
rates but different compatibility or survival conditions

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation

Previous construction useless in infinite volume (no first ring)

Backwards-constructed free process:

I Time zero: start with empty finite window Λ
I Run w(γ)-Poissonian cloks towards the past for γ ∩ Λ 6= ∅
I Generate lifetimes and keep first call surviving up to t = 0
I Alternative: Clocks with time-dependent rates w(γ) e−t

Result: first-ring cylinder (γ1 × [−t1, 0], Zγ1)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation

Previous construction useless in infinite volume (no first ring)

Backwards-constructed free process:

I Time zero: start with empty finite window Λ
I Run w(γ)-Poissonian cloks towards the past for γ ∩ Λ 6= ∅
I Generate lifetimes and keep first call surviving up to t = 0
I Alternative: Clocks with time-dependent rates w(γ) e−t

Result: first-ring cylinder (γ1 × [−t1, 0], Zγ1)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation

Previous construction useless in infinite volume (no first ring)

Backwards-constructed free process:

I Time zero: start with empty finite window Λ
I Run w(γ)-Poissonian cloks towards the past for γ ∩ Λ 6= ∅
I Generate lifetimes and keep first call surviving up to t = 0
I Alternative: Clocks with time-dependent rates w(γ) e−t

Result: first-ring cylinder (γ1 × [−t1, 0], Zγ1)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation

Previous construction useless in infinite volume (no first ring)

Backwards-constructed free process:

I Time zero: start with empty finite window Λ
I Run w(γ)-Poissonian cloks towards the past for γ ∩ Λ 6= ∅
I Generate lifetimes and keep first call surviving up to t = 0
I Alternative: Clocks with time-dependent rates w(γ) e−t

Result: first-ring cylinder (γ1 × [−t1, 0], Zγ1)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation (cont.)

I Repeat changing Λ× {0} −→ Λ× {0}
⋃
γ1 × [−t1, 0]:

Rates
w(γ) e−[t−H(γ1,Λ)]

with

H(γ1,Λ) =
{
t1 if γ incomp. γ1

0 otherwise

I Continue
I Stop when no more cylinders

Forward cleaning:

I Start from oldest cylinders and do the cleaning

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation (cont.)

I Repeat changing Λ× {0} −→ Λ× {0}
⋃
γ1 × [−t1, 0]:

Rates
w(γ) e−[t−H(γ1,Λ)]

with

H(γ1,Λ) =
{
t1 if γ incomp. γ1

0 otherwise

I Continue
I Stop when no more cylinders

Forward cleaning:

I Start from oldest cylinders and do the cleaning

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Backward-forward simulation (cont.)

I Repeat changing Λ× {0} −→ Λ× {0}
⋃
γ1 × [−t1, 0]:

Rates
w(γ) e−[t−H(γ1,Λ)]

with

H(γ1,Λ) =
{
t1 if γ incomp. γ1

0 otherwise

I Continue
I Stop when no more cylinders

Forward cleaning:

I Start from oldest cylinders and do the cleaning

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Perfect simulation

Result:

I Perfect sampling of Λ in the infinite-volume process
I Properties of inv. measure related to backwards cylinders

Big question: Conditions of feasibility

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Perfect simulation

Result:

I Perfect sampling of Λ in the infinite-volume process
I Properties of inv. measure related to backwards cylinders

Big question: Conditions of feasibility

Loss Stat-mech Point Simulation Clans Branching Conclusions

Back-forth simulation

Perfect simulation

Result:

I Perfect sampling of Λ in the infinite-volume process
I Properties of inv. measure related to backwards cylinders

Big question: Conditions of feasibility

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ancestors

Clan of ancestors

Must track cylinders alive at moment of birth

Definition
C̃ = γ̃ × [−t̃,−t̃+ s̃] is an ancestor of C = γ × [−t,−t+ s] if

−t̃ ≤ −t
−t̃+ s̃ ≥ −t
γ̃ incomp. γ

Then
AC1 = {ancestors of C}

AC2 = A
AC

1
1

. . .
AC∞ =

⋃
nA

C
n = Clan of ancestors of C

[Likewise AΛ
∞]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ancestors

Clan of ancestors

Must track cylinders alive at moment of birth

Definition
C̃ = γ̃ × [−t̃,−t̃+ s̃] is an ancestor of C = γ × [−t,−t+ s] if

−t̃ ≤ −t
−t̃+ s̃ ≥ −t
γ̃ incomp. γ

Then
AC1 = {ancestors of C}

AC2 = A
AC

1
1

. . .
AC∞ =

⋃
nA

C
n = Clan of ancestors of C

[Likewise AΛ
∞]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ancestors

Clan of ancestors

Must track cylinders alive at moment of birth

Definition
C̃ = γ̃ × [−t̃,−t̃+ s̃] is an ancestor of C = γ × [−t,−t+ s] if

−t̃ ≤ −t
−t̃+ s̃ ≥ −t
γ̃ incomp. γ

Then
AC1 = {ancestors of C}

AC2 = A
AC

1
1

. . .
AC∞ =

⋃
nA

C
n = Clan of ancestors of C

[Likewise AΛ
∞]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Ancestors

Clan of ancestors

Must track cylinders alive at moment of birth

Definition
C̃ = γ̃ × [−t̃,−t̃+ s̃] is an ancestor of C = γ × [−t,−t+ s] if

−t̃ ≤ −t
−t̃+ s̃ ≥ −t
γ̃ incomp. γ

Then
AC1 = {ancestors of C}

AC2 = A
AC

1
1

. . .
AC∞ =

⋃
nA

C
n = Clan of ancestors of C

[Likewise AΛ
∞]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Consequences of finiteness of clans

Finite-clan condition of the free process: for each cylinder C,

|AC∞| <∞ a.a.

If this condition holds,
I Back-forth construction works
I There exists a unique invariant measure
I The back-forth construction is a perfect-simulation scheme
I Time-length of clans → speed of convergence
I Space-time size of clans →

I mixing properties of the invariant measure
I finite-volume corrections

I Mixing → TCL

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Clans and mixing properties
More precisely

Time mixing∣∣∣E[f(ηt)
]
− µ(f)

∣∣∣ ∝ ∑
x∈ supp f

P
[
TL(A(x,0)

∞ > t
]

E.g. w(γ) ∼ e−2β|γ| ⇒ exponential speed

Space mixing∣∣∣µ(fg)− µ(f)µ(g)
∣∣∣ ∝ P

[
Asupp f
∞ 6= Âsupp g

∞

]
[A, Ã independent realizations]∣∣∣µ(f)− µΛ(f)

∣∣∣ ∝ P
[
Asupp f
∞ 6= Asupp f

Λ,∞

]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Clans and mixing properties
More precisely

Time mixing∣∣∣E[f(ηt)
]
− µ(f)

∣∣∣ ∝ ∑
x∈ supp f

P
[
TL(A(x,0)

∞ > t
]

E.g. w(γ) ∼ e−2β|γ| ⇒ exponential speed

Space mixing∣∣∣µ(fg)− µ(f)µ(g)
∣∣∣ ∝ P

[
Asupp f
∞ 6= Âsupp g

∞

]
[A, Ã independent realizations]∣∣∣µ(f)− µΛ(f)

∣∣∣ ∝ P
[
Asupp f
∞ 6= Asupp f

Λ,∞

]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Finite families of ancestors

Clans and mixing properties
More precisely

Time mixing∣∣∣E[f(ηt)
]
− µ(f)

∣∣∣ ∝ ∑
x∈ supp f

P
[
TL(A(x,0)

∞ > t
]

E.g. w(γ) ∼ e−2β|γ| ⇒ exponential speed

Space mixing∣∣∣µ(fg)− µ(f)µ(g)
∣∣∣ ∝ P

[
Asupp f
∞ 6= Âsupp g

∞

]
[A, Ã independent realizations]∣∣∣µ(f)− µΛ(f)

∣∣∣ ∝ P
[
Asupp f
∞ 6= Asupp f

Λ,∞

]

Loss Stat-mech Point Simulation Clans Branching Conclusions

Backwards oriented percolation

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach:
“Ancestor of” → Backwards oriented percolation (BAP) of
cylinders
Finite clan ⇐⇒ no percolation
BAP dominated by multitype branching

I Independent branches
I Branches associated to birth times

Loss Stat-mech Point Simulation Clans Branching Conclusions

Backwards oriented percolation

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach:
“Ancestor of” → Backwards oriented percolation (BAP) of
cylinders
Finite clan ⇐⇒ no percolation
BAP dominated by multitype branching

I Independent branches
I Branches associated to birth times

Loss Stat-mech Point Simulation Clans Branching Conclusions

Backwards oriented percolation

Condition for finiteness of clans

Deterministic case (incompatibilities). Standard approach:
“Ancestor of” → Backwards oriented percolation (BAP) of
cylinders
Finite clan ⇐⇒ no percolation
BAP dominated by multitype branching

I Independent branches
I Branches associated to birth times

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Branching rates

C = γ × [tB, tD] produces a branch θ × [t, t+ s] (t ≤ tB)at rate

w(θ)11[γ 6∼ θ] e−(tB−t)

[6∼ = incompatibile]
Total rate of branches of “basis” θ:

m(γ, θ) = w(θ)11[γ 6∼ θ]
∫ ∞
tB

e−(tB−t)dt = w(θ)11[γ 6∼ θ]

Mean total number of branches of each cylinder of base γ∑
θ

m(γ, θ) =
∑
θ 6∼γ

w(θ) ≤ |γ| supeγ
1
|γ̃|
∑
θ 6∼eγ w(θ) =: |γ| a

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Branching rates

C = γ × [tB, tD] produces a branch θ × [t, t+ s] (t ≤ tB)at rate

w(θ)11[γ 6∼ θ] e−(tB−t)

[6∼ = incompatibile]
Total rate of branches of “basis” θ:

m(γ, θ) = w(θ)11[γ 6∼ θ]
∫ ∞
tB

e−(tB−t)dt = w(θ)11[γ 6∼ θ]

Mean total number of branches of each cylinder of base γ∑
θ

m(γ, θ) =
∑
θ 6∼γ

w(θ) ≤ |γ| supeγ
1
|γ̃|
∑
θ 6∼eγ w(θ) =: |γ| a

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Branching rates

C = γ × [tB, tD] produces a branch θ × [t, t+ s] (t ≤ tB)at rate

w(θ)11[γ 6∼ θ] e−(tB−t)

[6∼ = incompatibile]
Total rate of branches of “basis” θ:

m(γ, θ) = w(θ)11[γ 6∼ θ]
∫ ∞
tB

e−(tB−t)dt = w(θ)11[γ 6∼ θ]

Mean total number of branches of each cylinder of base γ∑
θ

m(γ, θ) =
∑
θ 6∼γ

w(θ) ≤ |γ| supeγ
1
|γ̃|
∑
θ 6∼eγ w(θ) =: |γ| a

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Mean branching numbers

Mean total number of grand-branches of each cylinder of base γ∑
θ

m2(γ, θ) ≤
∑
δ

m(γ, δ) |δ| a

≤ |γ| supeγ
1
|γ̃|
∑
δ 6∼eγ |δ|w(δ) a

=: |γ|αa (≤ |γ|α2)

Mean total number of brances of the tree with root γ:∑
θ

mn(γ, θ) ≤ |γ|αn

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Mean branching numbers

Mean total number of grand-branches of each cylinder of base γ∑
θ

m2(γ, θ) ≤
∑
δ

m(γ, δ) |δ| a

≤ |γ| supeγ
1
|γ̃|
∑
δ 6∼eγ |δ|w(δ) a

=: |γ|αa (≤ |γ|α2)

Mean total number of brances of the tree with root γ:∑
θ

mn(γ, θ) ≤ |γ|αn

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Extinction condition

By Borel Cantelli

finite branching⇐⇒
∑
n

∑
θ

mn(γ, θ) <∞ ∀γ ⇐= α < 1

Extinction ⇒ lack of BAP ⇒ back-forth OK if

sup
γ

1
|γ|
∑
θ 6∼γ
|θ|w(θ) < 1

C.f. usual cluster expansions

sup
γ

1
|γ|
∑
θ 6∼γ

e|θ|w(θ) < 1

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Extinction condition

By Borel Cantelli

finite branching⇐⇒
∑
n

∑
θ

mn(γ, θ) <∞ ∀γ ⇐= α < 1

Extinction ⇒ lack of BAP ⇒ back-forth OK if

sup
γ

1
|γ|
∑
θ 6∼γ
|θ|w(θ) < 1

C.f. usual cluster expansions

sup
γ

1
|γ|
∑
θ 6∼γ

e|θ|w(θ) < 1

Loss Stat-mech Point Simulation Clans Branching Conclusions

Multitype branching

Extinction condition

By Borel Cantelli

finite branching⇐⇒
∑
n

∑
θ

mn(γ, θ) <∞ ∀γ ⇐= α < 1

Extinction ⇒ lack of BAP ⇒ back-forth OK if

sup
γ

1
|γ|
∑
θ 6∼γ
|θ|w(θ) < 1

C.f. usual cluster expansions

sup
γ

1
|γ|
∑
θ 6∼γ

e|θ|w(θ) < 1

Loss Stat-mech Point Simulation Clans Branching Conclusions

Advantages of the ancestor’s algorithm

Theoretical tool
Allows proof, for the invariant measure, of

I Existence and uniqueness
I Mixing properties
I Typical configurations

in a region larger than the default cluster-expansion approach
(which, however, yields analyticity)

Simulation tool

I Perfect simulation scheme without monotonicity
I Fast convergence, without metastable traps
I Samples directly from full volume (no finite-volumen

corrections)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Advantages of the ancestor’s algorithm

Theoretical tool
Allows proof, for the invariant measure, of

I Existence and uniqueness
I Mixing properties
I Typical configurations

in a region larger than the default cluster-expansion approach
(which, however, yields analyticity)

Simulation tool

I Perfect simulation scheme without monotonicity
I Fast convergence, without metastable traps
I Samples directly from full volume (no finite-volumen

corrections)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Conclusions (cont.)

Drawbacks

I No access to non-uniqueness regimes (change variables?)
I Less effective in presence of monotonicity

Future

I Better control on lack of BAP
E.g. two-generation treatment improves existence for 1-d
networks (Garcia-Maric)

I Relation to other uniqueness criteria (e.g. Dobrushin)

Loss Stat-mech Point Simulation Clans Branching Conclusions

Conclusions (cont.)

Drawbacks

I No access to non-uniqueness regimes (change variables?)
I Less effective in presence of monotonicity

Future

I Better control on lack of BAP
E.g. two-generation treatment improves existence for 1-d
networks (Garcia-Maric)

I Relation to other uniqueness criteria (e.g. Dobrushin)

	Loss
	Setup
	Issues

	Stat-mech
	Ising model as a geometrical model
	Other stat-mech models

	Point
	Point processes as loss networks

	Simulation
	Forward simulation
	Back-forth simulation

	Clans
	Ancestors
	Finite families of ancestors

	Branching
	Backwards oriented percolation
	Multitype branching

	Conclusions

