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Introduction (1)

Consider

 Some network (topology, traffic characteristics, etc.)

 Some performance measure (throughput, response time, etc.)

 Optimization (by sharing capacity, rerouting, etc.) 

can be done…

…by a single operator!
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 Suppose one operator per queue !

 Optimization can still be done…

…if operators are willing to cooperate!

 But: individual objectives (max profit, min cost)

 Need for incentives to cooperate: sharing profit/cost

“Everybody happy ?”

 Combine queueing theory and cooperative game theory

Introduction (2)
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Literature

 Few papers on queueing systems and cooperative games

 González, Herrero (2004)

 García-Sanz et al. (2008)

 Yu, Benjaafar, Gerchak (2009)

 Anily, Haviv (2008)

 Karsten, Van Houtum, Slikker (2011)

 All: pooling

 We: keep network as is
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More literature…

 Gibbens and Key (2008): 

Coalition Games and Resource Allocation in Ad-Hoc Networks

 Gibbens, Kelly, Cope and Whitehead (1991): 

Coalitions in the International Network

 Kelly, Massoulié, Walton (2009): 

Resource pooling in congested networks: proportional fairness 

and product form
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 Model(s) 

 Main questions:

 How to share capacity? (known)

 How to share the cost?

 Tandem game

 Jackson game

 Concluding remarks

Outline of remainder
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Model (Tandem case)

 Network: Jackson tandem queue, n nodes 

 Traffic: arrival rate λ, service rates μi (> λ)

 Cost: expected # jobs in system (per node: λ / (μi - λ)  )

 Cooperation: redistribute total capacity to optimise performance

λ

μ1 μ2

Redistribute

μ1+μ2

?
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Model (Jackson case)

 Network: general Jackson network, n nodes 

 Traffic: local arrival rates λi, service rates μi (> λi)

 Cost: expected # jobs in system (per node: λi / (μi - λi)  )

 Cooperation: redistribute total capacity to optimise performance

N.B. local arrival rates λi follow from external arrival rates λi
0 and 

routing probabs pij, regardless of capacity redistribution:

Solution of traffic equations
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 How to share capacity? (answer is known) 

 minimal cost

 How to share the cost? 

 “Everybody happy”

Main questions:

λ

μ1 μ2

Distribute 

μ1+μ2

?
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 N:  set of players / nodes ( = {1,2,…,n} ) 

 S:  any coalition of players     (subset of N)

Redistribute (for any coalition S) the total service capacity 

to obtain minimal cost c(S):

 Solution: 

 Cost function for „Tandem game‟

How to share capacity?
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 Definition: 

A tandem game is a cost game (N,c) with 

the set of nodes N= {1,2,…,n} as player set. 

The cost c(S) of coalition S is given by 

 Property:

Tandem game is subadditive (incentive to cooperate):

For disjoint S, T: 

How to share the cost? ( tandem game )
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How to share the cost? ( the core)

 How to share total cost c(N)? 

 According to any element in the core C(N,c):

 NB: core empty?
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2-node tandem game

 Theorem

In a 2-node tandem game, the core is never empty

Proof: follows from subadditivity

 Example: λ=1, μ1=2, μ2=5  

Cost function:

Core is convex combination of (1,-1/5) and (11/20, 1/4)

  Node may receive payment in core allocation (!)

S {1} {2} {1,2}

c(S) 1 1/4 4/5
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 Theorem

If μ1 ≥ μ2 ≥ μ3 then the marginal vector mσ is in the core if 

σ(1)=2, i.e. node 2 goes first.

(These may be the only marginal vectors in the core)

 Example:  λ=2, μ1=5, μ2=4, μ3=3

Cost function:

m(2,1,3) =  (3/5, 1, 7/5) m(2,3,1) = (2/3, 1, 4/3)

If x in the core:

 no strict gain for node 2                 (reason:             )

 In 4-node tandem games, the core may contain no marginal vectors…

3-node tandem game

S {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

c(S) 2/3 1 2 8/5 2 7/3 3

)2(13,2,1 2321312 cxxxxxxx 

N 2
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 Example:  λ=1, μ1=8, μ2=6, μ3=4,    μ4=2

Cost function:

 No marginal vectors in the core… which is non-empty!

4-node tandem game
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 Consider tandem game (N,c) with cost

 Proposed cost sharing rule: node i pays

 Theorem

The above cost sharing rule belongs to the core C(N,c).

Proof: follows

n-node tandem game
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“Everybody happy !”
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 N:  set of players / nodes ( = {1,2,…,n} ) 

 S:  any coalition of players     (subset of N)

Redistribute (for any coalition S) the total service capacity 

to obtain minimal cost c(S):

 Solution: 

 Cost function for „Tandem game‟
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Jackson case: how to share capacity?  (known) 
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 Definition: 

A Jackson game is a cost game (N,c) with the set of nodes 

N= {1,2,…,n} as player set. 

The cost c(S) of coalition S is given by 

 Jackson game is subadditive (incentive to cooperate):

For disjoint S, T: 

 Core empty?

Jackson case: how to share the cost?     ( Jackson game )
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 Role of capacities μi (or “excess capacities” μi - λi) from the 

tandem game is here played by so-called “r-values”:

 It follows that:

Jackson case: “relative excess capacity values”
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2-node Jackson game

 Theorem

In a 2-node Jackson game, the core is never empty

Proof: follows from subadditivity

 Example: λ1=1,   λ2=4,   μ1=μ2=5  

Cost function:

Core is convex combination of (-11/5, 4) and (1/4, 31/20)

  Node may get paid in core allocation

S {1} {2} {1,2}

c(S) 1/4 4 9/5
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 Theorem

If r1 ≥ r2 ≥ r3 then the marginal vector mσ is in the core if 

σ(1)=2, i.e. node 2 goes first.

(These may be the only marginal vectors in the core)

 No strict gain for node 2 if              . In that case 

and the core is the convex hull of m(2,1,3) and m(2,3,1)

3-node Jackson game

Nrr 2
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 For disjoint coalitions S and T with              , we have

(no incentive/need to cooperate)

 If all nodes have equal r-value r, the core consists of 

a single allocation x with 

Miscellaneous results for n-node Jackson game
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 Jackson game (N,c) with cost function

 Cost sharing rule: node i pays

 Theorem

The above cost sharing (x1, …, xn) belongs to the core C(N,c).

Main result for n-node Jackson game
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n-node Jackson game  (cont’d)

Theorem   

The cost sharing rule                                             belongs to the core.

Proof: ▪
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Concluding remarks

 n-node tandem/Jackson games:

 Nonempty core: cooperation is beneficial.

 Specific cost sharing rule found.

 Possible payment to nodes with large capacities

Future work: 

 Other networks

 Other cost functions (performance measures)

 Other ways of cooperation (e.g. change routing)
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

“Everybody happy ?”


