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Switched network: model of interest

� Stochastic processing network of Harrison ‘00

� Switched networks: discrete-time instances 
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Switched network

� Example:  dynamic resource sharing
� Communication

� Bandwidth sharing model of Internet

� Wireless multi-hop a la mesh-network 

� Computation-Storage
� Cloud facility or data-center

� Human Resource (HR)
� Project management in large industries

� Transportation
� Road traffic signaling



Switched network

� Basic operational task

� Scheduling or sharing of resources 

� Among various contending entities

� Examples

� Which laptop transmits over WiFi

Q1 Q2 Qn

Arrivals

λ1 λ2 λn

� Which laptop transmits over WiFi

� Disk/CPU allocation to a Virtual Machine

� Project assignments to skilled employees

� Signaling mechanisms on road

� Network performance

� Depends crucially on scheduling policy
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Network performance

� Three metrics

� Capacity

� What is the effective resource 

� Queue-size, latency or delay

� How long does it take to get serviced� How long does it take to get serviced

� Complexity

� What sorts of implementations are feasible

� Interest is in understanding 

� Trade-offs between these metrics



Rest of the talk

� Role of reversibility (product-form distributions) in

� Design and analysis of scheduling algorithms

� Specifically, we shall discuss

� Scheduling inside queues  

� To achieve low network-wide delay

� Scheduling resources among queues

� To achieve low network-wide delay

� Implementing scheduling policies

� To achieve low-complexity, distributed design 



Network without constraints

� Network of n queues

� Exogenous Poisson packet arrival process for each queue

� Packets are of unit size (require unit amount of service)

� Each queue can serve packets in discrete time

� One packet per unit time (= time slot)

� Without any further constraint� Without any further constraint

� Served packets depart or join another queue



Network without constraints

� Network of n queues

� Exogenous Poisson packet arrival process for each queue

� Each queue can serve one packet per time slot

� Without any further constraint

� Scheduling required inside each queue

� To decide which amongst the waiting packets to serve first� To decide which amongst the waiting packets to serve first



Network without constraints

� Network of n queues in continuous time 

� Exogenous Poisson packet arrival process for each queue

� Each queue has unit service capacity

� Scheduling inside each queue as per 

� Pre-emptive Last In First Out (PL)

� Which may serve a packet in parts unlike in discrete time� Which may serve a packet in parts unlike in discrete time



Network without constraints

� Network of n queues in continuous time 

� PL Scheduling inside each queue 

� Quasi-reversible queues (cf. Kelly ’78)

� Stationary distribution is product-form  (cf. BCMP ’74, Kelly ‘78)



Network without constraints

� Network of n queues in continuous time 

� PL Scheduling inside each queue 

� The product-form distribution implies that 

� The average delay                      for each route i

� If all ρj= ρ, then delay of route i scales as (num of hops)/(1-ρ)
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Network without constraints

� Network of n queues in continuous time 

� PL Scheduling inside each queue 

� The product-form distribution implies that 

� The average delay of route i scales as (num of hops)/(1-ρ)

� Can we obtain similar performance for discrete time setting ?

� That is, serving each packet in entirety � That is, serving each packet in entirety 



Network without constraints

� Emulation Lemma.

� It is possible to design scheduling at each queue so that

� The time a packet departs from each queue in discrete time network

� Is at most 1 more than that in the corresponding 

� continuous time network with each node operating as per PL policy

� This “coupling” is distribution independent� This “coupling” is distribution independent



Emulation Lemma

� The scheduling algorithm in discrete time network

� Schedule at each queue as per the Last In First Out policy

� With respect to A, where A is the arrival time of a packet

� In this queue in the continuous time network operating with PL policy

� Ties broken as per continuous time network

� In summary

� By simulating continuous time network (in a causal manner) 

� It is possible to achieve delay per (packet-)flow

� That is proportional to (num of hops)/(1-ρ)



Network without constraints

� The achievable delay scaling 

� (num of hops)/(1-ρ)

� For M/M/1 queues in tandem 

� This is the best achievable

� For queues in tandem serving packets

� Delay scales as (num of hops) + 1/(1-ρ)

� The “pipe-lining” effect

� Question: which is the right scaling?

� Single “bottleneck” link entirely avoids this



Network with constraints

� Network of n queues

� Exogenous Poisson packet arrival process for each queue

� Packets are of unit size (require unit amount of service)

� Each queue can serve packets in discrete time

� One packet per unit time (= time slot)

� Scheduling constraints� Scheduling constraints

� Let σ=[σi] ∈{0,1}n be subset of queues served 

� Then 

� σ must satisfy certain constraints : represented by σ ∈ S ⊆⊆⊆⊆ {0,1}n

� Question: how does the “optimal” queue-size/delay scale

� Depending upon S and gap to the capacity (1-ρ)



Network with constraints

� Example 1: 

� Parallel queues, n of them

� The net average queue-size Q1+…+Qn ≈ n/(1-ρ)

Q1 Q2 Qn

λ1 = ρ λ2 = ρ λn = ρ



Network with constraints

� Example 2: 

� One server, n queues

� The net average queue-size: Q1+…+Qn ≈ 1/(1-ρ)

λ1 = ρ/n λ2 = ρ/n λn = ρ/n

Q1 Q2 Qn

λ1 = ρ/n λ2 = ρ/n λn = ρ/n



Network with constraints

� Example 3: 

� N x N switch: n=N2 queues

� Average queue-size: Q1+…+Qn conjectured
* to be N/(1-ρ)

� Known upper bound:  N2/(1-ρ)

� Known lower bound:  N/(1-ρ)

*  = QUESTA open problem special issue

Q1 Q2 Qn

λ1 = ρ/n λ2 = ρ/n λn = ρ/n

Matching 
Constraints



Network with constraints

� Network of n queues

� With scheduling constraints represented by 

� Schedule σ ∈ S ⊆⊆⊆⊆ {0,1}n

� The convex hull of S is the capacity region

� Let it be represented as (polytope)� Let it be represented as (polytope)

� Λ={x ∈ [0,1]n :  Ax ≤C} with

� A non-negative m x n matrix

� C non-negative valued m-vector

� Effectively, any scheduling policy imposes constraint

� Service rate σ ∈ Λ (with abuse of notation)



Network with constraints

� Proportional fair policy: each time

� Choose schedule so that induced service rate σ is such that

� It maximizes objective  Σi Qi log σI   over all σ ∈ Λ

� This is achieved by a simple randomized policy

� Find σ that solves above optimization problem

� Decompose σ as convex combination of actions in S� Decompose σ as convex combination of actions in S

� σ = Σk αkπk for πk∈S with Σk αk = 1

� Choose πk with probability αk

� This has been well analyzed by 

� Bonald-Massoulie ‘01, Kelly-Williams ‘04, Massoulie ’06, Kang-
Kelly-Lee-Williams ‘08, Ye-Yao ‘08



Network with constraints: prop. fair

� Kang-Kelly-Lee-Williams ‘08 

� Considered heavy traffic limit of such a network 

� With multiple links bottle-necked 

� Assumed

� Matrix A full rank

� Local traffic condition: for each j, there exists i s.t.  Aij > 0, Aij’= 0 for all j’≠j� Local traffic condition: for each j, there exists i s.t.  Aij > 0, Aij’= 0 for all j’≠j

� Characterized product-form stationary distribution 

� For diffusion approximation

� Further, it is limit of stationary distribution of the original system

� That is, exchange of limits is valid 

(Shah-Tsitsiklis-Zhong ‘11) 



Network with constraints: prop. fair

� The product-form stationary distribution implies

� The average queue-size is 

� And, for any policy 

� That is, prop. fair is optimal 

� Up to the “number of hops” (Kang-Kelly-Lee-Williams ‘08) 



Network w constraints: prop. fair

� Back to conjecture for switch

� Assuming the KKLW ‘08 holds for N x N switch

� Using Proportional fair scheduling policy

� The net average queue-size would turn out to be 

� 2N/(1-ρ) : matches the conjecture !

� Recent progress (Shah-Tsitsiklis-Zhong ‘xx)

� For uniform loading with (1-ρ) = 1/N

� We show that the net average queue-size is N17/6

� Recall (for (1-ρ) = 1/N)

� What was known: N3

� Conjecture is: N2



Network w constraints: implementation

� A reasonable policy

� At each time choose schedule σ ∈ S such that

� It maximizes objective ΣI F(σi) 

� For some function F which may depends on queue-size, etc.

� Implementation: � Implementation: 

� How to choose this schedule each time

� Using simple algorithm

� Low complexity

� Minimal data-structure 

� Preferably in a distributed manner

� With little protocol co-ordination overhead 



Network w constraints: implementation

� Product-form distribution

� Consider a Markov chain on S with stationary distribution

� Then 

Variational characterization of such distribution suggests� Variational characterization of such distribution suggests

� That is, effectively by sampling schedule at each time

� As per stationary distribution of this Markov chain is what we want



Network w constraints: implementation

� Two issues

� Designing Markov chain with such product-form distribution

� Reversible construction a la Metropolis-Hasting’s Rule

� The transitions of such a Markov chain are essentially distributed

� Separable objective is particularly useful for this property

� Sampling from stationary distribution of Markov chain

� The objective keeps changing every time

� And Markov chain makes only few transitions per unit time

� By choice of slowly varying objective F 

� It is possible to essentially sample from stationary distribution at all times

(Shah-Shin ‘08, ’10;  Jiang-Walrand ‘08) 



Discussion

� Reversible networks are useful
� Primarily because of their product-form stationary distribution

� Calculate average delay 
� Network without constraints

� Network with constraints using proportional fair policy

� Choose schedule that maximizes appropriate objective  

� Reversible networks are, however,  too specific
� Therefore,  approximate characterization can be quite useful

� In expanding scope of these results

� One such approximation is obtained means of 
� “Comparison” property  (Shah-Shin-Tetali ‘11)


