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Switched network: model of interest

» Stochastic processing network of Harrison ‘00

» Switched networks: discrete-time instances

Arrivals

Routing




Switched network

» Example: dynamic resource sharing

Communication
Bandwidth sharing model of Internet
Wireless multi-hop a la mesh-network

Computation-Storage
Cloud facility or data-center

Human Resource (HR)
Project management in large industries

Transportation
Road traffic signaling



Switched network

» Basic operational task

Scheduling or sharing of resources Arrivals

Among various contending entities xll le K¢<——

Examples QI Qz e0cooe Qn

Which laptop transmits over WiFi \/
Disk/CPU allocation to aVirtual Machine Routing

Project assignments to skilled employees

K Scheduler \\

e

Signaling mechanisms on road

I
Network performance v

Depends crucially on scheduling policy Departure



Network performance

» Three metrics
Capacity

What is the effective resource

Queue-size, latency or delay

How long does it take to get serviced

Complexity

What sorts of implementations are feasible

» Interest is in understanding

Trade-offs between these metrics



Rest of the talk

» Role of reversibility (product-form distributions) in

Design and analysis of scheduling algorithms

» Specifically, we shall discuss
Scheduling inside queues
To achieve low network-wide delay
Scheduling resources among queues
To achieve low network-wide delay
Implementing scheduling policies

To achieve low-complexity, distributed design



Network without constraints

» Network of n queues
Exogenous Poisson packet arrival process for each queue
Packets are of unit size (require unit amount of service)

Each queue can serve packets in discrete time
One packet per unit time (= time slot)

Without any further constraint

Served packets depart or join another queue




Network without constraints

» Network of n queues
Exogenous Poisson packet arrival process for each queue

Each queue can serve one packet per time slot
Without any further constraint
Scheduling required inside each queue

To decide which amongst the waiting packets to serve first




Network without constraints

» Network of n queues in continuous time
Exogenous Poisson packet arrival process for each queue
Each queue has unit service capacity

Scheduling inside each queue as per
Pre-emptive Last In First Out (PL)

Which may serve a packet in parts unlike in discrete time




Network without constraints

» Network of n queues in continuous time

PL Scheduling inside each queue
Quasi-reversible queues (cf. Kelly '78)
Stationary distribution is product-form (cf. BCMP 74, Kelly ‘78)
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Network without constraints

» Network of n queues in continuous time
PL Scheduling inside each queue

The product-form distribution implies that

The average delay E[Di]=zl'1p
If all p= P, then delay of fouteji scales as (hum of hops)/(1-p)

for each route i
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Network without constraints

» Network of n queues in continuous time
PL Scheduling inside each queue
The product-form distribution implies that

The average delay of route i-scales as (hum of hops)/(1-p)
Can we obtain similar performance for discrete time setting ?

That is, serving each packet in entirety




Network without constraints

» Emulation Lemma.

It is possible to design scheduling at each queue so that
The time a packet departs from each queue in discrete time network

Is at most 1 more than that in the corresponding

continuous time network with each node operating as per PL policy

This “coupling” is distribution independent

gb‘:‘_ >\(+>‘3 - . C

Se=0 Sty
A




Emulation Lemma

» The scheduling algorithm in discrete time network
Schedule at each queue as per the Last In First Out policy
With respect to | A |, where A is the arrival time of a packet

In this queue in the continuous time network operating with PL policy

Ties broken as per continuous time network

» In summary

By simulating continuous time network (in a causal manner)
It is possible to achieve delay per (packet-)flow

That is proportional to (num of hops)/(1-p)



Network without constraints

» The achievable delay scaling
(num of hops)/(1-p)

» For M/M/I| queues in tandem
This is the best achievable

» For queues in tandem serving packets

Delay scales as (num of hops) + 1/(1-p)
The “pipe-lining” effect

» Question: which is the right scaling?

Single “bottleneck” link entirely avoids this



Network with constraints

» Network of n queues
Exogenous Poisson packet arrival process for each queue
Packets are of unit size (require unit amount of service)
Each queue can serve packets in discrete time
One packet per unit time (= time slot)
Scheduling constraints

Let 6=[G.] €{0,1}"be subset of queues served
Then

G must satisfy certain constraints : represented by 6 € S c {0,1}"

» Question: how does the “optimal” queue-size/delay scale
Depending upon S and gap to the capacity (1-p)



Network with constraints

» Example 1:
» Parallel queues, n of them
» The net average queue-size Q,+...+Q_ = n/(1-p)

7»n=pl




Network with constraints

» Example 2:
» One server, n queues
» The net average queue-size: Q+...+Q_= 1/(1-p)

A= p/nl A, = p/nl
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Network with constraints

» Example 3:
» N x N switch: n=N? queues

» Average queue-size: Q,+...+Q_ conjectured” to be N/(1-p)
Known upper bound: N?/(1-p)
Known lower bound: N/(1-p)

A, = p/ni

A= p/nl A, = p/nl

Pk = QUESTA open problem special issue



Network with constraints

» Network of n queues

With scheduling constraints represented by
Schedule 6 € S < {0,1}"

» The convex hull of S is the capacity region

Let it be represented as (polytope)
A={x e [0,1]": Ax <C} with
A non-negative m x n matrix

C non-negative valued m-vector

» Effectively, any scheduling policy imposes constraint

Service rate 6 € A (with abuse of notation)



Network with constraints

» Proportional fair policy: each time

Choose schedule so that induced service rate G is such that
It maximizes objective X. Q.log 6, overalloc e A

This is achieved by a simple randomized policy
Find ¢ that solves above optimization problem

Decompose G as convex combination of actions in S
c =2 om formeS with X, oy, = 1
Choose m, with probability o,

» This has been well analyzed by

Bonald-Massoulie ‘01, Kelly-Williams ‘04, Massoulie 06, Kang-
Kelly-Lee-Williams ‘08, Ye-Yao ‘08



Network with constraints: prop. fair
» Kang-Kelly-Lee-Williams ‘08

Considered heavy trdffic limit of such a network
With multiple links bottle-necked

Assumed
Matrix A full rank

Local traffic condition: for each j, there exists i s.t. A; > 0,A;.= 0 for all j'#j

Characterized product-form stationary distribution
For diffusion approximation
Further, it is limit of stationary distribution of the original system

That is, exchange of limits is valid
(Shah-Tsitsiklis-Zhong ‘1 1)



Network with constraints: prop. fair

» The product-form stationary distribution implies

The average queue-size is
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» That is, prop.fair is optimal

Up to the “number of hops” (Kang-Kelly-Lee-Williams ‘08)



Network w constraints: prop. fair

» Back to conjecture for switch
Assuming the KKLWV ‘08 holds for N x N switch

Using Proportional fair scheduling policy

The net average queue-size would turn out to be
2N/(1-p) : matches the conjecture !

» Recent progress (Shah-Tsitsiklis-Zhong ‘xx)
For uniform loading with (1-p) = 1/N

We show that the net average queue-size is N!7/6

Recall (for (1-p) = 1/N)
What was known: N3
Conjecture is: N2



Network w constraints: implementation

» A reasonable policy

At each time choose schedule 6 € S such that
It maximizes objective X, F(G)

For some function F which may depends on queue-size, etc.

» Implementation:

How to choose this schedule each time
Using simple algorithm
Low complexity

Minimal data-structure

Preferably in a distributed manner

With little protocol co-ordination overhead



Network w constraints: implementation

» Product-form distribution

Consider a Markov chain on S with stationary distribution

(o) o exp( 3 F(e)

Then

Variational characterization of such distribution suggests

E, [ tZF(O‘;\-B D (max ZF(“aj ~ log | S|

NeS i

That is, effectively by sampling schedule at each time

As per stationary distribution of this Markov chain is what we want



Network w constraints: implementation

» Two issues

Designing Markov chain with such product-form distribution
Reversible construction a la Metropolis-Hasting’s Rule

The transitions of such a Markov chain are essentially distributed

Separable objective is particularly useful for this property

Sampling from stationary distribution of Markov chain
The objective keeps changing every time
And Markov chain makes only few transitions per unit time

By choice of slowly varying objective F

It is possible to essentially sample from stationary distribution at all times

(Shah-Shin ‘08, 10; Jiang-Walrand ‘08)



Discussion

» Reversible networks are useful

Primarily because of their product-form stationary distribution

Calculate average delay
Network without constraints
Network with constraints using proportional fair policy

Choose schedule that maximizes appropriate objective

» Reversible networks are, however, too specific
Therefore, approximate characterization can be quite useful
In expanding scope of these results

One such approximation is obtained means of
“Comparison” property (Shah-Shin-Tetali‘l l)



