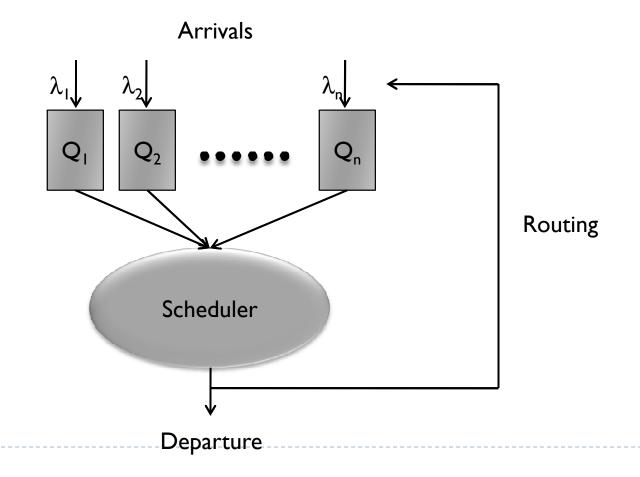
Reversibility and network algorithms

Devavrat Shah Massachusetts Institute of Technology

Switched network: model of interest

- Stochastic processing network of Harrison '00
 - Switched networks: discrete-time instances

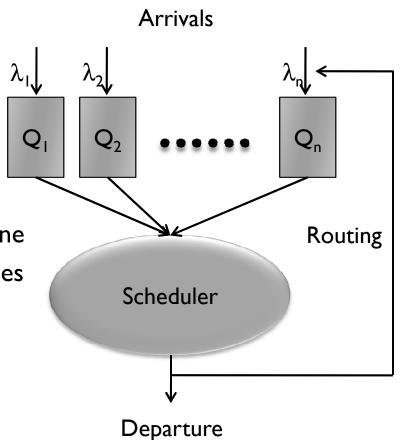


Switched network

- Example: dynamic resource sharing
 - Communication
 - Bandwidth sharing model of Internet
 - Wireless multi-hop a la mesh-network
 - Computation-Storage
 - Cloud facility or data-center
 - Human Resource (HR)
 - Project management in large industries
 - Transportation
 - Road traffic signaling

Switched network

- Basic operational task
 - Scheduling or sharing of resources
 - Among various contending entities
 - Examples
 - Which laptop transmits over WiFi
 - ▶ Disk/CPU allocation to a Virtual Machine
 - Project assignments to skilled employees
 - Signaling mechanisms on road
 - Network performance
 - Depends crucially on scheduling policy



Network performance

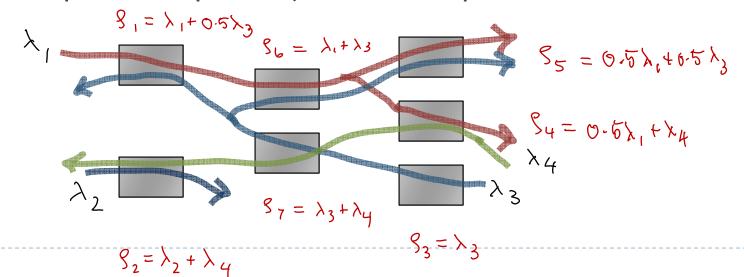
- Three metrics
 - Capacity
 - What is the effective resource
 - Queue-size, latency or delay
 - How long does it take to get serviced
 - Complexity
 - What sorts of implementations are feasible
- Interest is in understanding
 - Trade-offs between these metrics

Rest of the talk

- Role of reversibility (product-form distributions) in
 - Design and analysis of scheduling algorithms
- Specifically, we shall discuss
 - Scheduling inside queues
 - ▶ To achieve low network-wide delay
 - Scheduling resources among queues
 - To achieve low network-wide delay
 - Implementing scheduling policies
 - ▶ To achieve low-complexity, distributed design

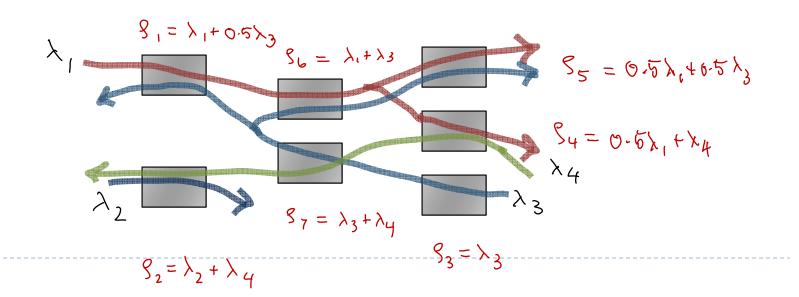
Network of n queues

- Exogenous Poisson packet arrival process for each queue
 - Packets are of unit size (require unit amount of service)
- ▶ Each queue can serve packets in discrete time
 - One packet per unit time (= time slot)
 - Without any further constraint
- Served packets depart or join another queue

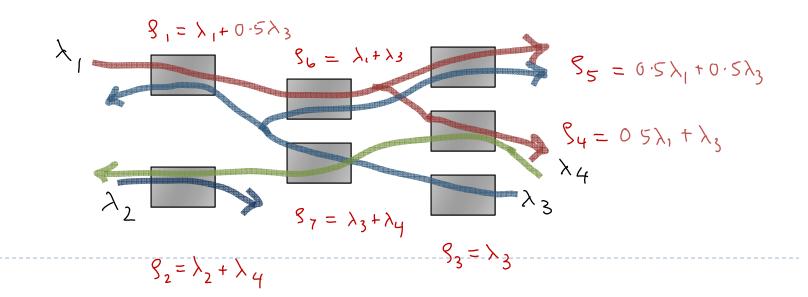


Network of n queues

- Exogenous Poisson packet arrival process for each queue
- ▶ Each queue can serve one packet per time slot
 - Without any further constraint
- Scheduling required inside each queue
 - ▶ To decide which amongst the waiting packets to serve first

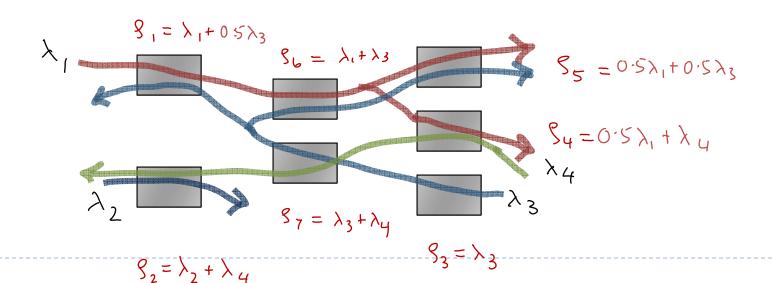


- Network of n queues in continuous time
 - Exogenous Poisson packet arrival process for each queue
 - ▶ Each queue has unit service capacity
 - Scheduling inside each queue as per
 - Pre-emptive Last In First Out (PL)
 - Which may serve a packet in parts unlike in discrete time

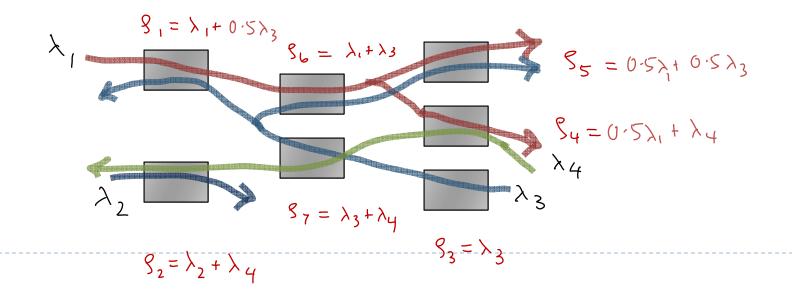


- Network of n queues in continuous time
 - ▶ PL Scheduling inside each queue
 - Quasi-reversible queues (cf. Kelly '78)
 - Stationary distribution is product-form (cf. BCMP '74, Kelly '78)

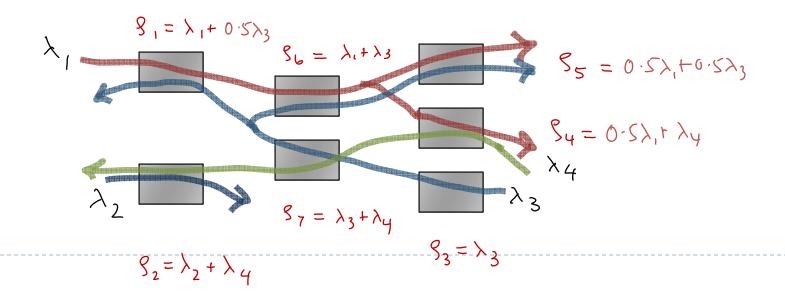
$$\mathbb{P}\left(Q_{i}=k_{1},...,Q_{7}=k_{7}\right) \propto \prod_{j=1}^{7} \mathbb{P}\left(Q_{j} \geq k_{j}\right) \sim \prod_{j=1}^{7} g_{j}^{k_{j}}$$



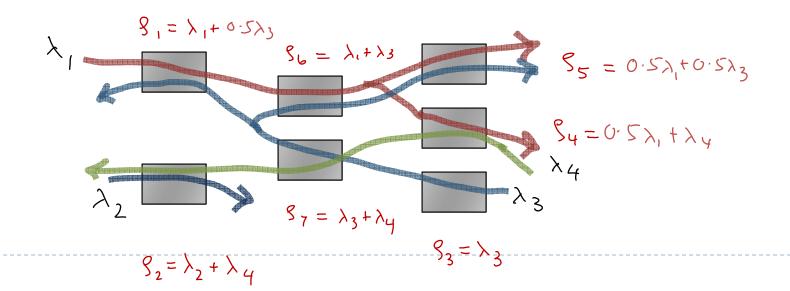
- Network of n queues in continuous time
 - ▶ PL Scheduling inside each queue
 - ▶ The *product-form* distribution implies that
 - ▶ The average delay $E[D_i] = \sum_{i: i \in I} \frac{1}{1 \rho_i}$ for each route i
 - If all $\rho_i = \rho$, then delay of route i scales as (num of hops)/(1- ρ)



- Network of n queues in continuous time
 - ▶ PL Scheduling inside each queue
 - ▶ The *product-form* distribution implies that
 - ▶ The average delay of route i scales as (num of hops)/ $(1-\rho)$
 - ▶ Can we obtain similar performance for discrete time setting?
 - ▶ That is, serving each packet in entirety



- ▶ Emulation Lemma.
 - It is possible to design scheduling at each queue so that
 - The time a packet departs from each queue in discrete time network
 - ▶ Is at most 1 more than that in the corresponding
 - □ continuous time network with each node operating as per PL policy
 - ▶ This "coupling" is distribution independent



Emulation Lemma

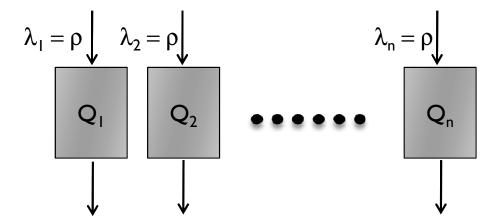
- ▶ The scheduling algorithm in discrete time network
 - Schedule at each queue as per the Last In First Out policy
 - ▶ With respect to A, where A is the arrival time of a packet
 - In this queue in the continuous time network operating with PL policy
 - Ties broken as per continuous time network
- ▶ In summary
 - By simulating continuous time network (in a causal manner)
 - It is possible to achieve delay per (packet-)flow
 - ▶ That is proportional to (num of hops)/ $(1-\rho)$

- The achievable delay scaling
 - (num of hops)/ $(1-\rho)$
- ▶ For M/M/I queues in tandem
 - This is the best achievable
- For queues in tandem serving packets
 - ▶ Delay scales as (num of hops) + $1/(1-\rho)$
 - ► The "pipe-lining" effect
- Question: which is the right scaling?
 - Single "bottleneck" link entirely avoids this

- Network of n queues
 - Exogenous Poisson packet arrival process for each queue
 - Packets are of unit size (require unit amount of service)
 - ▶ Each queue can serve packets in discrete time
 - One packet per unit time (= time slot)
 - Scheduling constraints
 - ▶ Let $\sigma = [\sigma_i] \in \{0,1\}^n$ be subset of queues served
 - ▶ Then
 - $\ \square \ \sigma$ must satisfy certain constraints : represented by $\sigma \in \ \textbf{S} \subseteq \{0,1\}^n$
- Question: how does the "optimal" queue-size/delay scale
 - ▶ Depending upon **S** and gap to the capacity $(1-\rho)$

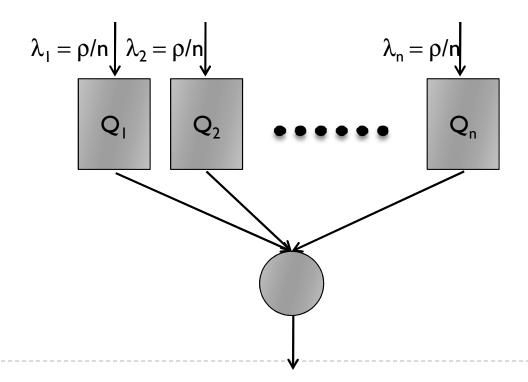
Example 1:

- Parallel queues, n of them
- ► The net average queue-size $Q_1 + ... + Q_n \approx n/(1-\rho)$



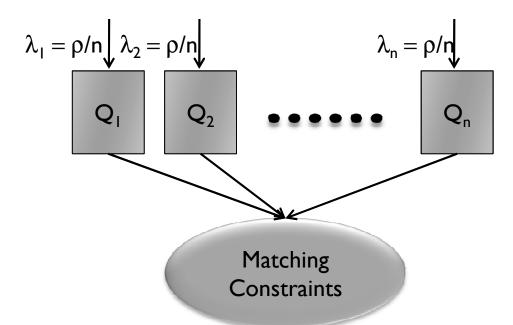
Example 2:

- One server, n queues
- ► The net average queue-size: $Q_1 + ... + Q_n \approx 1/(1-\rho)$



Example 3:

- N x N switch: $n=N^2$ queues
- Average queue-size: $Q_1 + ... + Q_n$ conjectured* to be $N/(1-\rho)$
 - ► Known upper bound: $N^2/(1-\rho)$
 - ▶ Known lower bound: $N/(1-\rho)$



* = QUESTA open problem special issue

- Network of n queues
 - With scheduling constraints represented by
 - ▶ Schedule $\sigma \in \mathbf{S} \subseteq \{0,1\}^n$
- ▶ The convex hull of **S** is the capacity region
 - Let it be represented as (polytope)
 - ▶ $\Lambda = \{x \in [0,1]^n : Ax \leq C\}$ with
 - ☐ A non-negative m x n matrix
 - ☐ C non-negative valued m-vector
- ▶ Effectively, any scheduling policy imposes constraint
 - Service rate $\sigma \in \Lambda$ (with abuse of notation)

- Proportional fair policy: each time
 - \triangleright Choose schedule so that induced service rate σ is such that
 - ▶ It maximizes objective $\Sigma_i Q_i \log \sigma_i$ over all $\sigma \in \Lambda$
 - This is achieved by a simple randomized policy
 - Find σ that solves above optimization problem
 - \blacktriangleright Decompose σ as convex combination of actions in **S**
 - \Box $\sigma = \Sigma_k \alpha_k \pi_k$ for $\pi_k \in \mathbf{S}$ with $\Sigma_k \alpha_k = 1$
 - Choose π_k with probability α_k
- This has been well analyzed by
 - Bonald-Massoulie '01, Kelly-Williams '04, Massoulie '06, Kang-Kelly-Lee-Williams '08, Ye-Yao '08

Network with constraints: prop. fair

- Kang-Kelly-Lee-Williams '08
 - Considered heavy traffic limit of such a network
 - With multiple links bottle-necked
 - Assumed
 - Matrix A full rank
 - □ Local traffic condition: for each j, there exists i s.t. $A_{ij} > 0$, $A_{ij} = 0$ for all $j \neq j$
 - Characterized product-form stationary distribution
 - ▶ For diffusion approximation
 - Further, it is limit of stationary distribution of the original system
 - That is, exchange of limits is valid (Shah-Tsitsiklis-Zhong '11)

Network with constraints: prop. fair

- ▶ The product-form stationary distribution implies
 - The average queue-size is

$$\mathbb{E}\left[Q_{i}\right] \approx \lambda_{i} \sum_{j} \frac{A_{ji}}{c_{j}-(A\lambda)_{j}}$$

$$\leq \left|\left\{j: A_{ji} \neq 0\right\}\right| \cdot \max\left(\frac{\lambda_{i} A_{ji}}{c_{j}-(A\lambda)_{j}}\right)$$

And, for any policy

$$\mathbb{E}\left[Q_{i}\right] \geq \max_{j} \frac{\lambda_{i} A_{ji}}{C_{j} - (A\lambda)_{j}}$$

- ▶ That is, prop. fair is optimal
 - Up to the "number of hops" (Kang-Kelly-Lee-Williams '08)

Network w constraints: prop. fair

- Back to conjecture for switch
 - Assuming the KKLW '08 holds for N x N switch
 - Using Proportional fair scheduling policy
 - The net average queue-size would turn out to be
 - ▶ $2N/(1-\rho)$: matches the conjecture !
- Recent progress (Shah-Tsitsiklis-Zhong 'xx)
 - For uniform loading with $(1-\rho) = 1/N$
 - ▶ We show that the net average queue-size is N^{17/6}
 - Recall (for $(1-\rho) = 1/N$)
 - □ What was known: N³
 - ☐ Conjecture is: N²

Network w constraints: implementation

- A reasonable policy
 - At each time choose schedule $\sigma \in S$ such that
 - It maximizes objective Σ_{l} $F(\sigma_{i})$
 - For some function F which may depends on queue-size, etc.
- Implementation:
 - How to choose this schedule each time
 - Using simple algorithm
 - □ Low complexity
 - Minimal data-structure
 - Preferably in a distributed manner
 - □ With little protocol co-ordination overhead

Network w constraints: implementation

- Product-form distribution
 - Consider a Markov chain on S with stationary distribution

$$P(\sigma) \propto \exp(\sum_{i} F(\sigma_{i}))$$

- Then
 - Variational characterization of such distribution suggests

$$\mathbb{E}_{\mathbf{P}}\left[\sum_{i} F(\sigma_{i})\right] \geq \left(\max_{\pi \in \mathcal{S}} \sum_{i} F(\pi_{i})\right) - \log |S|$$

- That is, effectively by sampling schedule at each time
 - As per stationary distribution of this Markov chain is what we want

Network w constraints: implementation

Two issues

- Designing Markov chain with such product-form distribution
 - Reversible construction a la Metropolis-Hasting's Rule
 - ▶ The transitions of such a Markov chain are essentially distributed
 - □ Separable objective is particularly useful for this property
- Sampling from stationary distribution of Markov chain
 - ▶ The objective keeps changing every time
 - ▶ And Markov chain makes only few transitions per unit time
 - By choice of slowly varying objective F
 - □ It is possible to essentially sample from stationary distribution at all times (Shah-Shin '08, '10; Jiang-Walrand '08)

Discussion

- Reversible networks are useful
 - Primarily because of their product-form stationary distribution
 - Calculate average delay
 - □ Network without constraints
 - □ Network with constraints using proportional fair policy
 - Choose schedule that maximizes appropriate objective

- Reversible networks are, however, too specific
 - Therefore, approximate characterization can be quite useful
 - In expanding scope of these results
 - One such approximation is obtained means of
 - "Comparison" property (Shah-Shin-Tetali 'II)