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Large-scale wireless networks

- covering large areas, huge numbers of nodes

- centralized control is infeasible

- nodes operate autonomously, and share medium in distributed
fashion

Nodes do not just use the network, they are the network



Large-scale wireless networks

Randomized algorithms provide popular mechanism for distributed
medium-access control

CSMA (Carrier-Sense Multiple-Access) protocol

- nodes sense their surroundings for ongoing transmissions

- a node will activate only if all nearby nodes are silent

- low implementation complexity, but highly complex behavior
on macroscopic level



Interference graph

Consider a network of N nodes on an undirected interference graph
G (V ,E ), where a transmitting node blocks all its neighbors in the
graph
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Interference graph

Consider a network of N nodes on an undirected interference graph
G (V ,E ), where a transmitting node blocks all its neighbors in the
graph

- if not blocked, node i activates after exponential back-off with
mean ν−1

i

- exponential transmissions with mean µ−1
i

- all nodes are saturated

- denote σi = νi/µi

[Boorstyn et al. (1980), Wang & Kar (2005), Durvy & Thiran (2006)]



Stationary distribution
X (t) = (X1(t), . . . ,XN(t)) ∈ S : activity states at time t

(X (t)) is a reversible Markov process on

S := {x ∈ {0, 1}N : xi + xj ≤ 1∀i , j ∈ E}

(collection of independent sets in G ) with stationary distribution

π(x) = Z−1
N∏

i=1

σxi
i , x ∈ S ,

with σi := νi/µi potential activity factor (‘offered’ load)

Throughput (‘carried’ load) of node i is

θi =
∑
x∈S

π(x)I{xi=1}



Loss networks and insensitivity

So far we assumed back-off periods and transmission durations to
be exponentially distributed

Connection with loss networks readily implies that stationary
distribution is in fact insensitive to distribution of transmission
durations

Partial balance properties show that stationary distribution
is insensitive to distribution of back-off periods as well, irrespective
of whether or not back-off process is frozen during activity of
neighbors (with Peter van de Ven)
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Queueing dynamics

So far we assumed saturated buffer conditions, where nodes always
have packets pending for transmission

In reality, however, buffer contents fluctuate as packets are
randomly generated and transmitted over time, giving rise to
queueing dynamics

In particular, buffers may empty from time to time, and nodes may
refrain from competition for medium during these periods



Queueing dynamics

Consider the same model as before, except

- packets arrive at node i according to a renewal process with
mean interarrival time 1/λi

- once a packet has been transmitted, it leaves the system

λi



Backlog-based CSMA protocols

Node i activates at exponential rate fi (Qi (t)) where Qi (t)
denotes the number of packets at node i at time t.

fi : [0,∞) 7→ [0,∞) is called activation function of node i .

Node i releases the medium at exponential rate
gi (t) = pi (Qi (t))µi .

gi (·) is referred to as the de-activation function.

hi (Qi ) = fi (Qi )/gi (Qi ) is referred to as activity function



Backlog-based CSMA protocols

Under any of the aforementioned queue-based CSMA protocols,
(Q(t),X (t), t ≥ 0) with Q(t) = (Q1(t), . . . ,QN(t)) is
continuous-time Markov process. Are there conditions on
ρ = (ρ1, . . . , ρN) guaranteeing ergodicity?

We are also interested in quantifying (mean) delays, depending on
the functions fi (·) and gi (·).



Backlog-based CSMA protocols

For suitable choices of fi (·) and gi (·) (e.g., fi (n) ≡ 1,
gi (n) = exp(− log log(n + 1)), system is stable as long as
ρ ∈ int(conv(S)) [Liu et al. (2008), Rajagopalan et al. (2009)]

fi (n) = log(n + 1) and gi (n) ≡ 1 also works

Jiang & Walrand (2008): The throughput function θ(σ) is
invertible on its range int(conv(S)). Solve inverse problems

σ : θ(σ) = γ ∈ int(conv(S))



Single node

System is stable if ρ < 1 and f (x)→∞ or g(x)→ 0 as x →∞.

For any choice of the functions f (·) and g(·), (Q(t),X (t), t ≥ 0)
is a continuous-time Markov process with state space
{0, 1, . . .} × {0, 1}.

Balance equations:

λπ(0, 0) = µπ(1, 1),

(λ+ µ)π(1, 1) = f (1)π(1, 0) + (µ− g(2))π(2, 1),

(λ+ f (n))π(n, 0) = λπ(n − 1, 0)

+ g(n + 1)π(n + 1, 1), n ≥ 1,

(λ+ µ)π(n, 1) = λπ(n − 1, 1) + f (n)π(n, 0)

+ (µ− g(n + 1))π(n + 1, 1), n ≥ 2.



Set µ = 1 and ρ = λ. Denote by N the stationary number of
packets in the system, i.e.

P {N = n} = lim
t→∞

P {N(t) = n} = π(n, 0) + π(n, 1),

Introduce G0(z) =
∑∞

n=0 π(n, 0)zn and G1(z) =
∑∞

n=1 π(n, 1)zn

and observe that

E{zN} = G0(z) + G1(z)

and
G1(z) =

ρz

1− ρz
G0(z).



Theorem
If f (n) = n and g(n) = 1,

G0(z) = (1− ρ)

(
1− ρ

1− ρz

)ρ

e(z−1)ρ. (1)

If f (n) = 1 and g(n) = 1
n ,

G0(z) =
(1− ρ)2

1− ρz
. (2)

In both cases,

E{N} =
2ρ

1− ρ
. (3)



Assume g(n) = 1.

Theorem
For f (·) strictly increasing and concave function,

E{N} ≥ ρ

1− ρ
+ f −1

(
ρ

1− ρ

)
. (4)

For f (·) strictly increasing, continuous and convex function,

E{N} ≤ ρ

1− ρ
+ f −1

(
ρ

1− ρ

)
. (5)

Note that, when f (n) = n the inequalities are in fact equalities.

For concave sub-linear functions, the mean number of packets in
the system is always larger than the mean number of packets in
the system with a linear activation function.



The bounds are asymptotically sharp.

In heavy traffic as ρ ↑ 1, E{N} grows for a logarithmic activation
rate like

exp(
ρ

1− ρ
)

for a linear activation rate like

2ρ

1− ρ

and for an exponential activation rate like

ρ

1− ρ

We thus see that more aggressive activation rates improve the
delay performance.



Theorem
(i) If f (n) = n, then

(1− ρ)N
d−−→ E2(1) as ρ ↑ 1 (6)

(ii) If f (n) = nα, 0 < α < 1, then

N

E{N}
d−−→ 1 as ρ ↑ 1 (7)

(iii) If f (·) is a strictly increasing, continuous and convex function
with limx→∞ f −1(x)/x = 0, then

(1− ρ)N
d−−→ E1(1) as ρ ↑ 1, (8)

(9)



Metastability and mixing

transition time

TN )ν(

Consider the case f (n) = 1 and g(n) = 1. When all L green nodes
are active, it will take long time for any of L red nodes to gain
access to the medium

Once one of green nodes has turned off, adjacent green node must
turn off as well before first one turns on again, in order for red
node to gain access

Probability of latter event O(1/ν), and TN(ν) is O(ν)



Metastability and mixing

Consider 2L× 2L grid network with 1-hop interference range

transition time

(ν )NT

When all 2L2 green nodes are active, it will take long time for any
of red nodes to gain access to the medium



Metastability and mixing

Fluid limits reflect interplay between metastability and queueing
dynamics

Assume queue-dependent activation rate function f (·)

Transition times between dominant activity states are O(f (N)H)
when queue sizes are O(N), where H depends on network
structure, e.g.,

- Complete interference graph: H = 0

- Ring network: H = 1

- Grid network: H = L or H = 2L

- Complete bipartite graph: H = M − 1



Fluid limits

Examine the dynamics of the Markov process Z (t) = (Q(t),X (t))
using fluid limits.

Consider a sequence of processes ZN(t), where the initial states
satisfy

∑M
i=1 Qi (0) = N and QN

i (0)/N → qi ≥ 0 as N →∞.

The process Z̄N(t) = ( 1
N QN(Nt),XN(Nt)) is called the

fluid-scaled version of the process ZN(t). Note that the activity
process is scaled in time as well, but not in space.



Stochastic fluid limits

Unlike in most queueing systems where fluid limits follow
deterministic trajectories described by a set of differential
equations, our system may exhibit fluid limits that are stochastic
processes.

ZN(t) has two interacting components, QN(t) and XN(t).

On the one hand, the evolution of QN(t) depends on the rate at
which queues are served, and in turn depends on XN(t).

On the other hand, when queues QN(t) are fixed, the process
XN(t) is a reversible Markov process on the set of possible
activation states whose transitions are functions of QN(t).



Trichotomy

Fluid limits reflect interplay between metastability and queueing
dynamics

As it turns out, we encounter different types of fluid limits
depending on the mixing properties of the activity process XN(t).
These properties depend on the choices of activity functions, fi (·)
and gi (·).



Fast mixing - Deterministic fluid limits

Transitions between the various activity states are not observed in
the the fluid regime

In such cases, XN(t) evolves much faster than QN(t) as N grows
large, and to obtain the rate at which queues are served in the
fluid regime, the activity process XN(t) is averaged.

f (N)H � N: transitions occur on much faster time scale than
O(N).



Slow mixing - Inhomogeneous Poisson fluid limits

Transitions between the various activation states are observed in
the fluid regime.

f (N)H ∼ N: transitions occur on time scale O(N), and will be
observed at fluid level, yielding piecewise linear fluid limit, with
switching points governed by time-inhomogeneous Poisson process



Torpid mixing - Pseudo-deterministic fluid limits

When the transitions between the various activation states occur
on a time scale slower than N, the activation state seems to be
frozen in the fluid regime.

f (N)H � N: transitions occur on much slower time scale than
O(N), and will not manifest themselves at fluid level, yielding
piecewise-linear fluid limit, pseudo-deterministic except for initial
direction



Example: 2-partite interference graphs

M1 = M2 = 1, f (n) = n, g(n) = 1



Example: 2-partite interference graphs

M1 = M2 = 2, f (n) = n, g(n) = 1



Example: 2-partite interference graphs

M1 = M2 = 3, f (n) = n, g(n) = 1



Example: 2-partite interference graphs

M1 = M2 = 3, f (n) =
√

n, g(n) = 1



Example: 2-partite interference graphs

M1 = M2 = 3, f (n) = log(n + 1), g(n) = 1



Summary

Various clever algorithms have been developed for finding the
back-off rates that yield a particular target throughput vector
[JW09]

In the same spirit, several powerful algorithms have been devised
for adapting the transmission lengths based on backlog
information, and been shown to guarantee maximum stability
[JSSW10, RSS09].

Ghaderi & Srikant 2010 recently showed that activity functions can
be used that are essentially linear in order to reduce the delays
while preserving maximum-stability guarantees.

Can we say more (delays, time scales, heavy traffic, fluid limits)?


