## Performance analysis of zone picking systems

Ivo Adan, Jelmer van der Gaast, René de Koster, Jacques Resing

Thursday 29 November
Technische Universiteit
Eindhoven
University of Technology

## Zone-picking systems



- Popular order-picking system
- Storage area divided in order-picking zones
- Reduction of walking distances and congestion in aisles
- Flexible capacity and high-throughput ability
- Fit-for-use for a wide range of products and order profiles


## Motivation

- Develop fast and accurate method to predict performance:
- utilization of pick stations
- system throughput
- order lead time
- Method to support design decisions:
- layout of the network
- size of zones
- location of items
- number of pickers and zones
- WIP level


## Zone-picking systems



## Zone-picking systems



## Zone-picking systems



## Zone-picking systems



Segment 1

## Zone-picking systems



## Zone-picking systems

Disadvantage:

- congestion and blocking under heavy use
- leads to recirculation and long order lead times

Modeling:

- blocking is crucial aspect!
- describe elements (transport, zones) as network of queues

Method of analysis: queueing theory

Needed?

## Some improvements?



Pickers are equally fast, 10 circulating totes

Question: Replace one picker by a picker that is twice as fast. How does this affect mean order lead time? Throughtput?

Question: Does your answer change in case of more totes? Less totes?

## Multiple pickers or a single one?



4 pickers, or one picker that is four times faster?

Question: What do you prefer, 4 pickers or one fast picker?

Question: What do you prefer if pick time variability is high?

Question: What do you prefer if the load is low?

## Multiple pickers or a single one?



4 pickers, or one picker that is four times faster?

The mean order lead time can be predicted by...

$$
E(S) \approx \frac{\Pi_{W}}{1-\rho} \frac{E(R)}{c}+E(B)
$$

## Layout of single-segment



## Modeling of single-segment

- $N$ is number of totes
- $M$ is number of zones
- $s$ is set of nodes; three types

1. Entrance/exit, $e$
2. Zones, $\mathscr{Z}=\left\{z_{1}, \ldots, z_{M}\right\}$
3. Conveyors, $\mathcal{C}=\left\{c_{1}, \ldots, c_{M+1}\right\}$

- Each tote has class $r \subseteq Z$ of zones to be visited, for example, $\boldsymbol{r}=\left\{z_{2}, z_{3}\right\}$


## Modeling of single-segment



Closed queueing network with $\mathcal{C}=\left\{c_{1}, c_{2}, c_{3}\right\}$ and $\mathcal{Z}=\left\{z_{1}, z_{2}\right\}$

## Modeling of single-segment

- Entrance node releases new totes one-by-one of class $r$ with probability $\psi_{r}$ at exponential rate $\mu_{e}$
- Conveyor nodes are delay nodes with a fixed delay of rate $\mu_{i}$
- Zones have:
- $d_{i}(\geq 1)$ order pickers
- Exponential pick times with rate $\mu_{i}$
- Finite buffers of size $q_{i}$


## Analysis of single-segment

- Distribution of network is intractable: Approximate!
- tote jumps over full zone and proceeds as if zone has been visited...
- Jump-over network has product-form solution!
- Flows of jump-over network should match with block-and-recirculate: passing tote is labeled $z_{i}$ not visited with probability $b_{z_{i}}$ and labeled $z_{i}$ visited otherwise, independent of whether the tote visited $z_{i}$ or not
- $b_{z_{i}}$ is blocking probability in block-and-recirculate network: Unknown!


## Analysis of single-segment

Theorem:
Jump-over network has product-vorm stationary distribution:

$$
\pi(\bar{x})=\frac{1}{G} \prod_{i \in S}\left(\frac{V_{i}}{\mu_{i}}\right)^{\bar{x}_{i}} \prod_{i \in \mathcal{C}} \frac{1}{\bar{x}_{i}!} \prod_{i \in \mathcal{Z}} \frac{1}{\gamma_{i}\left(\bar{x}_{i}\right)}
$$

where

- $\bar{x}_{i}$ number of totes in node $i$
- $G$ is normalizing constant
- $V_{i}$ visiting frequency to node $i$
- $\gamma_{i}$ is (queue dependent) service rate multiplier

Hence:
Jump-over netwerk can be exactly evaluated by Mean Value Analysis (MVA)

## Analysis of single-segment

Arrival theorem for closed queueing network:
Blocking probrability $b_{z_{i}}$ of zone $z_{i}$ is equal to:

$$
b_{z_{i}}=\pi_{z_{i}}\left(d_{z_{i}}+q_{z_{i}} \mid N-1\right),
$$

where $\pi_{z_{i}}(k \mid N)$ probability of $k$ totes in zone $z_{i}$ in network with $N$ totes

Remark:
Probabilities $\pi_{z_{i}}(k \mid N)$ can be calculated recursively (over $N$ ) by MVA

## Analysis of single-segment

- Step 0:

Initialize $b_{z_{i}}^{(0)}=0$ and $j=0$

- Step 1:

Calculate by means of MVA:

1. Mean order lead times and throughput
2. Distribution of totes per node

- Step 2:
$j=j+1$ and estimate new blocking probabilities
$b_{z_{i}}^{(j)}=\pi_{z_{i}}\left(d_{z_{i}}+q_{z_{i}} \mid N-1\right)$
- Step 3:

Return to Step 1 until $\left|b_{z_{i}}^{(j)}-b_{z_{i}}^{(j-1)}\right|<\epsilon$

## Results for single-segment

## Parameters single-segment test set (9600 cases)

| Name | Parameter |
| :--- | :--- |
| Number of zones | $1,2,3,4,5,6,7,8$ |
| Number of totes | $10,20,30,40,50,60,70,80$ |
| Transport mean of conveyors | $20,30,40,50,60$ |
| Service mean of zones | $10,15,20,25,30$ |
| Buffer size of zones | 0,1 |
| Number of order pickers | $1,2,3$ |

## Results for single-segment

| Zones | Error (\%) in system throughput |  |  |  |  | Error (\%) in circulation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Avg. | SD. | $0-1$ | $1-5$ | > 5 | Avg | SD | $0-1$ | 1-5 | $>5$ |
| 1 | 0.08 | 0.08 | 100.0 | 0.0 | 0.0 | 0.08 | 0.11 | 100.0 | 0.0 | 0.0 |
| 2 | 0.67 | 0.84 | 70.0 | 29.8 | 0.2 | 0.78 | 1.23 | 69.0 | 29.8 | 1.3 |
| 3 | 0.78 | 1.03 | 68.2 | 31.7 | 0.2 | 0.94 | 1.48 | 67.2 | 30.3 | 2.5 |
| 4 | 0.73 | 1.05 | 71.9 | 27.8 | 0.3 | 0.90 | 1.52 | 71.3 | 25.9 | 2.8 |
| 5 | 0.64 | 1.00 | 76.6 | 23.3 | 0.2 | 0.80 | 1.45 | 75.0 | 22.4 | 2.6 |
| 6 | 0.54 | 0.91 | 80.4 | 19.5 | 0.1 | 0.68 | 1.33 | 78.6 | 18.9 | 2.5 |
| 7 | 0.45 | 0.81 | 83.8 | 16.2 | 0.0 | 0.57 | 1.20 | 82.4 | 15.8 | 1.8 |
| 8 | 0.38 | 0.71 | 86.7 | 13.3 | 0.0 | 0.48 | 1.07 | 85.2 | 13.5 | 1.3 |

## Layout of multi-segment



## Modeling of multi-segment

- $K$ is number of segments
- $N$ is number of totes
- $N^{k}$ is maximum number of totes in segment $k$
- $M$ is number of zones
- $\delta$ is set of nodes; three types

1. Entrance/exit nodes, $\mathcal{E}=\left\{e_{0}, e_{1}, \ldots, e_{K}\right\}$
2. Zones, $\mathfrak{Z}=\cup_{k=1}^{K} \mathcal{Z}^{k}, \mathcal{Z}^{k}=\left\{z_{1}^{k}, \ldots, z_{m^{k}}^{k}\right\}$
3. Conveyors, $\mathcal{C}=\cup_{k=0}^{K} \mathcal{C}^{k}$,

$$
\mathfrak{C}^{0}=\left\{c_{1}^{0}, \ldots, c_{K+1}^{0}\right\} \text { and } \mathfrak{C}^{k}=\left\{c_{1}^{k}, \ldots, c_{m^{k}+1}^{k}\right\}
$$

- Each tote has class $r \subseteq Z$ of zones to be visited, for example, $\boldsymbol{r}=\left\{z_{2}^{1}, z_{3}^{2}\right\}$


## Modeling of multi-segment



## Corresponding closed queueing network

## Analysis of multi-segment

- Blocking at two levels:

1. when zone is full
2. when segment is full

- Jump-over network:
passing tote is labeled segment $k$ not visited with prob $B_{k}$, and labeled segment $k$ visited, independent of whether tote visited segment $k$ or not
- $B_{k}$ is blocking probability of segment $k$ in block-and-recirculate network: Unknown!


## Analysis of multi-segment

## Aggregation:

Replace segments by flow equivalent servers, with rates

$$
\mu_{F E S_{k}}(n)=X^{k}(n), n=1, \ldots, N^{k}, k=1, \ldots, K
$$

where $X^{k}(n)$ is throughput of segment $k$ in isolation

## Aggregation of multi-segment



Segments replaced by flow equivalent servers

## Aggregation van multi-segment

- Norton's theorem:

Aggregate network has same performance as jump-over network

- Analysis of aggregate network same as one of single-segment network!
- Arrival theorem:

Blockings probability $B_{k}$ of segment $k$ is equal to:

$$
B_{k}=\Pi_{k}\left(N^{k} \mid N-1\right),
$$

where $\Pi_{k}(n \mid N)$ is probability of $n$ totes in segment $k$ in network with $N$ totes

## Analysis of multi-segment

- Step 0:

Initialize $b_{z_{i}^{k}}^{(0)}=B_{k}^{(0)}=0$ and $j=0$

- Step 1:

Calculate for aggregate network and each segment by MVA:

1. Mean order lead times and throughput
2. Distribution of totes per node

- Step 2:
$j=j+1$ and estimate new blocking probabilities
$b_{z_{i}^{k}}^{(j)}=\pi_{z_{i}^{k}}\left(d_{z_{i}^{k}}+q_{z_{i}^{k}} \mid N-1, N^{k}-1\right), \quad B_{k}^{(j)}=\Pi_{k}\left(N^{k} \mid N-1\right)$
- Step 3:

Return to Step 1 until $\left|b_{z_{i}^{k}}^{(j)}-b_{z_{i}^{k}}^{(j-1)}\right|<\epsilon$ en $\left|B_{k}^{(j)}-B_{k}^{(j-1)}\right|<\epsilon$

## Results for multi-segment

Example using real-life data of large Dutch wholesaler of non-food:

- 4 segments
- 3 pick-by-light segments with each $2 \times 4$ zones
- 1 pallet pick with 3 zones
- Total:

1. 24 pick-by-light zones
2. 3 pallet pick zones

Compare 3 storage strategies:

1. Minimize expected number of segments to be visited (Current).
2. Balance work-load over segments (Balanced).
3. Random storage (Random).

## Results for multi-segment



## Conclusions

- Zone-picking system can be described by:
closed multi-class queueing network with block-and-recirculate blocking
- Network can be approximated by jump-over network
- Excellent and fast estimates of performance by MVA and Norton

