

Spare Parts Planning: New Concept for the Field Stock Planning océ

Aafke Visser-Van Boekel (Océ) Geert-Jan van Houtum (TU/e)

Introduction

- Mathematical principles
- Fieldstock model
 - Calculation expected usage
 - Points of attention
- Pilot projects
- Full implementation
- Project outline

océ

Océ

- Member of the Canon Group since 2010
- Over 20,000 professionals worldwide
- Top 5 for office printing and high volume printing
- Global leader in wide format printing systems
- Products sold in 90 countries
- Wide range of products

Service strategy Océ

- Service oriented: 71% recurring revenues
- Service level is key selling point
- Service contracts for typically 5-9 years after placing machine
- Service parts demand between 0 and 10,000 pcs/year
- Service parts price range 0 10,000 EUR

OC

Field stock model within Océ

- Field stock model implementation is part of strategic improvement program Océ
- Being rolled out to all European sales organizations during 2012 and 2013

OCÉ

Overview supply chain (1)

OCÉ

Overview supply chain (2)

- Three types of warehouses;
 - Car stocks of field service technicians
 - QRS's for quick shipment to car stocks
 - CSC for urgent orders

OCÉ

Overview supply chain (3)

- Main KPI for service level field stock
 - Second visit rate due to parts

océ

Old model for car stock calculation

Model used by some sales organizations

- Focus on car stock; QRS not considered
- Single item approach
- 'Minimum required usage level' very important
- Manual review by other sales organizations

OCÉ

- Introduction
- Mathematical principles
- Fieldstock model
 - Calculation expected usage
 - Points of attention
- Pilot projects
- Full implementation results
- Project outline

océ

- Normal delivery from car stock
- If out of stock: lateral transshipment from QRS
- Demand at QRS: <u>overflow</u> demand
- Challenge: *How to model this overflow demand?*

Evaluation method (3)

- arrival rate m
- service time = replenishment leadtime
- c = basestock level

OCÉ

Evaluation method (4)

océ

Evaluation method (5)

<u>QRS:</u>

Receives multiple overflow streams Is also as an M|G|c|c queue

Approximation:

Inventory level at QRS is independent of inventory levels at cars

=> Simple approximation for <u>First Visit Fill Rate</u>

OCÉ

Optimization: Greedy heuristic

- Bring all items in one model
- Cost factors:
 - Inventory holding costs
 - Costs for deliveries from QRS
- Start with zero base stock levels
- Add iteratively stock:
 - Per item per stockpoint: Compute increase in (First Day Fill Rate)
 - Increase stock for combination with highest ratio
- Stop criterium:
 - Constraint for First Day Fill Rate satisfied
 - No further decrease in costs if extra parts are added

OCÉ

- Introduction
- Mathematical principles
- Fieldstock model
 - Calculation expected usage
 - Points of attention
- Pilot projects
- Full implementation
- Project outline

océ

Scope of the fieldstock model

- Field stock: car stocks and QRS's
- Objective of model
 - Achieve the targeted second visit rate due to parts with the lowest costs possible
- Two steps
 - 1. Calculate expected usage per car stock: developed independent of field stock model
 - 2. Calculate required stock for QRS and car stock

OCÉ

Calculation expected usage

Expected usage calculation had to be added to give the fieldstock model the correct input

OCÉ

Points of attention and adjustments

Special parts for which results have to be adjusted;

- Large parts
- Usage quantity
- Fragile parts
- Copy volume is not taken into account
 - Some parts break down based on their usage
- Rubbish in = rubbish out
 - Wrong reporting results in wrong normstocks

OCÉ

- Introduction
- Mathematical principles
- Fieldstock model
 - Calculation expected usage
 - Points of attention
- Pilot projects
- Full implementation
- Project outline

océ

Pilot region Germany

- Pilot project Océ Germany
 - 7 technicians
 - 1 QRS
- Second visits due to parts
 - July 2009-December 2009; 9,5%
 - January 2010-March 2010; 4,1%

océ

Results pilot region France

- Pilot project Océ France
 - 6 technicians
 - 1 QRS
- Red line shows increased parts availability; from 10% to 4%
- Second visits also decreased, but not as sharp as parts availability
- Technicians behavior results in different results

- Introduction
- Mathematical principles
- Fieldstock model
 - Calculation expected usage
 - Points of attention
- Pilot projects
- Full implementation results
- Project outline

océ

Full implementation France

• Inventory levels remained unchanged

océ

Implementation results USA

• Scope

- QRS inventory
- Car stocks out of scope
- 45 QRS's USA-wide
- Results
 - \$3,0 mln inventory reduction (21%)
 - Service levels remained unchanged

océ

- Introduction
- Mathematical principles
- Fieldstock model
 - Calculation expected usage
 - Points of attention
- Pilot projects
- Full implementation results
- Project outline

océ

Printing for Professionals