

Models for warehouse design and control: simulation, analytic or both?

29-11-12 Bruno van Wijngaarden Systems Architect Vanderlande Industries

Vanderlande Industries

- Design and Implement material handling systems
 - Bagage handling (Schiphol, Heathrow)
 - Warehouse mechanisation (Tesco, Lidl)
 - Parcel sortation (UPS, DHL, DPD)
- Global presence (2400 employees)
 - Veghel headquarters (1500 employees)
- Annual turnover of 700 M Eur

Equipment Control emulation

Real Situation Process Control Equipment Control Equipment Control emulation model 1 1 1 4 4 4 4 4 4 4 4 **Simulate Equipment Field Equipment** IJ

 Model is a set of interconnected machines and buffers
"Plant" – "Controller" model architecture, controller executes performance optimising algorithms

www.vanderlande.com

Process Algebra model order generator 5x 3x 1xminiload transportloop workstation input with output with "engineering "engineering offering work worldview" worldview" bid for work control choice of best bidacknowledgement negotiated work input buffer output buffer work

Process Algebra input

4	A	В	C	D	E	F
1	Miniloads	MiniLoads 💽	Transport loop	Workstations		
2						
3	number of cranes	4	total length of the loop (m)	35.0	number of workstations	2
4	load handling devices (#)	4	speed (m/minute)	n/minute) 50.0 design capacity (totes/hour)		345.0
5	output buffer size (incl. deposit) (totes)	8	design capacity (totes/hour)	1500	variation in process time (%)	20.0
6	design capacity (totes/hour)	185.0	distance last ASRS and first workstation (m)	10.0	number of assigned orders	4
7	variation process time (%)	15.0	distance between ASRSs (m)	2.5	number of pick-to locations	4
8			distance between workstations (m)	4.0	product tote input buffer type	FIFO
9			loop buffering (totes/workstation)	0	product tote input buffer size (totes)	12
10						
11						
12						
13	order size distribution		Maximum simulated time (hours)	5		
14	size	weight			number of positions on the loop	18
15	1	30			estimated window length (m)	1.9
16	2	10			corrected total cycle time (s)	43.2
17	3	4			return distance (m)	13.5
18	4	1			system design capacity (totes/hour)	690
19	5	1				
20			average order size		1.5	
21					assigned orders * average order size	6.2
22					average travel time ASPS (a)	12.0
2/					(hased on constant tote handling t	ime = 16 e)
25					shortest possible ASRS cycle (s)	18.2
26						10.2
27					•	
28						
29						
30						1
31					Circulate	(
32			Save XLS copy		Simulate	Isualize
33						
34						

Process Algebra output

component	para	average	[confi	dence]	accur	[min,	max]
storage1	Thru	195.3	[192.5,	198.0]	1.4%	[180.3,	208.3]
	flow	92.9	[88.3,	97.5]	5.2%	[28.7,	271.2]
	WIP	5.0	[4.7,	5.4]	6.8%	[0.0,	14.0]
Transport1	Thru	977.0	[960.9,	993.1]	1.7%	[793.2,1	175.5]
	flow	16.6	[16.4,	16.8]	1.2%	[3.0,	57.8]
	WIP	4.5	[4.3,	4.7]	4.1%	[0.0,	12.0]
workstation1	Thru	328.4	[322.2,	334.6]	1.9%	[295.8,	359.4]
	flow	65.5	[61.9,	69.0]	5.7%	[6.8,	400.9]
	WIP	6.0]	5.5,	6.5]	8.8%	E	0.0,	17.0]

ШW

What do we "lose" in terms of system performance when we do not model optimization algorithms?

Alternatively, how to model these optimization algorithms in analytic models?

Can a solution be validated using analytic models only?

How to expand our comfort zone to analytic models?