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Parameter estimation for dynamical systems based upon Hopfield and Tank
neural networks

Continuous Hopfield neural networks [4] are dynamical systems, inspired by
biological neurons, that have been applied to the solution of a number of
computational problems, notably associative memory and combinatorial opti-
mization [5]. A method for parameter estimation for dynamical systems has
been proposed [3], by using a continuous Hopfield network to minimize the
prediction error. Since the proposed method has a natural dynamical defi-
nition as an Ordinary Differential Equation, its analysis can be undertaken
with the tools of Lyapunov stability theory. It has been proved [2] that, under
usual assumptions of persistent excitation, the ”Hopfield estimator” converges
to the actual values of the parameters, even when they are time-varying. The
achievement of estimates with bounded estimation error has also been proved
[1] in the presence of disturbances in the system state variables. The method-
ology can be considered within the framework of robust control (e.g. [6])
rather than in a statistical approach [7], where assumptions on the statisti-
cal distribution of the disturbances must be made. Ongoing research aims
at determining the robustness margin of the proposed estimator, improve its
performance and relax the requirements for persistent excitation.
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head and Mark Girolami

Probabilistic integration for inference over differential equation models

We introduce a new methodology for inference on model parameters for sys-
tems of ordinary differential equations. Classical estimation approaches con-
struct the likelihood function using numerical solutions that are fully determin-
istic and thus ignore approximation uncertainty. We propose a probabilistic
alternative to using a deterministic solver. The ODE solution is modeled as a
stochastic process obtained by a sequential algorithm that samples iteratively
from the derivative space and smooths the sampled points via Gaussian process
regression. This Bayesian framework incorporates solution uncertainty in the
likelihood and thus in the inference process. The poster describes the proposed
methodology and its application to simulated data from the FitzHughNagumo
system of ODEs.

Anani Lotsi (University of Groningen) and Ernst Wit

Modelling sparse ordinary differential equations (ODEs) using penalized graph-
ical models

Inferring parameters in ODEs from noisy data is a difficult problem (Ramsay
2008, Brunel and d’Alché-Buc, 2007). We aim at recovering the network of
the noisy observed data and at the same time capturing the stochastic nature
of the biological process as well as their dynamic behavior. It is especially
difficult to infer the structure in high dimensional in the so-called ”large p,
small n” settings (namely when the number of observations is smaller than the
dimension of the observed response). This would involve determining struc-
tural zeros in the precision matrix or complicated model comparisons. In this
work we connect the ODE to a graphical model using various approximations
which can be made arbitrarily small via the EM algorithm.

José de Miranda (University of São Paulo)

Estimation of the kernel of a singular integral operator

We address the estimation of the discrete dynamical system generated by the
iterations of the singular integral operator f → Tf defined by

Tf(x) =
1∫ 1

0 K(x, y)f(y)dy
.

We present a methodology for the estimation of the kernel K(x, y) in this
operator. This kernel is assumed to be a positive semi-definite symmetric
non-negative kernel such that

∫ 1
0 K(x, y)dy ≥ δ > 0. It is also assumed to be

square integrable on [0, 1]2. The estimator K̂ of K is based on a measured
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orbit of a function under this dynamics. We will suppose that this orbit does
not cycle. Measured points of this orbit, �T if, i ∈ N, are supposed to be of
the form �T if = T if + εi where εi is i.i.d. functional noise. We prove the
consistency of the estimator K̂, under some assumptions on the noise.
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