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•  During process operation we need to know the state of the system 
–  Process Monitoring 
–  Process Control 

•  Nonlinear dynamic process models (DAEs) with measurement and 
process noise 

•  Use measurements, mathematical model to estimate full state set 
•  Obtained through time-critical on-line nonlinear programming 

(NLP) solutions  
 

State 
Estimator 

NMPC Controller 
Process Monitoring 

Motivation for State Estimation Strategy 
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•  Dynamic nonlinear process represented by	


•  where, wk and vk are Gaussian, zero mean, uncorrelated random 
variables	

–  The process noise wk may represent plant-model mismatch or 

unknown disturbances, assumed to be white with N(0, Qk)	

–  Measurement noise, vk comes from measurement equipment (sensors). 

Also white, but with covariance N(0, Rk). 	


State Estimation Setting 

4 

States	  

zk+1 = f (zk) + wk

Measurements	


yk = h (zk) + vk
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•  State estimate pdf will be given by1	


Probability of zk given measurements up to l	


–  If l < k  we get the predicted state	

–  If l = k  we get the filtered state	

–  If l > k  we get the smoothed state	


5	
1. Jazwinski, A. H. Stochastic Processess and Filtering Theory; Dover, 2007	


l = k	
l < k	
 l > k	


Smoothed	
Predicted	

Filtered	


State Estimation Setting 

•  State estimate pdf given by1	


	


•  Assumptions	

–  State sequence evolves as a first order Markov process	

–  Measurement and system noise are independent, zero mean, Gaussian 

random variables	

–  The initial prediction of the states (z0) is a completely known random 

variable	

–  We know the process and measurement models	


Probability of zk given measurements up to l	


6	
1. Jazwinski, A. H. Stochastic Processes and Filtering Theory; Dover, 2007	


State Estimation Setting 
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State Estimation Background 

•  Linear Gaussian systems: 
–  Simplest cases where we directly propagate and update the PDF:    
–  Kalman Filter: Propagates mean and covariance (recursive solution) 

•  General nonlinear systems 
–  Determining PDF structure/type and propagating usually not tractable 

–  Extended Kalman Filter (EKF) – state of practice:1 

•  Assume Gaussian states and use a linearized model 
•  Loss of information from linearization  
•  No bounds/constraints 

–  Unscented KF, nonlinear evolution of states and covariance through 
pre-assigned σ points 

–  Particle Filters, Ensemble KF, …, nonlinear evolution through 
sampling distributions   

1. Haseltine, E. L. & Rawlings, J. B,  Ind. Eng. Chem. Res., 2005, 44, 2451-2460 7 

Moving Horizon Estimation 
Full Information Estimation Problem	

	

	

	

Moving Horizon Estimation (MHE)1 	


–  process only N measurements at each sampling time k	

–  with each new measurement, add to data set and drop oldest one	


1. Rao, CV; Rawlings, JB & Lee, JH, Automatica, 2001, 37, 1619-1628	


y	


z	


t	
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MHE Bayesian Derivation 
•  Find the conditional PDF of the trajectory of the states 

 

•  where 

•  Taking logarithms and maximizing the conditional PDF 

–  where solution sequence contains smoothed and filtered state estimates: 

–  Can add bounds to states to include more process information 

9 

Arrival Cost 

•  The Arrival Cost	

–  Summarizes previous information not included in horizon window	

–  As time moves forward, need to update its pdf parameters	


MHE Arrival Cost 

•  Penalizes the prediction of initial condition	

•  Summarizes previous measurements not in horizon	

•  AC changes as horizon moves forward	


–  Update parameters for P(zk-N)	

•  Estimated initial condition, 	

•  Covariance associated with prediction	

	


10 
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Updating the Arrival Cost 

•  The predicted initial condition can be updated in two ways 

Filtered 
•  The filtered solution is propagated 

forward with the model 
•  The covariance is propagated with EKF 
 
 
Smoothed 
•  Obtain smoothed state estimate directly 

from NLP solution  
•  The covariance is taken from EKF and 

Kalman Smoother 

11 

p(Zk!N
k |Y0

k )

•  At each sampling time, the arrival cost parameters approximated with Sample based filter1 

 
 
•  AC update done in the background, avoiding online computations 

–  Arrival cost is not Gaussian	

•  AC Sampling through, UKF, PF/EnKF	

•   MHE is constrained à Arrival Cost must be constrained	


–  Horizon window length depends on accuracy of Arrival Cost	


Sampled Approximation of Filtered Arrival Cost 

Approximated with SF 
between sampling times	


1. Lopez-Negrete, R, Patwardhan, SC & Biegler, LT,  J. Process Control, doi:10.1016/j.jprocont.2011.03.004 (2011)	
 12 
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Filtered Arrival Cost - Results 
•  Example: 

–  Non-isothermal CSTR with cooling water dynamics 
–  The model consists of concentration and reactor and cooling 

water temperatures 
–  Only measured variable is the cooling water temperature Tcw 

14 

Comparison of Arrival Cost Updating Methods 

Unconstrained cases:         sampling/importance distributions 
Bound Constrained cases:     truncated (clipped) state distributions  
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•  Unconstrained Case Study	

•  Smaller horizon length with smaller estimation error -           

possible with better approximation of the arrival cost	

•  Number of required particles increases with number of states… 

Some times exponentially!	

	
 15 

Filtered Arrival Cost - Results 

16 

•  Bound Constrained Case Study 
•  Shorter horizon length with smaller estimation error -   

possible with better approximation of the arrival cost 
•  Smaller on-line NLP vs. greater off-line computation 
•  Is sampling-based filtered AC worth the cost? 

Filtered Arrival Cost - Results 
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     tf, final time 
     u, control variables 
     p, time independent parameters 

     t,  time 
     z, differential variables 
     y, algebraic variables 

Optimization Tools for Nonlinear 
Dynamic Optimization 

min  ! z(t),y(t),u(t), p,t f( )
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Nonlinear Programming Formulation  
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Discretized DynamicNonlinear Program  
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IPOPT– Interior Point Solver 

•  IPOPT1	


–  Open source Interior Point NLP solver (see www.coin-or.org)	

–  Solve large problems with ≤ 106 variables and constraints	

–  Logarithmic barrier approach (bounds à penalty function)	


	


	


	


–  Solve for decreasing values of μ (μ à 0)	

–  Apply Newton’s method to optimality (KKT) conditions	


1. Wächter and L. T. Biegler,  Mathematical Programming 106(1), pp. 25-57, 2006	


K	


20 
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IPOPT Factorization Byproduct  

• Modify KKT (full space) matrix if nonsingular	


–  δ1 - Correct inertia to guarantee descent direction	

–  δ2 - Deal with rank deficient Ak 	


• KKT matrix factored by indefinite symmetric 
factorization	

• Solution with δ1=0 è sufficient second order conditions 	

• Parameter Estimation Result – unique parameters	

• Reduced Hessian available to approximate confidence 
regions 	


Hk +!k +!1I Ak
Ak
T "!2I

#

$

%
%

&

'

(
(

•  sIPOPT1 – Open source library direct link with IPOPT	

–  Barrier problem 	


Sensitivity with IPOPT 

–  Taylor series expansion of solution 
(implicit function theorem)	


1. Pirnay, Lopez-Negrete, & Biegler, Optimal Sensitivity with IPOPT, Submitted to Math Prog Comp, 2011	


–  NLP sensitivity (Fiacco – 1983): 	

–  Regularity conditions must be met (SSOC, SC, 

LICQ)	


–  Existence and differentiability of the path s*(p)	
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Sensitivity with IPOPT 
•  Sensitivity matrix can be obtained from the linearized 

optimality conditions	


K*	
 M	


•  At the solution we freeze K (already factorized!)	

–  Change right hand sides and solve linear system	


•  Generate perturbed solution	


•  sIPOPT à Open source library freely available with IPOPT	

•  https://projects.coin-or.org/Ipopt/wiki/sIpopt	


23 

•  Exploit NLP Sensitivity for approximate NLP solutions 	

     (Similar to asNMPC)	


–  Predict new measurement	

–  Solve NLP in background (between sampling times)	

–  Correct solution with obtained measurement & NLP Sensitivity	

à On-line computation reduced ~ two orders of magnitude  	


Advanced Step MHE 

y	  

z	  

t	   24 
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Large Scale MHE	

•  Two possible AC formulations	


•  Filtered Arrival Cost applies to both formulations, but 
smoothed approach seems more efficient1 	

–  Avoids oscillations (specially when horizon is smaller)	


1. Tenny, M. J. & Rawlings, J. B; American Control Conference, 2002, 4475-4480	
 25 

Smoothed Arrival Cost 

•  where: 
–  Y, O, and W are known functions of previous data 
–  Require smoothed estimate of initial condition 
–  Covariance associated and updated with state estimate 

Smoothed PDF	


Correction term	


Assume Quadratic !
AC form!

26 
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•  Standard Approach: EKF propagates covariance forward,   
then Kalman smoother propagates backwards	


Smoothed Arrival Cost 

Smoothed 
covariance!

Prior covariance!

27 

Recursive Solution to MHE 
•  MHE NLP is solved using Interior Point method	


–  Newton type search direction found by linearizing the optimality conditions	


Linearize optimality conditions	


28 
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Recursive Solution of MHE 
•  Recursive solution to linear KKT system is 

 

•  where 

 
 

•  and 
 
 
 
 
 
 
 

•  The forward propagation of the covariance is done internally 

•  What about the smoothed covariance? 

This is also generated as part of the optimality conditions of the NLP! 

Propagation of the states 

Propagation of Covariance 

Auxiliary equations 

29 

Reduced Hessian and Covariance 

•  We can show that the inverse of the Reduced Hessian is the 
smoothed covariance1 

 
 
 
 
 
 
 

–  where      is the null space basis of the constraint Jacobian 

•  Changing variables for simplicity 

1. Pirnay, Lopez-Negrete, & Biegler, Optimal Sensitivity with IPOPT, Math Prog Comp, 2012, to appear 30 

Cov
�
Zk

k−N

�
=

�
ZT

�
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Sensitivity of KKT Conditions 

•  Analyze sensitivity of estimates with changes in data	


	

	

	

	

	

	

	


•  At the solution we have the linearized optimality conditions	


	

•  Introduce perturbations                and               	


•  Note	

31 

E
�
∆θ∆θT

�
= Cov

�
Zk

k−N

�
=

�
ZT

�
∇2L

�
Z

�−1

Extract Reduced Hessian from IPOPT 

•  If dynamic system is linear with Gaussian noise, this reduces to the 
Kalman Smoothing equations	


	


	
KKT conditions	

at optimal solution	


•  Δxj is the j-th column of the inverted reduced Hessian	

•  In Ipopt KKT matrix is already factorized!	


–  One back-solve per column of the covariance	


1. Zavala, V. M.; Laird, C. D. & Biegler, L. T.; Journal of Process Control, 2008, 18, 876-884	


•  Interior point solvers do not form the Reduced Hessian, can be extracted 
from the optimality conditions1	


	


32 
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Smoothed Arrival Cost - Results 
•  Simulation Example:	


–  Network of CSTR’s each has two states	

–  We can increase the size of the network as needed	


–  The measurement is reactor temperature	

–  With each additional reactor, number of states increases by 2, and 

measurements by 1	

33 

•  6 reactors in the network, and using 20 measurements in the 
horizon	

–  The state estimates are very close to the true values obtained 

through simulation	


34 

Concentration	
 Temperature	
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•  Extracting inverse Reduced Hessian from KKT conditions significantly reduces 
the number of operations required to obtain covariance	


	

•  Complexity of EKF/Smoother increases cubically with number of states, while 

essentially linear for the Reduced Hessian calculation	

	
 35 

Smoothed Arrival Cost - Results 

Large Scale Example – Distillation 

•  Binary distillation (methanol and n-propanol)1 

•  Column with 40 trays, and per tray  
we have 
–  Detailed Dynamic MESH Model 

•  Index 1 DAE with 252 equations: 
–  84 Differential equations  

(methanol compositions of liquid  
phase and liquid molar holdup) 

–  168 Algebraic equations (T, L, V, y,…) 

•  Measurements are T and liquid volume holdup for each tray 

•  Sampling time is 60s 
•  Implementation of the asMHE with reduced Hessian 

approximation of smoothed covariance 

1. Diehl, M., PhD Thesis, Heidelberg, Germany, 2001	
 36 
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Large Scale Example – Distillation 
•  Horizon length of 10 measurements	

•  Model after discretization (3 collocation points)	


–  19419 variables	

–  18579 equality constraints	

–  12180 between upper and lower bounds	


•  Average solution time	

–  NLP:  42.38 CPU s (66 iterations)	

–  Sensitivity: 0.529 CPU s	

–  Reduced Hessian:  1.84 CPU s	


37 

Compositions	

Tray 14	
 Tray 28	


Online Computation 

Large Scale Example – Distillation 

Liquid Molar Holdup	


38 

Tray 14	
 Tray 28	
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Summary and Conclusions 

•  MHE: efficient, accurate framework for constrained state estimation 
–  Applies directly to nonlinear dynamics with reasonable noise assumptions 
–  Adding information about states through bounds improves quality of 

estimates 
•  Key aspect: treatment of arrival costs 

–  Filtered AC: off-line sampling vs. shorter horizons 
–  Smoothed AC: longer horizon problem solved more efficiently 

 
 

•  NLP (IPOPT) and Sensitivity (sIPOPT)  provides fast online estimate of 
the states à asMHE 

 

•  Covariance information can be approximated from reduced Hessian and 
extracted very cheaply from IPOPT 
–  Propagation of covariance is performed internally in the NLP (no need to 

do this twice) 

•  Large nonlinear MHE problems handled on-line (with hundreds of states) 
39 

Extensions and Future Work 

•  Multi-rate measurements, includes less frequent (possibly delayed) 
measurements 
–  Some unobservable states can become observable 
–  Straightforward to implement with MHE and smoothed AC 

•  Robust estimators to reduce the effects of measurement errors and 
outliers 
-  Modify MHE with M-estimators (Hampl, Huber type) 
-  Analyze observability of MHE with Robust M-Estimators 

•  Extend MHE formulation to include Fault detection/identification 
 
Acknowledgements 
•  Prof. Sachin Patwardhan, IIT Bombay 
•  US National Science Foundation 

40 
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• Mesh Equations for Distillation Column 

Mass balance:  

Component balance:  

Energy balance:  

Phase equilibrium:  

Hydrodynamics :  

 Assumption:  
    Vapor holdups are negligible. 
    Ideal vapor phases. 
    Well mixed entering streams. 
    Constant pressure drop. 
    Equilibrium stage model. 

Summation:  

Mi 

Li Vi+1 

Vi 
Li-1 

Index 2 system. 

dM i
dt = L i ¡ 1 + Vi + 1 ¡ L i ¡ Vi + F i

Reformulated index 1 system 
contains 320 ODEs, 1200 AEs. 

Fi 

Dynamic Distillation Model 

Multi-Rate MHE 
•  No need to waste slow measurements	


–  In some cases adding this information can help make 
unobservable states observable!	


Different rates, no delays	


Different rates and delayed 
measurements	


42 



6/7/12	  

22	  

Multi-Rate MHE 

•  Just place the delayed measurements in their proper locations 
in the Horizon	

–  Use the right measurement covariance matrix	


•  Arrival cost through reduced Hessian 	

–  Considers smoothing effects from all measurements 

automatically	


43 

Multi-Rate Example 

•  Example: Polymerization Reactor1	


–  Styrene Polymerization	

•  AsMHE not considered here, but application is straightforward	

•  Fast measurements are:	


–  Temperatures of reactor and cooling jacket	

–  Concentration of monomer (viscosity - agitator)	


•  Slow measurements are the molecular weight moments (GPC)	


–  Assume that slow sample times are integer multiples of fast 
sample times	


•  Fast sample rate 6 min	

•  Slow sample rate 12 min (and delayed)	


44 1. Tatiraju, S.; Soroush, M.; and Ogunnaike, B.A., AIChE Journal 45(4), 1999, pp. 769–780.	
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Multi-Rate MHE Example 

Only Fast Measurements	
 Multi-Rated Measurements	


Monomer Concentration	


45 

Weight Average Molecular Weight 

Only Fast Measurements	
 Multi-Rated Measurements	


46 
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Robust M-Estimators 
•  Outliers and gross errors are common during process 

operations 
–  State/parameter estimates will be affected 
–  Errors can propagate and destabilize the closed loop 

system 
 

•  Robust estimators give less weight to corrupted 
measurements1

 

47 

ρF
j = C2

� |�j|
C

− log
�
1 +

|�j|
C

��
Fair Function	


ρR
j =






1
2

�2
j , 0 ≤ |�j| ≤ a

a |�j| −
a2

2
, a < |�j| ≤ b

ab −
a2

2
+

a (c − b)
2

�
1 −

�
c − |�j|
c − b

�2
�

, b < |�j| ≤ c

ab −
a2

2
+

a (c − b)
2

, |�j| > c

Hampel’s Re-descending 	

Estimator	


1. Arora, N & LT Biegler, Comput. Chem. Eng., 25, 1585—1599, 2001.	


where εj are the studentized residuals	

	


Robust M-Estimators 

•  Compare effects of the Fair Function, Hampel’s Re-
descending Estimator, and Least Squares. 

48 
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Robust MHE 

49 

•  Measurement error terms are substituted for M-
Estimators to reduce effects of gross errors or outliers 
–  When residuals are small we get least squares 
–  Non-smooth terms in estimators are smoothed using an 

interior point smooth approximation 

min
1
2

��zk−N − ẑk−N |k−1

��2

Π̂−1
k−N|k−1

−
1
2

�Y − Ozk−N�2
W−1 +

1
2

k�

l=k−N

ρME
l (vl) +

1
2

k−1�

l=k−N

wT
l Q−1

l wl

s.t. zl+1 − f (zl) − wl = 0
yl − h (zl) − vl = 0

zLB ≤ zl ≤ zUB

M-Estimator Results 
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•  Example 1:	

–  Non-isothermal CSTR with cooling water dynamics	

–  The model consists of concentration and reactor and cooling water 

temperatures	

–  Only measured variable are the reactor (TR) and cooling water 

temperature (Tcw)	

–  A gross-error is introduced in the measured reactor temperature (e.g., 

the sensor drifts	
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M-Estimator Results 

Reactor Temperature 
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M-Estimator Results 

Concentration Estimation Error 

52 
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Summary and Conclusions 

•  Main contributions	

–  sIPOPT - Sensitivity library for IPOPT 	


•  Fast approximation of neighboring problems	

•  Reduced Hessian extraction	


–  Real time nonlinear constrained estimation	

•  AsMHE with smoothing arrival cost update	

•  Covariance through reduced Hessian	

•  Multi-rate asMHE extensions to MHE	

•  Robust M-Estimators	
 53 

•  Example Continuously Stirred Tank Reactor (CSTR)	

–  Measuring concentration or molecular weights can take up to a 

few minutes	

–  Measuring temperature can be done in fractions of a second	


State 
Estimator!

NMPC Controller!
Process Monitoring!

Motivational Example	


Estimate Concentration	
Measure Temperature	


54 
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Sample Based Approximation of Arrival Cost 

•  Traditional update of arrival cost	

–  Assume Gaussianity and use linearized model	


Filter	  
solu+on	  

Optimal prediction	


•  Incorrect approximation:	

–  Unconstrained method for 

propagating covariance	

–  Using a linearized model for 

this transformation	


55 

Particle Fitlers 

•  Recognize that	

–  Horizon window length is a function of Arrival Cost1	


–  Arrival cost is not Gaussian	

–  MHE is constrained à Arrival Cost must be constrained	


•  We propose to use Monte Carlo methods to approximate mean 
and covariance of arrival cost2	


1. Rao, CV; Rawlings, JB & Lee, JH; Automatica, 2001, 37, 1619-1628	

2. Lopez-Negrete, R, Patwardhan, SC & Biegler, LT,  J. Process Control, doi:10.1016/j.jprocont.2011.03.004 (2011)	
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