

| Chancel<br>Richard | State Estimation Overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                    | <ul> <li>Introduction and Problem Setting</li> <li>Moving Horizon Estimation (MHE)</li> <li>Arrival Costs – Filtered <ul> <li>Bayesian properties</li> <li>Sampling-based implementation</li> </ul> </li> <li>Optimization Tools for MHE <ul> <li>IPOPT, sIPOPT</li> </ul> </li> <li>Arrival Costs – Smoothed <ul> <li>Bayesian properties</li> <li>Efficient covariance updates</li> </ul> </li> <li>Dynamic Case Studies <ul> <li>Multi-reactor systems</li> <li>Distillation</li> </ul> </li> <li>Conclusions and Extensions</li> </ul> |   |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2 |



## State Estimation Setting • Dynamic nonlinear process represented by $\begin{aligned} & States \\ z_{k+1} = f(z_k) + w_k \\ Measurements \\ y_k = h(z_k) + v_k \end{aligned}$ • where, $w_k$ and $v_k$ are Gaussian, zero mean, uncorrelated random variables • The process noise $w_k$ may represent plant-model mismatch or unknown disturbances, assumed to be white with $\mathcal{N}(0, Q_k)$ • Measurement noise, $v_k$ comes from measurement equipment (sensors). Also white, but with covariance $\mathcal{N}(0, R_k)$ .



















| Filter                   | Sampling            | Sample bounds | Update type | Update bounds      |
|--------------------------|---------------------|---------------|-------------|--------------------|
| EKF                      | none                | none          | linear      | unconstrained      |
| UKF                      | sigma points        | none          | linear      | unconstrained      |
| EnKF                     | random              | none          | linear      | unconstrained      |
| EnKFPF*                  | random/random       | none          | linear      | unconstrained      |
| UKFPF*                   | sigma points/random | none          | linear      | unconstrained      |
| $\omega \text{EnKFPF}^*$ | random/random       | none          | linear      | unconstrained      |
| URNDDR                   | sigma points        | clipping      | nonlinear   | QP                 |
| URNDDRPF*                | sigma points/random | clipping      | weights     | QP/through density |
| CEnKF                    | random              | clipping      | weights     | QP                 |
| CEnKFPF*                 | random/random       | clipping      | weights     | QP/through density |
| $\omega$ CEnKFPF*        | sigma points/random | clipping      | weights     | QP/through density |



































| Chernical<br>ENGINEERING | Extract Reduced Hessian from IPOPT                                                                                                                                                                                                                                                        |   |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| • If<br>Ka               | dynamic system is linear with Gaussian noise, this reduces to the<br>Ilman Smoothing equations                                                                                                                                                                                            |   |
| • Int<br>fro             | erior point solvers do not form the Reduced Hessian, can be extracted<br>on the optimality conditions <sup>1</sup>                                                                                                                                                                        |   |
| KKT con<br>at optima     | ditions<br>$\begin{bmatrix} W & J \\ J^T & 0 \end{bmatrix} \Delta x = -\text{rhs} = - \begin{bmatrix} 0 \\ 0 \\ I_z(:,j) \\ 0 \\ \vdots \end{bmatrix} \qquad \Delta x = \begin{bmatrix} \Delta z_{k-N} \\ \Delta w_{k-N} \\ \Delta z_{k-N+1} \\ \Delta w_{k-N+1} \\ \vdots \end{bmatrix}$ |   |
| •                        | <ul> <li>Δx<sub>j</sub> is the j-th column of the inverted reduced Hessian</li> <li>In Ipopt KKT matrix is already factorized!</li> <li>– One back-solve per column of the covariance</li> </ul>                                                                                          |   |
| 1. Zavala, V. M          | .; Laird, C. D. & Biegler, L. T.; Journal of Process Control, 2008, 18, 876-884 33                                                                                                                                                                                                        | 2 |









| ical La                                                                                                                                                                                                                                                                                                                                                                                          | rge Scale Example    | <ul> <li>Distillation</li> </ul>                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Horizon length of 10 measurements</li> <li>Model after discretization (3 collocation points)</li> <li>19419 variables</li> <li>18579 equality constraints</li> <li>12180 between upper and lower bounds</li> <li>Average solution time</li> <li>NLP: 42.38 CPU s (66 iterat</li> <li>Sensitivity: 0.529 CPU s</li> <li>Reduced Hessian: 1.84 CPU</li> <li>Online Computation</li> </ul> |                      | <ul> <li>Average solution time <ul> <li>NLP: 42.38 CPU s (66 iterations)</li> <li>Sensitivity: 0.529 CPU s</li> <li>Reduced Hessian: 1.84 CPU s</li> </ul> </li> <li>Online Computation</li> </ul> |
|                                                                                                                                                                                                                                                                                                                                                                                                  | Model noise variance | Measurement variance                                                                                                                                                                               |
| $T_i$                                                                                                                                                                                                                                                                                                                                                                                            | _                    | $6.25 	imes 10^{-2}$                                                                                                                                                                               |
| $V_{N_T+1}^m$                                                                                                                                                                                                                                                                                                                                                                                    | _                    | 10 <sup>-8</sup>                                                                                                                                                                                   |
| $x_i$                                                                                                                                                                                                                                                                                                                                                                                            | $10^{-5}$            | _                                                                                                                                                                                                  |
| $M_0$                                                                                                                                                                                                                                                                                                                                                                                            | 10                   | _                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                  |                      |                                                                                                                                                                                                    |
| $M_i$                                                                                                                                                                                                                                                                                                                                                                                            | 1                    | -                                                                                                                                                                                                  |





| Chernical<br>ENGINEERING | Extensions and Future Work                                                      |
|--------------------------|---------------------------------------------------------------------------------|
| •                        | Multi-rate measurements, includes less frequent (possibly delayed) measurements |
|                          | <ul> <li>Some unobservable states can become observable</li> </ul>              |
|                          | - Straightforward to implement with MHE and smoothed AC                         |
| •                        | Robust estimators to reduce the effects of measurement errors and outliers      |
|                          | - Modify MHE with M-estimators (Hampl, Huber type)                              |
|                          | - Analyze observability of MHE with Robust M-Estimators                         |
| •                        | Extend MHE formulation to include Fault detection/identification                |
| <u>A</u>                 | <u>cknowledgements</u>                                                          |
| •                        | Prof. Sachin Patwardhan, IIT Bombay                                             |
| •                        | US National Science Foundation                                                  |
|                          |                                                                                 |







| <b>Repaical</b><br>Engineering | Multi-Rate Example                                                                                                                                                                                                                                                                                                                                                                                |    |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| •                              | <ul> <li>Example: Polymerization Reactor<sup>1</sup></li> <li>Styrene Polymerization</li> <li>AsMHE not considered here, but application is straightforward</li> <li>Fast measurements are: <ul> <li>Temperatures of reactor and cooling jacket</li> <li>Concentration of monomer (viscosity - agitator)</li> </ul> </li> <li>Slow measurements are the molecular weight moments (GPC)</li> </ul> |    |
|                                | <ul> <li>Assume that slow sample times are integer multiples of fast sample times</li> <li>Fast sample rate 6 min</li> <li>Slow sample rate 12 min (and delayed)</li> </ul>                                                                                                                                                                                                                       |    |
| 1. Tatiraju, S.                | Soroush, M.; and Ogunnaike, B.A., AIChE Journal 45(4), 1999, pp. 769–780.                                                                                                                                                                                                                                                                                                                         | 44 |























