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e Continuous stochastic process on a discrete state space.
¢ Transitions happening at random times.
¢ Transition rates depend on current state and unknown rate parameters.

e Markov property, p(X:|X:—1,. .., Xo) = p(X¢|Xt—1)
e Xt = (X11,...,Xn,) System state at time t for N random variables.
e State change vectors s; = (S1,...,5n,)), j € {1,..., M}

« Transition rates, fj(x, 0)dt for state change j in the interval [t, t + dft).
e Master Equation
dp(x, t|xo,

M Z[f (X — 5,0, )p(X — 5, t]Xo0, 1) — (X, 8, )p(X, t|Xo, )] .

¢ Intractible, simulate trajectories by a Stochastic Simulation Algorithm.
e Parameter inference scheme Boys, Wilkinson, Kirkwood (2006)
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e Employed by Golightly and Wilkinson (2005, 2008)
o lto diffusion associated with Fokker-Planck equation
¢ Informal derivation, 7-leaping:

e Choose 7 > 0 such that:

ﬁ(xt’,e) ~ fl'(xha)a Vt, S [t7t+7_]7 Vj € [17M] (1)
fi(xt, @) > 1, vj €1, M] 2)

e Conditions (1) and (2) can be satisfied if x; > 1.

¢ (1) implies that the number of transitions to states j are independently
Poisson distributed with mean f;(x;, 0)r.

e (2) implies that the number of transitions can be reasonably
approximated by a Normal distribution.

e Langevin Equation

dx; = SF(x,, 0)dt + %S\/diag(f(x“ 8))dB: 3)
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Diffusion Approximation

¢ Inference proceeds employing Euler-Maryuama discretision

¢ Augmentation of observed values with 'missing values’ Roberts and
Stramer, 2001, Golightly and Wilkinson, 2005

e Sample a skeleton path then parameters of interest

o Issues of efficiency given the coupling of discrete path sampled and
parameters

o |f system is close to thermodynamic limit further approximation valid
o Linear Noise Approximation (LNA) of van Kampen 1976

o Employed extensively in chemical physics and genome research

¢ May provide intermediate scheme for MCMC based inference
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e Assume that x = ¢ + %g
e ¢ are deterministic and £ stochastic variables.

1 1 8f¢,
ﬂ(x,e):f,(wﬁs,e) §(6.0) + Z 2(8.0) ., o)

Replace in the diffusion retain O(1) terms for d¢.
de, = Sf(¢,, 0)alt
Neglect any terms higher than O(%) for d¢

d§, = SJi(, 0)¢dt + S+/diag(f(¢,, 0))dB:

which is a linear SDE with analytic solution

£, = 0o, 1) (50 + /tot (s, 1) Sy /diag(F(¢,, 0))st)

where ®({0, s) the solution to
do(t0, s) = SJr(ops, 6)(10, s)ds, ®(t0,10) =1
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Likelihood for the Linear Noise Approximation

p(x7%)16) oc N'(u(6), Z(6))

w(6) = (Py, -, b,)" anN vector with solutions of the MRE.
3(0) a nN x nN block matrix with blocks X(8)'” N x N

d—'{’ = SJi(¢,, 0)Vi+Vidi(¢,, 0) S™+Sdiag(f(x:,0))S™

Xt NN(¢17 Vt)? d

v, ifi=j
ij _ i i
2(0)" = { cov(xy, ;) = Z(0) @ (t1, 1)

Fisher Information

F/(e)m,n—a’gg’) T (0)5, (0) ; (Z (9)62(0)2 (9)8;?))

Augment the MRE for ¢ with the lower triangular elements of V and
solve the augmented system with forward sensitivity analysis.
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SERIES B

J. R. Statist. Soc. B (2011)
73, Part2, pp. 123-214

Riemann manifold Langevin and Hamiltonian Monte
Carlo methods

Mark Girolami and Ben Calderhead
University College London, UK

[Read before The Royal Statistical Society at a meeting organized by the Research Section on
Wednesday, October 13th, 2010, Professor D. M. Titterington in the Chair]

Summary. The paper proposes Metropolis adjusted Langevin and Hamiltonian Monte Carlo
sampling methods defined on the Riemann manifold to resolve the shortcomings of existing
Monte Carlo algorithms when sampling from target densities that may be high dimensional
and exhibit strong correlations. The methods provide fully automated adaptation mechanisms
that circumvent the costly pilot runs that are required to tune proposal densities for Metropolis—
Hastings or indeed Hamiltonian Monte Carlo and Metropolis adjusted Langevin algorithms. This
allows for highly efficient sampling even in very high dimensions where different scalings may be
required for the transient and stationary phases of the Markov chain. The methodology proposed
exploits the Riemann geometry of the parameter space of statistical models and thus automat-
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« Tangent space - local metric defined by 66"G(6)560 = g66x36,
e Christoffel symbols - characterise Levi-Civita connection on manifold
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e Geodesics - shortest path between two points on manifold
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lllustration of Geometric Concepts
o Consider Normal density p(x|u, o) = Nx(u, o)

e Local inner product on tangent space defined by metric tensor, i.e.
507G(6)56, where 8 = (u, )"

o Metric is Expected Fisher Information

Glu,0) = [ U(;Z 200*2 }

e Components of connection §,G = 0 and 9,G = — diag(20 2,40 7%)
e Metric on tangent space
2 2
50TG(0)50 — W

e Metric tensor for univariate Normal defines a Hyperbolic Space
e Consider densities A(0,1) & A/(1,1) and A/(0,2) & N (1,2)
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Langevin Diffusion on Riemannian manifold

¢ Discretised Langevin diffusion on manifold defines proposal mechanism

D
0 =04+ g (G*‘(e)vez(e))d — &Y G(0); '] + e (\/G—1(9)z)d

)
Manifold with constant curvature then proposal mechanism reduces to

2
0 =6+ %6*1(e)vez(e) +e/G1(0)z
MALA proposal with preconditioning

2
0 =6+ %Mvoc(e) + evMz

Proposal and acceptance probability
Po(6'16) = N(6'|11(8,€), G (6))

oy — i [y T(0)pa(6]6")
pu(0'0) = min 1, TS

Proposal mechanism diffuses approximately along the manifold
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Simplified Manifold MALA

e For 6 € R? with density (), £(8) = log (8)
o Define proposal distribution
q(6°16'") = N (671n(6' "), G (')

Where
2

no.0)=0+% (67'(6)VeL(0)). &'(6) = FI(6)

o Accept 8" with probability

[, ae) atet'jer)
mr {1’ ~(67 ) q(e*w")}
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Simulated Data

10

R, mRNA molecules
P, Protein molecules

e Simulated data generated with SSA.
¢ 10 independent sample paths for each time point.
e Parameters set to

R P kp bo by b b3
0.44 052 100 150 040 7.0 3.0




Trace Plots
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Effective Sample Size

10,000 posterior samples
R P Kp bo by b2 bs
RMHMC 6532 6593 6614 5112 5384 6595 6642
SMMALA 2990 3270 3454 3124 3164 3316 3195
CWMH 201 71 73 465 339 420 239
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Effects of System Size

e Unstable monomer, S;, can dimerise to an unstable dimer, S, then
converted to a stable form, Ss.
e The reaction set for this system is
R1:S % 0
R2:28 22, s,
RS : 82 — 2S1
R4 : Sg — 83

e The propensity functions
f(X,8) = [c1S1(t), 227" Si()(Si(t) — 1)/2, c3Sa(t), caSs(1)]
o Corresponding state change matrix is

-1 -2 2 0
S= 0 1 -1 -1 ].
0 0 0 1

¢ Assume initial conditions known S;i (&) = 59, Sz(t) = Ss(h) =0, i = 0.
Reaction rate parametersto ¢y =1, & = 2Q~ ', s =0.5and ¢s = 0.04



Effects of System Size

min. ESSvs. Q
Q M.H. SMMALA RMHMC
1 121 (3.6) 150 (3.9) 245 (0.06)
2 226 (6.7) 2163 (57.2) 4775(1.3)
5 132 (3.9) 3539 (93.6) 4618 (1.2)
10 180 (5.3) 3397 (89.8) 5954 (1.6)
100 214 (6.4) 3725(98.5) 6066 (1.7)
Posterior mean and SD. vs. Q
Cq &2 C3 C4

0.88 (0.031) 1.72(0.253) 0.39 (0.039) 0.003 (0.002)
1.3(0.041) 0.69(0.066) 0.35(0.016) 0.014 (0.002)
0.93 (0.019) 0.39 (0.028) 0.48 (0.025) 0.034 (0.002)

oo, e o

an =Y

10 1.0 (0.015) 0.18 (0.008 0.47 (0.015) 0.037 (0.001
100 0.99 (0.004) 0.01(0.0002) 0.52(0.004) 0.039 (0.0003)




Failure Modes

1000
. data
LNA mean
= = = LNA mean +/- 2SD
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Figure: Simulated time point data using SSA for the Schlégl reaction set and LNA
predictions. Dots correspond to simulated data. The bold and dashed red lines
correspond to the LNA prediction for the means and standard deviations using the true
parameters. Doted blue lines correspond the LNA predictions using the posterior
means for the rate parameters. (Online version in colour.)
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Conclusions

¢ MJP common tool to describe many phenomena in physical and life
sciences.

o LNA provides a useful approximation in appropriate operational regimes.
e Decouples deterministic and stochastic characteristics of model.
o Statistical inference remains a formidable challenge over such models.

¢ Exploitation of schoolboy differential geometry in MCMC provides
effective inference tool.

¢ Phil.Trans paper describes a number of larger scale scenarios.
¢ Ongoing work with Sherlock, Golightly.
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