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Notation

Consider a dynamical system modelled by a set of ODEs
Po,xj = fg;(x1, -, Xm, 1), j=1,...,m

that describes the time evolution of m interacting elements, e. g.,

@ gene regulatory networks in system biology,

@ prey-predators systems in ecology or bussines.
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Notation

Consider a dynamical system modelled by a set of ODEs
Po,xj = fg;(x1, -, Xm, 1), j=1,...,m

that describes the time evolution of m interacting elements, e. g.,

@ gene regulatory networks in system biology,

@ prey-predators systems in ecology or bussines.

Elements
@ X;j, uj: state variables and external forces defined on a time interval T.
o Py = S f_o 0D with DX = d*/dt, k € IN and 0; = {01,...,0;4}.
o fg, known parametric function where 3; = {fj1,. .., Bjq}-
e ©={0,...,0} and B={f1,...,[1}, parameters.
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Problem statement

Noisy measurements y;; of the state variables xi,...,xy, at n time points.

yji ~ N ((t:), o7)

| sl %Xl = x1(61 — Bix2),

30 40 50

Time (t)

d
o] 2= —xo(02 — Pax1),

T
0 10 20 30 40 50

Time (t)
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Problem statement

Noisy measurements y;; of the state variables xi, ..

yji ~ N ((t:), o7)

T T

Time (t)

T
0 10 20 30 40 50

Time (t)

Problem to solve

EXl = x(

—Xp = —X;
g 2

61 — Bix2),

(62 — fox1),

Use the sample S = {(yji, t;) € R x T}, to provide estimators of

© = {01,602}, B = {f1, 52}, X = {01,002}

., Xm at n time points.
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Likelihood approach

Likelihood approach

n
n

1
(0, Bj» 0, %1 S;) = 5 log(a7) — 552 > (i —

j =1
for x; satisfying that Py x; = f5,.

x(t7))?
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Likelihood approach
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for x; satisfying that Py x; = f5,.

m
(©,B,%,%1,...,%|S) = arg maxe g Z 1(6;, B, o), xi|S})
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for x; satisfying that Py x; = f5,.

m
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@ To solve the ODE is needed.
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Likelihood approach

Likelihood approach

n
n

1
(65, B, 4, X5157) = =5 log(07) — 552 > (i — x(t))?

J =1
for x; satisfying that Py, x; = f3,.

m
(©,B,%,%1,...,%|S) = arg maxe g Z 1(6;, B, o), xi|S})
j=1

@ To solve the ODE is needed.

@ Parameter identification might be non-stable with noisy data.
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Regularization approach
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Regularization approach

@ Regularization methods are appropiate in this context.
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@ Replace the original problem by a family of problems where the ODE
is used to penalize the likelihood.
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Regularization approach
@ Regularization methods are appropiate in this context.

@ Replace the original problem by a family of problems where the ODE
is used to penalize the likelihood.

Penalized Likelihood approach

m
(e’ 87 za)?h 5009 a)?nls) = arg maxe,B,x Z (](ejv/Bj?O-_lax_j‘Sj)
=1
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@ Regularization methods are appropiate in this context.
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Penalized Likelihood approach

m
(©,B,X,%1,...,%|S) = arg maxe g Z 1i(6;, B, 0, xi|Sj) — (X))
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Regularization approach
@ Regularization methods are appropiate in this context.

@ Replace the original problem by a family of problems where the ODE
is used to penalize the likelihood.

Penalized Likelihood approach

m
(©,B,X,%1,...,%|S) = arg maxe g Z 1i(6;, B, 0, xi|Sj) — (X))
j=1

for A > 0 and Q(x;j) a convex functional.
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Regularization approach
@ Regularization methods are appropiate in this context.

@ Replace the original problem by a family of problems where the ODE
is used to penalize the likelihood.

Penalized Likelihood approach

m
(©,B,X,%1,...,%|S) = arg maxe g Z 1i(6;, B, 0, xi|Sj) — (X))
j=1

for A > 0 and Q(x;j) a convex functional.

How to define Q(x;)?
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MLE vs PMLE: dx/dt = 0x.

N
1=} o
o |
o
<
O' —
T
£ _
© S — truth
@ ---- data—adaptive penalized MLE
! (ODE-constrained) MLE
N /
S 4
I )

T T T T T
0.0 0.5 1.0 15 2.0

Time (t)

Otrue = =2, Ome = —1,12, Oppe = —1,99
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Regularization approaches in the literature

Likelihood based approaches [Ramsay et al., 2007, Bouchet, 2007]
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Likelihood based approaches [Ramsay et al., 2007, Bouchet, 2007]

o Estimation of the x/s by nonparametric regression (splines, SVR).

Gonzélez, Vujacic and Wit (RUG) PEDSII PEDSII, June, 2012 7/21
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Likelihood based approaches [Ramsay et al., 2007, Bouchet, 2007]
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Regularization approaches in the literature

Likelihood based approaches [Ramsay et al., 2007, Bouchet, 2007]

o Estimation of the x/s by nonparametric regression (splines, SVR).

e Differentiation of X; and minimization over the parameters using
Q()?J) = ||P9j)?.l' - fﬁj()%lv oy X, uj))||L2'

Other approaches

@ Bayesian method similar in spirit to Ramsay et al. (2007). Solution of
the ODE given as a Gaussian process [Calderhead et al., 2008].
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Regularization approaches in the literature

Likelihood based approaches [Ramsay et al., 2007, Bouchet, 2007]

@ Estimation of the XJ{S by nonparametric regression (splines, SVR).

e Differentiation of X; and minimization over the parameters using
Q()?J) = ||P9j)?.l' - fﬁj()%lv 2o 7)?ma uj))||L2'

Other approaches

@ Bayesian method similar in spirit to Ramsay et al. (2007). Solution of
the ODE given as a Gaussian process [Calderhead et al., 2008].

@ Kernel Method for estimating 1-dimensional, periodic differential
equations [Steinke et al. 2008].
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Idea and approach
Idea

@ Combine the frequentist set-up with the kernel approach.
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Idea
@ Combine the frequentist set-up with the kernel approach.

@ Parameter estimation problem as the maximization of a likelihood
with a Reproducing kernel Hilbert space (RKHS) based penalty.

Gonzalez, Vujacic and Wit (RUG) PEDSII PEDSII, June, 2012 8/21



Idea and approach

Idea
@ Combine the frequentist set-up with the kernel approach.

@ Parameter estimation problem as the maximization of a likelihood
with a Reproducing kernel Hilbert space (RKHS) based penalty.

Gonzalez, Vujacic and Wit (RUG) PEDSII PEDSII, June, 2012 8/21



Idea and approach

Idea
@ Combine the frequentist set-up with the kernel approach.

@ Parameter estimation problem as the maximization of a likelihood
with a Reproducing kernel Hilbert space (RKHS) based penalty.

@ Py, x; = 0, generalization to non-homogeneous is feasible.

Gonzélez, Vujacic and Wit (RUG) PEDSII PEDSII, June, 2012

8 /21



Idea and approach

Idea
@ Combine the frequentist set-up with the kernel approach.

@ Parameter estimation problem as the maximization of a likelihood
with a Reproducing kernel Hilbert space (RKHS) based penalty.

@ Py, x; = 0, generalization to non-homogeneous is feasible.

@ Penalty, Py, is a differential operator on some space of functions H

2 (9) = gl = [ (Po()Pet

@ When ||XJ||$_l =0, x; is a solution of Pg;x; = 0.
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Idea and approach

Idea
@ Combine the frequentist set-up with the kernel approach.

@ Parameter estimation problem as the maximization of a likelihood
with a Reproducing kernel Hilbert space (RKHS) based penalty.

@ Py, x; = 0, generalization to non-homogeneous is feasible.
@ Penalty, Py, is a differential operator on some space of functions H
2 2
(9) = Il = [ (o (e))2et
@ When ||x;]|3, = 0, x; is a solution of Py x; = 0.

. 2 <112
o Non homogeneous: Transform ||Py x; — f5,||3, to ||Ps,%;[|3, where the
%; depends on f3;. Transform the y;; (details next talk).
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Properties of Q;(x;) = ||x||3,
RKHS in a nutshell
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RKHS in a nutshell

@ Mercer kernel: continous, symmetric and positive definite function
K: TxT—=IR.
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Properties of Q;(x;) = ||x||3

RKHS in a nutshell
@ Mercer kernel: continous, symmetric and positive definite function
K: TxT—=IR.
@ RKHS: completed space spanned by x(t) = >-7_; a;K(t;, t), where
ne€N, t;€ T and o; € R and (f, g)y = >iLq /g iBiK(ti, t}).
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RKHS in a nutshell
@ Mercer kernel: continous, symmetric and positive definite function
K: TxT—=IR.
@ RKHS: completed space spanned by x(t) = >-7_; a;K(t;, t), where
ne€N, t;€ T and o; € R and (f, g)y = >iLq /g iBiK(ti, t}).

e H is a RKHS whose reproducing kernel is a Green's function of P;Pj.
o PyPyK(t,z) =0(t — z).

o Functions in H are characterized by vectors a = (ag, ..., ap)".

m

n 1
> |5 lo8(0F) — 5 3lly; — Kooyl — A Ky,
Jj=1 J

where (ng),-s = ng(t,-, ts) and yj = (yj1s--- ,yJ-,,)T
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Computation of Ky,
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Computation of Ky,

@ A Green's function for ngng might be hard or impossible to compute.
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Computation of Ky,

@ A Green's function for ngng might be hard or impossible to compute.

T . . TN
@ Replace oj Ky, atj by an approximation o Ky, ax).
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Computation of Ky,

@ A Green's function for ng Py, might be hard or impossible to compute.

T . . TN
@ Replace aj Kg;aj by an approximation o Ky, a;.

o Py = Ei:o ijDk: difference operator defined on tq,...,t, and
-1 1
-1 0 1
D=A"1
-1 0

where A = diag(ty — t1,ta — to, ..., th — th—2, th — th—1).
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Computation of Ky,

@ A Green's function for ng Py, might be hard or impossible to compute.

T . . TN
@ Replace aj Kg;aj by an approximation o Ky, a;.

o Py = Ei:o ijDk: difference operator defined on tq,...,t, and
-1 1
-1 0 1
D=A"1
-1 0 1
-1 1
where A = diag(ty — t1,ta — to, ..., th — th—2, th — th—1).

@ Focus on the difference equation ngxj =0.
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Computation of Ky,

@ A Green's function for ng Py, might be hard or impossible to compute.

T . . TN
@ Replace aj Kg;aj by an approximation o Ky, a;.

o Py = Ei:o ijDk: difference operator defined on tq,...,t, and
-1 1
-1 0 1
D=A"1
-1 0

where A = diag(ty — t1,ta — to, ..., th — th_2, th —

@ Focus on the difference equation ngxj =0.
° jo = (Pg;ng)fl.
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Finite dimensional approximation, EM algorithm
Idea

@ To reduce the error of the finite dimensional approximation.
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Finite dimensional approximation, EM algorithm
Idea

@ To reduce the error of the finite dimensional approximation.

@ To include a number of hidden data points (t},, y},).

@ Ky, only depends on the t/s.

@ More points -> better approximations of the derivatives.
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Finite dimensional approximation, EM algorithm

Idea

@ To reduce the error of the finite dimensional approximation.

@ To include a number of hidden data points (t},, y},).

@ Ky, only depends on the t/s.

@ More points -> better approximations of the derivatives.

@ lterate EM algorithm.

© E-step Expectation of the likelihood over y,.

@ M-step Maximize the likelihood over the parameters using (yo,¥y)-
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Finite dimensional approximation, EM algorithm

x(t), | 57
7 // = truth : A
s -~ No hidden points !
@ == 1 hidden point
T ~~ 1C hidden points @ |
T //W ? - True
? b ! °d 0
T T T T ' T T T T T
o 0. 1.0 15 20 0 2 4 6 8 10
Time (t) Number interm. points
(a) ODE model, dx/dt = 6x with (b) Estimation of 6 for different num-
x(0)=-1 and @ = —2. True function ber of intermediate points.

and obtained solution for 0, 1, and 10
intermediate points.
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Comparisons

@ PMLE vs. TS-Ramsay approaches in small-sample-size cases.
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Comparisons

@ PMLE vs. TS-Ramsay approaches in small-sample-size cases.

e Model dx/dt = Ox with x(0)=-1 and 6 = —2.

100 independent data sets of size 5.

@ PMLE method with 10 equally spaced points between each pair of
observed data.

Penalization X selected using the GCV criteria.

@ 100 iterations of the EM algorithm.

TS-Ramsay Proposed method
-1.6708 (0.2809)  -1.9448 (0.1594)
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Simulated result, the Lotka-Volterra system

0.8

06

0.4

02

0.0

dt

= x1(6h — B1x2),
91 = 0,2, Bl = 0,35 92 = 0,7 and ,82 = 0,40, X1,0 = 1, X2,0 = 2.

B e ——~—— .~ —————
B,

[N

/
U
T T T T T T
50 100 150 20 250 300
Sample size

(a) XA = 100 and a level noise
of o =0,1.
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d—: = —x2(62 — fax2)

Lok o

.02

p1

- 52

T T T T T T
0 20 40 60 80 100

Penalization (lambda)

(b) n =100 and a level noise of
o=0,1.
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Conclusions and final remarks

@ General methodology to estimate the parameters of system of
ordinary differential equations in presence of noisy data.

@ The system of equations is directly used as regularizer in the
likelihood. A RKHS framework is used for this task. No need to solve
the ODE to estimate the parameters.

@ Method specially useful in problems with small samples. EM algorithm
allows to incorporate into the system missing (or hidden) observations.

@ Performance in real applications, next talk!
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The Green’s function of a differential operator P

Definition

Let T € [a,b] € R and let P: H — L?(T) be a differential operator on a
class of functions H then the Green's function of P is a function such that

PG(s,t) =d(s —t)

where s, t € T

Remark

Notice that this equality holds in the distributional sense. This means that
for f € L2(T) then

(PG(s,t),f) = (d(s—t),f) = f(t)
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Connection between Differential Operators, Green’s
functions and Kernels

Theorem

Let T = IR? and P a differential operator on a class of functions  such
that, endowed with the inner product:

<f7g>7'l = <Pf7 Pg>L2(T)

where (f,g) € H? it is a Hilbert space. Then H is a RKHS that admits as
reproducing kernel the Green function of the operator P*P, where P*
denotes the adjoint operator of P.
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Idea of the proof
Let H be a Hilbert space endowed with the inner product

<fag>7'l = <Pf7 Pg>L2(T)
and K be the Green function of the operator P*P , that is
P*PK(s,t) = d(s — t)

Then, for all s € T, (the evaluation functionals) K; = K(t,-) € H because:

@ The evaluation functional K; are bounded.

@ K; has the reproducing property: for all f € H and x € X, we have
that

(Ke, F) = (PKe, Pf)2(ry = (P*PKe, £) 121y = (0(s — t), F) 12(7) =

= f(t)
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Non homogeneous equation |

o ||Pgx — f3]|? cannot be used as a norm in an RKHS.
o If x =0 then ||Pgx — f3]| is not necessarily zero.

@ Let G be a Green's function of Py and take
x(t) = x(t) — x*(1), (1)

where x*(t) = [ G(z, t)fg(z)dz is effectively a collection of solutions
of the differential equation.
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Non homogeneous equation |l

X can be calculated independent from the sample S.

Since Py is a linear operator we have that for all X
Pg)?(t) = ng(t) — PQX*(t) = ng(t) — fﬁ(t),

including for the trivial solution X = 0.

Then ||Pgk||2 = ||Pox — f3||?> and we can use ||PpX|| as a penalty

@ This requires the transformation of the original observations,
yi=yi—x"(ti)
forj=1,...,n
@ In the discrete case G is P(,_1
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Transformation, the Lotka-Volterra system

dxq dxp

o §1 =y; — (D —011) 11 (Xa%2)
o ¥, =y, — (D — Oal) 1 fo(R1%2)

where X1 and X, are spline smoothers of the original data.
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