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Notation

Consider a dynamical system modelled by a set of ODEs

Pθj xj = fβj (x1, . . . , xm, uj), j = 1, . . . ,m

that describes the time evolution of m interacting elements, e. g.,

gene regulatory networks in system biology,
prey-predators systems in ecology or bussines.

Elements
xj , uj : state variables and external forces defined on a time interval T .
Pθj =

∑d
k=0 θjkDk with Dk = dk/dt, k ∈ IN and θj = {θj1, . . . , θjd}.

fβj known parametric function where βj = {βj1, . . . , βjq}.
Θ = {θ1, . . . , θm} and B = {β1, . . . , β1}, parameters.
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Problem statement
Noisy measurements yij of the state variables x1, . . . , xm at n time points.

yji ∼ N (xj(ti ), σ
2
j )

d
dt x1 = x1(θ1 − β1x2),

d
dt x2 = −x2(θ2 − β2x1),

Problem to solve
Use the sample S = {(yji , ti ) ∈ IR × T}n,mi ,j=1 to provide estimators of
Θ = {θ1, θ2},B = {β1, β2},Σ = {σ1, σ2}.
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Likelihood approach

Likelihood approach

lj(θj , βj , σj , xj |Sj) = −n
2 log(σ2

j )− 1
2σ2

j

n∑
i=1

(yji − x(ti ))2

for xj satisfying that Pθj xj = fβj .

(Θ̂, B̂, Σ̂, x̂1, . . . , x̂n|S) = argmaxΘ,B,Σ

m∑
j=1

lj(θj , βj , σj , xj |Sj)

To solve the ODE is needed.

Parameter identification might be non-stable with noisy data.
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Regularization approach

Regularization methods are appropiate in this context.

Replace the original problem by a family of problems where the ODE
is used to penalize the likelihood.

Penalized Likelihood approach

(Θ̂, B̂, Σ̂, x̂1, . . . , x̂n|S) = argmaxΘ,B,Σ

m∑
j=1

lj(θj , βj , σj , xj |Sj)− λΩj(xj)

for λ > 0 and Ω(xj) a convex functional.

How to define Ω(xj)?
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MLE vs PMLE: dx/dt = θx .
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θtrue = −2, θMLE = −1,12, θPMLE = −1,99
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Regularization approaches in the literature

Likelihood based approaches [Ramsay et al., 2007, Bouchet, 2007]
Estimation of the x ′j s by nonparametric regression (splines, SVR).
Differentiation of x̂j and minimization over the parameters using
Ω(x̂j) = ‖Pθj x̂j − fβj (x̂1, . . . , x̂m, uj))‖L2 .

Other approaches
Bayesian method similar in spirit to Ramsay et al. (2007). Solution of
the ODE given as a Gaussian process [Calderhead et al., 2008].

Kernel Method for estimating 1-dimensional, periodic differential
equations [Steinke et al. 2008].
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Idea and approach
Idea

1 Combine the frequentist set-up with the kernel approach.
2 Parameter estimation problem as the maximization of a likelihood

with a Reproducing kernel Hilbert space (RKHS) based penalty.

Pθj xj = 0, generalization to non-homogeneous is feasible.

Penalty, Pθj is a differential operator on some space of functions H

Ωj(xj) = ‖xj‖2H =

∫
T

(Pθj xj(t))2dt.

When ‖xj‖2H = 0, xj is a solution of Pθj xj = 0.

Non homogeneous: Transform ‖Pθj xj − fβj‖2H to ‖Pθj x̃j‖2H where the
x̃j depends on βj . Transform the yij (details next talk).
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Properties of Ωj(xj) = ‖xj‖2H
RKHS in a nutshell

Mercer kernel: continous, symmetric and positive definite function
K : T × T → IR.
RKHS: completed space spanned by x(t) =

∑n
i=1 αiK (ti , t), where

n ∈ IN, ti ∈ T and αi ∈ IR and 〈f , g〉H =
∑n

i=1
∑n

j=1 αiβjK (ti , tj).

H is a RKHS whose reproducing kernel is a Green’s function of P∗θPθ.

P∗θPθK (t, z) = δ(t − z).

Functions in H are characterized by vectors α = (α1, . . . , αn)T .
m∑

j=1

[
−n
2 log(σ2

j )− 1
2σ2

j
‖yj −Kθj αj‖2 − λαT

j Kθj αj

]

where (Kθj )is = Kθj (ti , ts) and yj = (yj1, . . . , yjn)T .
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∑n
i=1 αiK (ti , t), where

n ∈ IN, ti ∈ T and αi ∈ IR and 〈f , g〉H =
∑n

i=1
∑n

j=1 αiβjK (ti , tj).

H is a RKHS whose reproducing kernel is a Green’s function of P∗θPθ.

P∗θPθK (t, z) = δ(t − z).

Functions in H are characterized by vectors α = (α1, . . . , αn)T .
m∑

j=1

[
−n
2 log(σ2

j )− 1
2σ2

j
‖yj −Kθj αj‖2 − λαT

j Kθj αj

]

where (Kθj )is = Kθj (ti , ts) and yj = (yj1, . . . , yjn)T .
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Computation of Kθj

A Green’s function for P∗θj
Pθj might be hard or impossible to compute.

Replace αT
j Kθj αj by an approximation αT

j K̃θj αj .
Pθj =

∑d
k=0 θjkDk : difference operator defined on t1, . . . , tn and

D = ∆−1 ·


−1 1
−1 0 1

. . .
−1 0 1

−1 1

 .

where ∆ = diag(t2 − t1, t4 − t2, . . . , tn − tn−2, tn − tn−1).
Focus on the difference equation Pθjxj = 0.
K̃θj = (PT

θjPθj )
−1.
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Finite dimensional approximation, EM algorithm
Idea

To reduce the error of the finite dimensional approximation.
To include a number of hidden data points (t∗H , y∗H).
Kθj only depends on the t ′i s.
More points -> better approximations of the derivatives.
Iterate EM algorithm.

1 E-step Expectation of the likelihood over yH .
2 M-step Maximize the likelihood over the parameters using (yO , ŷH).
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Finite dimensional approximation, EM algorithm

(a) ODE model, dx/dt = θx with
x(0)=-1 and θ = −2. True function
and obtained solution for 0, 1, and 10
intermediate points.

(b) Estimation of θ for different num-
ber of intermediate points.

Figura: Illustation of the convergence of the parameter estimate for increasing
number of intermediate points.
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Comparisons
PMLE vs. TS-Ramsay approaches in small-sample-size cases.

Model dx/dt = θx with x(0)=-1 and θ = −2.

100 independent data sets of size 5.

PMLE method with 10 equally spaced points between each pair of
observed data.

Penalization λ selected using the GCV criteria.

100 iterations of the EM algorithm.

TS-Ramsay Proposed method

-1.6708 (0.2809) -1.9448 (0.1594)
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Simulated result, the Lotka-Volterra system
dx1
dt = x1(θ1 − β1x2),

dx2
dt = −x2(θ2 − β2x2)

θ1 = 0,2, β1 = 0,35 θ2 = 0,7 and β2 = 0,40, x1,0 = 1, x2,0 = 2.

(a) λ = 100 and a level noise
of σ = 0,1.

(b) n = 100 and a level noise of
σ = 0,1.

González, Vujacic and Wit (RUG) PEDSII PEDSII, June, 2012 14 / 21



Conclusions and final remarks

General methodology to estimate the parameters of system of
ordinary differential equations in presence of noisy data.

The system of equations is directly used as regularizer in the
likelihood. A RKHS framework is used for this task. No need to solve
the ODE to estimate the parameters.

Method specially useful in problems with small samples. EM algorithm
allows to incorporate into the system missing (or hidden) observations.

Performance in real applications, next talk!
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The Green’s function of a differential operator P

Definition
Let T ∈ [a, b] ∈ IR and let P : H −→ L2(T ) be a differential operator on a
class of functions H then the Green’s function of P is a function such that

PG(s, t) = δ(s − t)

where s, t ∈ T

Remark
Notice that this equality holds in the distributional sense. This means that
for f ∈ L2(T ) then

〈PG(s, t), f 〉 = 〈δ(s − t), f 〉 = f (t)
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Connection between Differential Operators, Green’s
functions and Kernels

Theorem
Let T = IRd and P a differential operator on a class of functions H such
that, endowed with the inner product:

〈f , g〉H = 〈Pf ,Pg〉L2(T )

where (f , g) ∈ H2 it is a Hilbert space. Then H is a RKHS that admits as
reproducing kernel the Green function of the operator P∗P, where P∗
denotes the adjoint operator of P.
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Idea of the proof
Let H be a Hilbert space endowed with the inner product

〈f , g〉H = 〈Pf ,Pg〉L2(T )

and K be the Green function of the operator P∗P , that is

P∗PK (s, t) = δ(s − t)

Then, for all s ∈ T , (the evaluation functionals) Kt = K (t, ·) ∈ H because:

The evaluation functional Kt are bounded.
Kt has the reproducing property: for all f ∈ H and x ∈ X , we have
that

〈Kt , f 〉H = 〈PKt ,Pf 〉L2(T ) = 〈P∗PKt , f 〉L2(T ) = 〈δ(s − t), f 〉L2(T ) =

= f (t)
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Non homogeneous equation I

‖Pθx − fβ‖2 cannot be used as a norm in an RKHS.

If x = 0 then ‖Pθx − fβ‖2 is not necessarily zero.

Let G be a Green’s function of Pθ and take

x̃(t) = x(t)− x∗(t), (1)

where x∗(t) =
∫

T G(z , t)fβ(z)dz is effectively a collection of solutions
of the differential equation.
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Non homogeneous equation II

x̃ can be calculated independent from the sample S.
Since Pθ is a linear operator we have that for all x̃

Pθx̃(t) = Pθx(t)− Pθx∗(t) = Pθx(t)− fβ(t),

including for the trivial solution x̃ = 0.
Then ‖Pθx̃‖2 = ‖Pθx − fβ‖2 and we can use ‖Pθx̃‖ as a penalty
This requires the transformation of the original observations,

ỹi = yi − x∗(ti )

for j = 1, . . . , n.
In the discrete case G is P−1

θ
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Transformation, the Lotka-Volterra system

dx1
dt = x1(θ1 − β1x2),

dx2
dt = −x2(θ1 − β2x2)

ỹ1 = y1 − (D− θ1I)−1β1(x̂1x̂2)

ỹ2 = y2 − (D− θ2I)−1β2(x̂1x̂2)

where x̂1 and x̂2 are spline smoothers of the original data.
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