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. . . . . .

Context

Goal: Combining tools from the theories of Dynamical Systems and
Learning in view of analyzing, predicting and controling nonlinear systems
on the basis of data rather than models.
Approach: View Reproducing Kernel Hilbert Spaces as “Linearizing
Spaces”, i.e. Nonlinear Systems will be mapped into an RKHS where
Linear Systems Theory will be applied.
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Outline

• Review of Some Concepts for Linear Control Systems
• Elements of Learning Theory
• On Nonlinear Control Systems in RKHS
• Application: Model Reduction of Nonlinear Control Systems in RKHS
• Review of Some Concepts for Linear SDEs
• On Nonlinear SDEs in RKHSes
• Application: Estimation of the Stationary Solution of the Fokker-Planck
Equation of nonlinear SDEs
• Application: Parameter Estimation of SDEs in RKHSes
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Review of Some Concepts for Linear Control Systems

• Consider a linear control system

ẋ = Ax+Bu
y = Cx

,

where x ∈ Rn, u ∈ Rq, y ∈ Rp, (A,B) is controllable, (A,C) is observable
and A is Hurwitz.
• We define the controllability and the observability Gramians as,
respectively, Wc =

∫∞
0 eAtBB⊤eA

⊤t dt, Wo =
∫∞
0 eA

⊤tC⊤CeAt dt.
• These two matrices can be viewed as a measure of the controllability
and the observability of the system.
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Review of Some Concepts for Linear Control Systems

• Consider the past energy, Lc(x0), defined as the minimal energy required
to reach x0 from 0 in infinite time

Lc(x0) = inf
u∈L2(−∞,0),

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞
∥u(t)∥2 dt.

• Consider the future energy, Lo(x0), defined as the output energy
generated by releasing the system from its initial state x(t0) = x0, and
zero input u(t) = 0 for t ≥ 0, i.e.

Lo(x0) =
1

2

∫ ∞

0
∥y(t)∥2 dt,

for x(t0) = x0 and u(t) = 0, t ≥ 0.
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Review of Some Concepts for Linear Control Systems

• In the linear case, it can be shown that

Lc(x0) =
1
2x

⊤
0W

−1
c x0, Lo(x0) =

1
2x

⊤
0Wox0.

• Moreover, Wc and Wo satisfy the following Lyapunov equations

AWc +WcA
⊤= −BB⊤, A⊤Wo +WoA = −C⊤C.
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Review of Some Concepts for Linear Control Systems

• These energies are directly related to the controllability and observability
operators.
• Given a matrix pair (A,B), the controllability operator Ψc is defined as
Ψc : L2(−∞, 0) → Cn;u 7→

∫ 0
−∞ e−AτBu(τ)dτ .

• The significance of this operator is made evident via the following
optimal control problem: Given the linear system ẋ(t) = Ax(t) +Bu(t)
defined for t ∈ (−∞, 0) with x(−∞) = 0, and for x(0) ∈ Cn with unit
norm, what is the minimum energy input u which drives the state x(t) to
x(0) = x0 at time zero? That is, what is the u ∈ L2(−∞, 0] solving
Ψcu = x0 with smallest norm ∥u∥2?
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Review of Some Concepts for Linear Control Systems

•If (A,B) is controllable, then ΨcΨ
∗
c =: Wc is nonsingular, and the answer

to the preceding question is uopt := Ψ∗
cW

−1
c x0. The input energy is given

by ∥uopt∥22 = x∗0W
−1
c x0.

• The reachable set through uopt, i.e. the final states x0 = Ψcu that can
be reached given an input u ∈ L2(−∞, 0] of unit norm,
{Ψcu : u ∈ L2(−∞, 0] and ∥u∥2 ≤ 1} may be defined as

R := {W
1
2
c xc : xc ∈ Cn and ∥xc∥ ≤ 1}.
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Review of Some Concepts for Linear Control Systems

• For the autonomous system ẋ = Ax, x(0) = x0 ∈ Cn; y = Cx where A
is Hurwitz, the observability operator is defined as

Ψo : Cn → L2(0,∞);x0 7→
{

CeAtx0, for t ≥ 0
0, otherwise

• The corresponding observability ellipsoid is given by

E := {W
1
2
o x0 : x0 ∈ Cn and ∥x0∥ = 1}.

• The energy of the output signal y = Ψox0, for x0 ∈ Cn can then be
computed as

∥y∥22 = ⟨Ψox0,Ψox0⟩ = ⟨x0,Ψ∗
oΨox0⟩ = ⟨x0,W0x0⟩

where Ψ∗
o : L2[0,∞) → Cn is the adjoint of Ψo.
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Controllability and Observability Energies for Nonlinear
Systems

• Consider the nonlinear system Σ{
ẋ = f(x) +

∑m
i=1 gi(x)ui,

y = h(x),

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0) = 0, gi(0) = 0 for 1 ≤ i ≤ m, and
h(0) = 0.
Hypothesis H: The linearization of around the origin is controllable,
observable and F = ∂f

∂x |x=0 is asymptotically stable.
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Controllability and Observability Energies for Nonlinear
System

• Theorem (Scherpen, 1993) If the origin is an asymptotically stable
equilibrium of f(x) on a neighborhood W of the origin, then for all
x ∈ W , Lo(x) is the unique smooth solution of

∂Lo

∂x
(x)f(x) +

1

2
h⊤(x)h(x) = 0, Lo(0) = 0

under the assumption that this equation has a smooth solution on W .
Furthermore for all x ∈ W , Lc(x) is the unique smooth solution of

∂Lc

∂x
(x)f(x) +

1

2

∂Lc

∂x
(x)g(x)g⊤(x)

∂⊤Lc

∂x
(x) = 0, Lc(0) = 0

under the assumption that this equation has a smooth solution L̄c on W
and that the origin is an asymptotically stable equilibrium of
−(f(x) + g(x)g⊤(x)∂L̄c

∂x (x)) on W .
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Controllability and Observability Energies in Model
Reduction of Linear Control Systems

• Gramians have several uses in Linear Control Theory. For example, for
the purpose of model reduction.
• Balancing: find a representation where the system’s observable and
controllable subspaces are aligned so that reduction, if possible, consists of
eliminating uncontrollable states which are also the least observable.
• More formally, we would like to find a new coordinate system such that

Wc = Wo = Σ = diag{σ1, · · · , σn},

where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. If (F,G) is controllable and (F,H) is
observable, then there exists a transformation such that the state space
expressed in the transformed coordinates (TFT−1, TG,HT−1) is balanced
and TWcT

⊤= T−⊤WoT
−1 = Σ.
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Balancing of Linear Control Systems

• Typically one looks for a gap in the singular values {σi} for guidance as
to where truncation should occur. If we see that there is a k such that
σk ≫ σk+1, then the states most responsible for governing the
input-output relationship of the system are (x1, · · · , xk) while
(xk+1, . . . , xn) are assumed to make negligible contributions.
• Although several methods exist for computing T , the general idea is to
compute the Cholesky decomposition of Wo so that Wo = ZZ⊤, and form
the SVD UΣ2U⊤ of Z⊤WcZ. Then T is given by T = Σ

1
2U⊤Z−1.
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Balancing of Nonlinear Systems

• Theorem (Scherpen) Consider system Σ under Hypothesis H and the
assumptions in the preceding theorem. Then, there exists a neighborhood
W of the origin and coordinate transformation x = φ(z) on W converting
the energy functions into the form

Lc(φ(z)) =
1

2
z⊤z,

Lo(φ(z)) =
1

2

n∑
i=1

z2i σi(zi)
2,

where σ1(x) ≥ σ2(x) ≥ · · · ≥ σn(x). The functions σi(·) are called Hankel
singular value functions.

Boumediene Hamzi (Imperial College) On Control and RDS in RKHS June 4th, 2012 14 / 55



. . . . . .

Balancing of Nonlinear Systems

• In the above framework for balancing of nonlinear systems, one needs to
solve (or numerically evaluate) the PDEs and compute the coordinate
change x = φ(z).
• However there are no systematic methods or tools for solving these
equations.
• Various approximate solutions based on Taylor series expansions have
been proposed Krener (2007, 2008), Fujimoto and Tsubakino (2008).
• Newman and Krishnaprasad (2000) introduce a statistical approximation
based on exciting the system with white Gaussian noise and then
computing the balancing transformation using an algorithm from
differential topology.
• An essentially linear empirical approach, similar to Moore’s empirical
approach, was proposed by Lall, Marsden and Glavaski (2002).

Boumediene Hamzi (Imperial College) On Control and RDS in RKHS June 4th, 2012 15 / 55



. . . . . .

Computing the Controllability and Observability Energies:
Linear Case

• Analytic Approach: The Gramians Wc and Wo satisfy the Lyapunov
equations

FWc +WcF
⊤= −GG⊤,

F⊤Wo +WoF = −H⊤H.

• Data-Based Approach: Moore showed that Wc and Wo can be obtained
from the impulse responses of ΣL. For instance,

Wc =

∫ ∞

0
X(t)X(t)Tdt, Wo =

∫ ∞

0
Y T (t)Y (t)dt

where X(t) is the response to ui(t) = δ(t)ei with x(0) = 0, and Y (t) is
the output response to u(t) = 0 and x(0) = ei.
Given X(t) and Y (t), one can perform PCA to obtain Wc and Wo

respectively.
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Empirical Estimates of the Gramians

The observability and controllability Gramians may be estimated
statistically from typical system trajectories:

Ŵc =
T

mN

N∑
i=1

X(ti)X(ti)
⊤, Ŵo =

T

pN

N∑
i=1

Y (ti)Y (ti)
⊤.

where ti ∈ [0, T ], i = 1, . . . , N , X(t) =
[
x1(t) · · · xm(t)

]
, and

Y (t) = [y1(t) · · · yn(t)]⊤ if {xj(t)}mj=1, {yj(t)}nj=1 are measured
(vector-valued) responses and outputs of the system.

Boumediene Hamzi (Imperial College) On Control and RDS in RKHS June 4th, 2012 17 / 55



. . . . . .

Computing the Controllability and Observability Energies
for Nonlinear Systems

Questions
• How to extend Moore’s empirical approach to Nonlinear Control Systems
?
• Are there “Gramians” for Nonlinear Systems ? and in the affirmative,
how to compute them from data ?
• Can we “view” a Nonlinear (Control) System as Linear by working in a
different space or at least perform PCA for Nonlinear Systems ?
• Idea ! Use of kernel methods. A kernel based procedure may be
interpreted as mapping the data, through “feature maps”, from the
original input space into a potentially higher dimensional Reproducing
Kernel Hilbert Space where linear methods may then be used.
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Reproducing Kernel Hilbert Spaces

• Historical Context: Appeared in the 1930s as an answer to the question:
when is it possible to embed a metric space into a Hilbert space ?
(Schoenberg, 1937)
• Answer: If the metric satisfies certain conditions, it is possible to embed
a metric space into a special type of Hilbert spaces called RKHSes.
• Properties of RKHSes have been further studied in the 1950s and later
(Aronszajn, 1950; Schwartz, 1964 etc.)
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Reproducing Kernel Hilbert Spaces

• Definition: A Hilbert Space is an inner product space that is complete
and separable with respect to the norm defined by the inner product.
• Definition: For a compact X ⊆ Rd, and a Hilbert space H of functions
f : X → R, we say that H is a RKHS if there exists k : X → R such that

i. k has the reproducing property, i.e. ∀f ∈ H, f(x) = ⟨f(·), k(·, x)⟩.
ii. k spans H, i.e. H = span{k(x, ·)|x ∈ X}.

• Definition: A Reproducing Kernel Hilbert Space (RKHS) is a Hilbert
space H with a reproducing kernel whose span is dense in H. Equivalently,
an RKHS is a Hilbert space of functions with all evaluation functionals
bounded and linear.
• Remark: L2 is a Hilbert space but not an RKHS because the delta
function which has the reproducing property f(x) =

∫
δ(x− u)f(u)du,

does not satisfy the square integrable condition
∫
δ(u)2du ≮ ∞
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Reproducing Kernel Hilbert Spaces

The important properties of reproducing kernels are
• K(x, y) is unique.
• ∀x, y ∈ X , K(x, y) = K(y, x) (symmetry).
•
∑m

i,j=1 αiαjK(xi, xj) ≥ 0 for αi ∈ R and xi ∈ X (positive definitness).
• ⟨K(x, ·),K(y, ·)⟩H = K(x, y).

• A Mercer kernel is a continuous positive definite kernel.
• The fact that Mercer kernels are positive definite and symmetric reminds
us of similar properties of Gramians and covariance matrices. This is an
essential fact that we are going to use in the following.

• Examples of kernels: k(x, x′) = ⟨x, x′⟩d, k(x, x′) = exp
(
− ||x−x′||

2σ2

)
,

k(x, x′) = tanh(κ⟨x, x′⟩+ θ).
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Reproducing Kernel Hilbert Spaces

• Mercer Theorem: Let (X , µ) be a finite-measure space, and suppose
k ∈ L∞(X 2) is a symmetric real-valued function such that the integral
operator

Tk : L2(X ) → L2(X )

f 7→ (Tkf)(x) =

∫
X
k(x, x′)f(x′)dµ(x′)

is positive definite; that is, for all f ∈ L2(X ), we have∫
X 2 k(x, x

′)f(x)f(x′)dµ(x)dµ(x′) ≥ 0.
Let Ψj ∈ L2(X ) be the normalized orthogonal eigenfunctions of Tk

associated with the eigenvalues λj > 0, sorted in non-increasing order.
Then

i. (λj)j ∈ ℓ1,

ii. k(x, x′) =
∑NX

j=1 λjΨj(x)Ψj(x
′) holds for almost all (x, x′). Either

NX ∈ N, or NX = ∞; in the latter case, the series converges
absolutely and uniformly for almost all (x, x′).
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Reproducing Kernel Hilbert Spaces

• Proposition (Mercer Kernel Map): If k is a kernel satisfying the
conditions in the preceding theorem, it is possible to construct a mapping
Φ into a space where k acts as a dot product,

⟨Φ(x),Φ(x′)⟩ = k(x, x′),

for almost all x, x′ ∈ X . Moreover, given any ϵ > 0, there exists a map Φn

into an n−dimensional dot product space (where n ∈ N depends on ϵ)
such that

|k(x, x′)− ⟨Φ(x),Φ(x′)⟩| < ϵ

for almost all x, x′ ∈ X .
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Reproducing Kernel Hilbert Spaces

• RKHS play an important in learning theory whose objective is to find an
unknown function f : X → Y from random samples (xi, yi)|mi=1.
• For instance, assume that the random probability measure that governs
the random samples is ρ and is defined on Z := X × Y . Let X be a
compact subset of Rn and Y = R. If we define the least square error of f
as E =

∫
X×Y (f(x)− y)2dρ, then the function that minimzes the error is

the regression function fρ fρ(x) =
∫
R ydρ(y|x), x ∈ X, where ρ(y|x) is

the conditional probability measure on R.
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Reproducing Kernel Hilbert Spaces

• Since ρ is unknown, neither fρ nor E is computable. We only have the
samples s := (xi, yi)|mi=1. The error fρ is approximated by the empirical
error Es(f) by

Es(f) =
1

m

m∑
i=1

(f(xi)− yi)
2 + λ||f ||2H,

for λ ≥ 0, λ plays the role of a regularizing parameter.
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Reproducing Kernel Hilbert Spaces

• In learning theory, the minimization is taken over functions from a
hypothesis space often taken to be a ball of a RKHS HK associated to
Mercer kernel K, and the function fs that minimizes the empirical error Es
is

fs =
m∑
j=1

cjK(x, xj),

where the coefficients (cj)
m
j=1 is solved by the linear system

λmci +

m∑
j=1

K(xi, xj)cj = yi, i = 1, · · ·m,

and fs is taken as an approximation of the regression function fρ.
• We call learning the process of approximating the unknown function f
from random samples on Z.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• We consider a general nonlinear system of the form{
ẋ = f(x, u)
y = h(x)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0, 0) = 0, and h(0) = 0.
• Assume that the system is linear when lifted into an RKHS.
• In the linear case, Lc(x0) =

1
2x

T
0 W

−1
c x0 and Lo(x0) =

1
2x

T
0 Wox0 can be

rewritten as Lc(x0) =
1
2

⟨
W †

c x0, x0

⟩
and Lo(x0) =

1
2 ⟨Wox0, x0⟩.

• In the nonlinear case, it may be tempting to write, in H,

Lc(h) =
1
2

⟨
W †

c h, h
⟩
and Lo(h) =

1
2 ⟨Woh, h⟩. However, there are some

complications...
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• The domain of W †
c is equal to the range of Wc, and so in general Kx

may not be in the domain of W †
c . We will therefore introduce the

orthogonal projection W †
cWc mapping H 7→ range(Wc) and define the

nonlinear control energy on H as

Lc(h) =
⟨
W †

c (W
†
cWc)h, h

⟩
.

• Since we will consider finite sample approximations to the preceding
expression, Ŵ †

c Ŵc may not converge to W †
cWc in the limit of infinite data

(taking the pseudoinverse is not a continuous operation), and Ŵ †
c can

easily be ill-conditioned in any event. One needs to impose regularization,
and we replace the pseudoinverse A† with a regularized inverse
(A+ λI)−1, λ > 0 throughout.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• Intuitively, regularization prevents the estimator from overfitting to a
bad or unrepresentative sample of data. We thus define the estimator
L̂c : X → R+ (that is, on the domain {Kx | x ∈ X} ⊆ H) to be

L̂c(x) =
1
2

⟨
(Ŵc + λI)−2ŴcKx,Kx

⟩
, x ∈ X

with infinite-data limit

Lλ
c (x) =

1
2

⟨
(Wc + λI)−2WcKx,Kx

⟩
,

where λ > 0 is the regularization parameter.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• Towards deriving an equivalent but computable expression for L̂c defined
in terms of kernels, we recall the sampling operator Sx introduced by
Smale.
• Let x = {xi}mi=1 denote a generic sample of m data points. To x we can
associate the operators

Sx : H →Rm, h ∈ H 7→
(
h(x1), . . . , h(xm)

)
S∗
x : Rm→H, c ∈ Rm 7→

∑m
i=1 ciKxi .

If x is the collection of m = Np controllability samples, one can check
that Ŵc =

1
mS∗

xSx and Kc = SxS
∗
x.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• Consequently,

L̂c(x) =
1
2

⟨
( 1
mS∗

xSx + λI)−2 1
mS∗

xSxKx,Kx

⟩
= 1

2m

⟨
S∗
x(

1
mSxS

∗
x + λI)−2SxKx,Kx

⟩
= 1

2mkc(x)
⊤( 1

mKc + λI)−2kc(x),

where kc(x) := SxKx =
(
K(x, xµ)

)Nq

µ=1
is the Nq-dimensional column

vector containing the kernel products between x and the controllability
samples.
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Controllability and Observability Energies of Nonlinear
Systems in RKHSes

• Similarly, letting x now denote the collection of m = Np observability
samples, we can approximate the future output energy by

L̂o(x) =
1
2

⟨
ŴoKx,Kx

⟩
(1)

= 1
2m

⟨
S∗
xSxKx,Kx

⟩
= 1

2mko(x)
⊤ko(x) =

1
2m ∥ko(x)∥22

where ko(x) :=
(
K(x, dµ)

)Np

µ=1
is the Np-dimensional column vector

containing the kernel products between x and the observability samples.
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Balanced Reduction of Nonlinear Control Systems in RKHS

• We consider a general nonlinear system of the form{
ẋ = f(x, u)
y = h(x)

with x ∈ Rn, u ∈ Rm, y ∈ Rp, f(0, 0) = 0, and h(0) = 0. We assume
that the system is zero-state observable, and that the linearization of
around the origin is controllable. We also assume that the origin of
ẋ = f(x, 0) is asymptotically stable.

Proposed Data-Driven Approach:

I Assume that the system behaves linearly when lifted to a high
dimensional feature space.

I Carry out balancing and truncation (linear techniques) implicitly in
the feature space (discard unimportant states).

I Construct a nonlinear reduced-order model by learning approximations
to f, h defined directly on the reduced state space.
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Balancing in RKHS

Idea: We can perform balancing/truncation in feature space by lifting the
data into H via Φ, and simultaneously diagonalizing the corresponding
covariance operators.

The empirical controllability Gramian

Ŵc =
T

mN

N∑
i=1

X(ti)X(ti)
⊤=

T

mN

N∑
i=1

m∑
j=1

xj(ti)x
j(ti)

⊤

becomes

Cc =
T

mN

N∑
i=1

m∑
j=1

⟨
Φ
(
xj(ti)

)
, ·
⟩
HΦ

(
xj(ti)

)
for example.
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Balancing in RKHS

• “Balancing” is carried out implicitly in H by simultaneous
diagonalization of Kc and Ko.

• If K
1/2
c KoK

1/2
c = UΣ2U⊤, we can define the aligning transformation

T = Σ1/2U⊤
√

K†
c .

• The dimension of the state space is reduced by discarding small
eigenvalues {Σii}ni=q+1, and projecting onto the subspace in H associated
with the first q < n largest eigenvalues.
• This leads to the nonlinear state-space dimensionality reduction map
Π : Rn → Rq given by

Π(x) = T⊤
q kc(x), x ∈ Rn

where
kc(x) :=

(
K(x, x1(t1)), . . . ,K(x, xm(tN ))

)⊤
.
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. . . . . .

An Experiment

Consider the 7−D system (Nilsson, 2009)

ẋ1 = −x31 + u ẋ2 = −x32 − x21x2 + 3x1x
2
2 − u

ẋ3 = −x33 + x5 + u ẋ4 = −x34 + x1 − x2 + x3 + 2u

ẋ5 = x1x2x3 − x35 + u ẋ6 = x5 − x36 − x35 + 2u

ẋ7 = −2x36 + 2x5 − x7 − x35 + 4u

y = x1 − x22 + x3 + x4x3 + x5 − 2x6 + 2x7
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. . . . . .

Experiment: Inputs

I Excite with impulses: inputs (Kc) and initial conditions (Ko, u = 0).

I Learn f̂ , ĥ using a 10Hz square wave input signal u.

I Reduce to a second-order system.

I Simulate the reduced system with a different input,

u(t) = 1
2

(
sin(2π3t) + sq(2π5t− π/2)

)
and compare the output to that of the original system.
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. . . . . .

Experiment
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Experiment
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. . . . . .

Review of Some Concepts for Linear Stochastic Differential
Equations

• Consider the stochastically excited stable dynamical control systems
affine in the input u ∈ Rq

ẋ = f(x) +G(x)u ,

where G : Rn → Rn×q is a smooth matrix-valued function. We replace the
control inputs by sample paths of white Gaussian noise processes, giving
the corresponding stochastic differential equation (SDE)

dXt = f(Xt)dt+G(Xt)dW
(q)
t

with W
(q)
t a q−dimensional Brownian motion. The solution Xt to this

SDE is a Markov stochastic process with transition probability density
ρ(t, x) that satisfies the Fokker-Planck (or Forward Kolmogorov) equation

∂ρ

∂t
= −⟨ ∂

∂x
, fρ⟩+ 1

2

n∑
j,k=1

∂2

∂xj∂xk
[(GGT )jkρ] =: Lρ .

The differential operator L on the right-hand side is referred to as the
Fokker-Planck operator. The steady-state probability density is a solution
of the equation

Lρ∞ = 0.
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. . . . . .

Review of Some Concepts for Linear Stochastic Differential
Equations

• In the context of linear Gaussian theory where we are given an

n−dimensional system of the form dXt = AXtdt+BdW
(q)
t , with

A ∈ Rn×n, B ∈ Rn×q, the transition density is Gaussian.
• It is therefore sufficient to find the mean and covariance of the solution
X(t) in order to uniquely determine the transition probability density.
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. . . . . .

Review of Some Concepts for Linear Stochastic Differential
Equations

• The mean satisfies d
dtE[x] = AE[x] and thus E[x(t)] = eAtE[x(0)]. If A

is Hurwitz, limt→∞ E[x(t)] = 0.
• The covariance satisfies d

dtE[xx
T ] = AE[xxT ] + E[xxT ]A+BBT .

• Hence, Q = limt→∞ E[xx⊤] satisfies the Lyapunov system

AQ+QA⊤= −BB⊤. So, Q = Wc =
∫∞
0 eAtBB⊤eA

⊤t dt, where Wc is the
controllability Gramian, which is positive iff. the pair (A,B) is
controllable.
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. . . . . .

Review of Some Concepts for Linear Stochastic Differential
Equations

• Combining the above facts, the steady-state probability density is given
by

ρ∞(x) = Z−1e−
1
2
x⊤W−1

c x = Z−1e−Lc(x)

with Z =
√

(2π)ndet(Wc).
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. . . . . .

Extension to the Nonlinear Case

• The preceding suggests the following key observations in the linear
setting: Given an approximation L̂c of Lc we obtain an approximation for
ρ∞ of the form

ρ̂∞(x) ∝ e−L̂c(x)

• Although the above relationship between ρ∞ and Lc holds for only a
small class of systems (e.g. linear and some Hamiltonian systems), by
mapping a nonlinear system into a suitable reproducing kernel Hilbert
space we may reasonably extend this connection to a broad class of
nonlinear systems.
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. . . . . .

Nonlinear SDEs in RKHSes

• Assumption1: Given a suitable choice of kernel K, if the Rd-valued
stochastic process x(t) is a solution to the (ergodic) stochastically excited
nonlinear system

dXt = f(Xt)dt+G(Xt)dW
(q)
t

the H-valued stochastic process (Φ ◦ x)(t) =: X(t) can be reasonably
modelled as an Ornstein-Uhlenbeck process

dX(t) = AX(t)dt+
√
CdW (t), X(0) = 0 ∈ H

where A is linear, negative and is the infinitesimal generator of a strongly
continuous semigroup etA, C is linear, continuous, positive and
self-adjoint, and W (t) is the cylindrical Wiener process.
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. . . . . .

Nonlinear SDEs in RKHSes

• Assumption2: The measure P∞ is the invariant measure of the OU
process and P∞ is the pushforward along Φ of the unknown invariant
measure µ∞ on the statespace X we would like to approximate.
• Assumption3: The measure µ∞ is absolutely continuous with respect to
Lebesgue measure, and so admits a density.
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. . . . . .

Nonlinear SDEs in RKHSes

• The stationary measure µ∞ is defined on a finite dimensional space, so
together with part (iii) of Assumption A, we may consider the
corresponding density

ρ∞(x) ∝ exp
(
−L̂c(x))
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. . . . . .

Experiment

Consider the SDE dX = −5X5 + 10X3 +
√
2dW .
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. . . . . .

Parameter Estimation for SDEs

• It is apparent from Lρ∞(x) = 0 that both drift and diffusion coefficients
of an SDE are directly related to the stationary solution ρ∞ of the
Fokker-Planck equation.
• This relation can be employed to derive estimators for the unknown
coefficients.
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. . . . . .

Parameter Estimation for SDEs

• Consider the scalar-valued SDE

dXt = f(Xt) dt+ g(Xt) dWt .

• Equation Lρ∞(x) = 0 reduces to

f(x)ρ∞(x) =
1

2
(g(x)2ρ∞(x))′ .

The methodology described before yields an estimator ρ̂∞ of ρ∞, but this
is obviously not sufficient to estimate both unknown functions f and g
directly using the above relation. If we, however, have knowledge of either
one, then a natural nonparametric estimator for the other one is given via

f̂(x) = g(x)g′(x) +
g(x)2ρ̂′∞(x)

2ρ̂∞(x)

or

ĝ(x)2 =
2

ρ̂∞(x)

∫ x

0
f(u)ρ̂∞(u) du ,
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. . . . . .

Parameter Estimation for SDEs

• It is reasonable to assume that the diffusion coefficient is known up to a
multiplicative factor g(x; θ) = θg(x) with θ being an unknown parameter
and g is known here. In this case we estimate θ via the quadratic variation
of the path estimator θ̂

θ̂ =

∑n−1
i=0 (Xti+1 −Xti)

2∫ t
0 g(Xs) ds
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. . . . . .

Example (Fokker-Planck Integrable Systems)

• Consider the SDE

dxt = (αxt + βx3t ) dt+
√
σ dWt

• Provided α and β are such that lim|x|→∞Φ(x) = ∞ and e−γΦ ∈ L1(R)
for all γ > 0, the invariant density is given by

ρ∞(x) = Ze−
2
σ
Φ(x) = Ze

2
σ
(α
2
x2+β

4
x4) ,

with Z being the appropriate normalization constant.
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. . . . . .

Example (A Fokker-Planck Integrable System)

• The stationary Fokker-Planck equation for this example reads
f(x) = σρ′∞(x)/(2ρ∞(x)), so that we find

αx+ βx3 = σ
2
ρ′∞(x)
ρ∞(x) , ∀x ∈ supp(ρ∞) .

• To obtain the parameters as a least squares fit to the observations, let
{xi}mi=1 ⊂ R, with xi ∈ supp(ρ̂∞), denote a (finite) sequence of samples.
Since the preceding equation holds for all x ∈ supp(ρ∞) ⊃ supp(ρ̂∞) we
have that

αxi + βx3i =
σ̂

2

ρ̂′∞(xi)

ρ̂∞(xi)
,

for 1 ≤ i ≤ m. Consequently, the estimators α̂ and β̂ obtained by a least
squares fit solve the system of linear equations(∑m

i=1 x
2
i

∑m
i=1 x

4
i∑m

i=1 x
4
i

∑m
i=1 x

6
i

)(
α̂

β̂

)
=

σ̂

2

m∑
i=1

ρ̂′∞(xi)

ρ̂∞(xi)

(
xi
x3i

)
which can be solved explicitly provided the system matrix is invertible.
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. . . . . .

Conclusions

• We have introduced estimators for the controllability/observability
energies and reachable/observable sets of nonlinear control systems.
• We showed that the controllability energy estimator may be used to
estimate the stationary solution (and its support) of the Fokker-Planck
equation governing nonlinear SDEs.
• The estimators we derived were based on applying linear methods for
control and random dynamical systems to nonlinear control systems and
SDEs, once mapped into an infinite-dimensional RKHS acting as a
“linearizing space”.
• These results collectively argue that there is a reasonable passage from
linear dynamical systems theory to a data-based nonlinear dynamical
systems theory through reproducing kernel Hilbert spaces.

Boumediene Hamzi (Imperial College) On Control and RDS in RKHS June 4th, 2012 54 / 55



. . . . . .

Open Questions

• Derivation of data-based estimators for Lyapunov exponents and the
controllability and the observability operators.
• Once a data-based approximation of the controllability operator is
obtained, derive a data-based controller.
• We have been using Mercer kernels for our experiments: is there a better
way to find good kernels ? (kernel choice as an optimization problem:
kernel as encoding “data + some information on the dynamics
(constraint)”)
• Explicitly compute the embedings Φ : Rn 7→ H and writing down the
dynamics in H.
• Error estimates when more knowledge about the dynamics is given.
• How to use methods from Linear Systems Identification to perform
parameter estimation of nonlinear systems in RKHSes.
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