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Motivating example

Theophylline dataset
Data for the kinetics of the anti-asthmatic
drug theophylline with 12 subjects,

concentration were measured at 11 time
point over 25 hours for each subject.

Differential equation

P

. t) = —kix1 (t) ’

g (t) = k—\;xl (t) — kexa (1),
X1 (0) = D
X2 (0) = 0.

- x1 (t) quantity of drug in stomach,
- x2 (t) concentration of drug in blood.

concentration

time

Figure : Plasma concentration of theophylline
over time

N



Introduce the
Bayesian ODE-penalized B-spline approach
in the case of systems of affine differential equations
when the conditional error distribution is a

penalized mixture of Gaussian distributions



Theoretical part



Differential equation and observations

Differential equation

{C’X(t) = F(x(1),0)

dt
x(0) = xo
with:
- (x(8))" = (x1 (t),...,xdq (t)) the set of d state functions and xo the set of initial
conditions,

- 0 € RY the vector of unknown parameters,
- f a known affine function of x.



Differential equation and observations

Differential equation

dx
{dt(f) = f(x(t),0)

x(0) = xo
with:
- (x(8))" = (x1 (t),...,xdq (t)) the set of d state functions and xo the set of initial
conditions,

- 0 € RY the vector of unknown parameters,
- f a known affine function of x.

Measurement

A subset J of the d state functions are observed with additive measurement errors:

yie = xi (tie) + 77 e

with E (¢;) =0 and V (¢;) = 1.



B-spline approximation

Each state function x; (t) is approximated using a B-spline basis function expansion:

K;
x; (t) > B (t) cix
k=1

(Bi (1)) ¢

where:
- Bj(t) is the vector of B-spline basis function evaluated at time t,
- ¢j is the vector of spline coefficients.



Influence of the number of knots and the spline coefficients

concentration

Number of equidistant knots : 5

—— fitted curve
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ODE-penalty (Ramsay et al., 2007)

The penalty for the jth equation quantifies the proximity of the approximation X; (t) to
the jth component of the solution x (t):

PEN; = /(f(t)ﬁ(i(t),&))zdt

d
PEN = > +PEN,
j=1
= c'R(0,7)c+2c"r(0,7) +1(6,7)
where:
-c’ = (clT, A ch) is the vector of spline coefficients,

- 4" =(m,...,74) is the vector of ODE-adhesion parameters.



Influence of the ODE-adhesion parameter

true concentration
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Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

d
1
p(cl6,7) o exp (22’YJPENJ>

j=1
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Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

d
1 1 T
p(clf,y) o< exp (2 > v PEN; — 5 (e —pe) Pe (Cﬂc)>

j=1

with:
- tic and P¢ to express uncertainty w.r.t initial conditions of the states,



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)
1rr T
p(clf,y) o< exp|—5qc (R(0,7)+Pc)e—2c (—r(0,7) + Pepc)

with:
- tic and P¢ to express uncertainty w.r.t initial conditions of the states,



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)
p(clf,y) o< exp (f% {chlc — 2ch1}>

with:
- tic and P¢ to express uncertainty w.r.t initial conditions of the states,
-vi=—r(6,7) + Pcpic and V1 = R(6,v) + P,



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

plclf) o (det(Va) exp (fg {Vie—2cTwi + v})

with:
- tic and P¢ to express uncertainty w.r.t initial conditions of the states,
-vi=—r(6,7) + Pcpic and V1 = R(6,v) + P,



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)
plclf) o (det(Va) exp (fg {Vie—2cTwi + v})

with:
- tic and P¢ to express uncertainty w.r.t initial conditions of the states,
-vi=—r(6,7) + Pcpic and V1 = R(6,v) + P,

Prior distribution for the ODE-adhesion parameters

;i ~ Exp (10_8)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state

x(t).



Specification of the conditional distribution

Conditional error distribution (Komarek and Lesaffre, 2008)

Lj

eildi~ > (dj)N(uﬂ?UJ?)

I=—L;

L . . - .
where (uj/),f:ij is a fixed large number of pre-selected equidistant means and Jf is a

fixed variance, with constraints 7y > 0 and >, 7y = 1.



Specification of the conditional distribution

Conditional error distribution (Komarek and Lesaffre, 2008)

Lj

eildi~ > (dj)N(Mf/;JJ?)

I=—L;

L . . - .
where (uj/),f:ij is a fixed large number of pre-selected equidistant means and Jf is a
fixed variance, with constraints 7y > 0 and >, 7y = 1.

Generalized logit transformation of the mixture weights

exp (aj.1)
L;
ij:—Lj exp (aj,)
with identifiability constraints a;,; = 0 for all j € J.

Only dj = vec(aj,;;/ = —L;,...,L; — 1), j € J have to be estimated to estimate the error
distributions.

i =



Fitted error densities
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Figure : Fitted error densities (Student, extreme value and mixture of 2 Gaussians)



Prior distribution for the (transformed) weights and the roughness penalty
parameters

Finite difference penalty on the transformed weights
Aj 2
Qi) =~ > (aj—3aj-1+ 332 — 3,-3)
I

= —%(Daj)TDaj
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Prior distribution for the (transformed) weights and the roughness penalty
parameters

Finite difference penalty on the transformed weights

)\.
Q@alN) =-F > (aj—3aj-1+ 33,2 — 35,-3)°
!

_ _%(Daj)TD.aj
Aj

—?djTde

= Q(d;|N) =

where:
- Aj, j € J is the roughness penalty parameter,
- P is the submatrix of D" D without the last line and last column.



Prior distribution for the (transformed) weights and the roughness penalty
parameters

Prior distribution for the transformed weights d;

)\.
p(dj|Aj) o exp (_Ejdj-rpdj>
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Prior distribution for the (transformed) weights and the roughness penalty
parameters

Prior distribution for the transformed weights d;

p(dil ) o< A exp (—%djTPdJ)
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Prior distribution for the (transformed) weights and the roughness penalty
parameters

Prior distribution for the transformed weights d;
Lj—1 )\J T
p(di[Aj) oc A exp { ——d; Pd;

Prior distribution for the roughness penalty parameters

Aj ~ Exp (10_8>

It indicates the prior confidence on the Gaussian distribution for the error distribution.



Bayesian model (Jaeger and Lambert, 2012a)

Yijk

€jkld;

% (tie) + 7 e
L

J 2
> omi(d) N <le+aj; (%) )
/:7Lj J

(det (V1)) exp <f% {cTV1c —2cvy + V1TV1’IV1})
Exp (1079)

A7 71exp ——d TPy d )

Sxp( 0~ 8)

(aTJ )
p(0).
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ODE-model validation (Jaeger and Lambert, 2012b)

If the ODE model is adequate, then one can show that:
lim_(log p (716, 7,y) —log p(7)) =0

when no prior information is used for the state functions and one common ODE-adhesion
parameter ~y for the complete ODE, where:

- log (p (7|0, T,y)) is the log conditional posterior distribution for v (marginalized w.r.t

the spline coefficients),
- log (p (7)) is the log prior distribution for ~.

16
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Application



Theophylinne dataset

Differential equation

d—xtl t) = —KaX1 (t)7

Cey = k—‘;x1 () — kexa (2),
X1 (0) = D
X2 (0) = 0.

- x1 (t) quantity of drug in stomach,
- x2 (t) concentration of drug in blood.

concentration

time

Figure : Plasma concentration of theophylline

over time



Theophylinne dataset

Prior information

- The drug cannot be eliminated more
quickly that it is absorbed: k, > ke,

- Total confidence on the initial condition of
the state function

concentration

time

Figure : Plasma concentration of theophylline
over time



Fitted error density
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Figure :

Fitted error densities with pointwise 80% and 95% credibility interval



Suitability of the ODE-model
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Figure : Histograms of the posterior distribution for 41 and 72 with prior density (logl0 scale)



Posterior credibility intervals for the quantity of drug in stomach
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quantity
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Pointwise 80% (dark grey) and 95% (light grey) posterior credibility intervals for the
of drug in stomach with posterior median



Posterior credibility intervals for the drug concentration in the plasma
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Figure : Pointwise 80% (dark grey) and 95% (light grey) posterior credibility intervals for the
drug concentration with posterior median
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Conclusion



Conclusion and further work

Conclusion

- Powerful tool that overcomes solving the DE using a numerical method,

- Convenient implementation of the Bayesian ODE-penalized B-spline approach,

- Simple method to include prior information about ODE parameters,

- Possibility to express uncertainty with respect to initial conditions,

- Automatic selection of the ODE-adhesion parameters and of the roughness penalty
parameters,

- ODE-model validation,

- Flexible distributional assumption.



Conclusion and further work

Conclusion

- Powerful tool that overcomes solving the DE using a numerical method,

- Convenient implementation of the Bayesian ODE-penalized B-spline approach,

- Simple method to include prior information about ODE parameters,

- Possibility to express uncertainty with respect to initial conditions,

- Automatic selection of the ODE-adhesion parameters and of the roughness penalty
parameters,

- ODE-model validation,

- Flexible distributional assumption.

Current/further work
- How to deal with non-homogeneous (non) Gaussian data distribution?

- How to deal with input functions?
- Generalize this approach for nonlinear differential equations.

N
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