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Motivating example

Theophylline dataset

Data for the kinetics of the anti-asthmatic
drug theophylline with 12 subjects,
concentration were measured at 11 time
point over 25 hours for each subject.

Differential equation


dx1

dt
(t) = −kax1 (t) ,

dx2

dt
(t) =

ka
V

x1 (t)− kex2 (t) ,

x1 (0) = D
x2 (0) = 0.

- x1 (t) quantity of drug in stomach,
- x2 (t) concentration of drug in blood.
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Figure : Plasma concentration of theophylline
over time
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Introduce the

Bayesian ODE-penalized B-spline approach

in the case of systems of affine differential equations

when the conditional error distribution is a

penalized mixture of Gaussian distributions
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Theoretical part
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Differential equation and observations

Differential equation {
dx

dt
(t) = f (x (t) , θ)

x (0) = x0

with:
- (x (t))T = (x1 (t) , . . . , xd (t)) the set of d state functions and x0 the set of initial
conditions,
- θ ∈ Rq the vector of unknown parameters,
- f a known affine function of x.

Measurement

A subset J of the d state functions are observed with additive measurement errors:

yjk = xj (tjk) + τ
−1/2
j εjk

with E (εj) = 0 and V (εj) = 1.
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B-spline approximation

Each state function xj (t) is approximated using a B-spline basis function expansion:

x̃j (t) =

Kj∑
k=1

Bjk (t) cjk

= (Bj (t))T cj

where:
- Bj (t) is the vector of B-spline basis function evaluated at time t,
- cj is the vector of spline coefficients.
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Influence of the number of knots and the spline coefficients
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ODE-penalty (Ramsay et al., 2007)

The penalty for the jth equation quantifies the proximity of the approximation x̃j (t) to
the jth component of the solution x (t):

PEN j =

∫ (
dx̃j
dt

(t)− fj (x̃ (t) , θ)

)2

dt

PEN =
d∑

j=1

γjPEN j

= cTR (θ, γ) c + 2cT r (θ, γ) + l (θ, γ)

where:
- cT =

(
c1

T , . . . , cd
T
)

is the vector of spline coefficients,

- γT = (γ1, . . . , γd) is the vector of ODE-adhesion parameters.
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Influence of the ODE-adhesion parameter
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Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

p (c|θ, γ) ∝ exp

(
−1

2

d∑
j=1

γjPEN j

)

with:
- µc and Pc to express uncertainty w.r.t initial conditions of the states,
- v1 = −r (θ, γ) + Pcµc and V1 = R (θ, γ) + Pc,

Prior distribution for the ODE-adhesion parameters

γj ∼ Exp
(

10−8
)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state
x (t).

10 / 25



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

p (c|θ, γ) ∝ exp

(
−1

2

d∑
j=1

γjPEN j −
1

2
(c− µc)T Pc (c− µc)

)

with:
- µc and Pc to express uncertainty w.r.t initial conditions of the states,

- v1 = −r (θ, γ) + Pcµc and V1 = R (θ, γ) + Pc,

Prior distribution for the ODE-adhesion parameters

γj ∼ Exp
(

10−8
)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state
x (t).

10 / 25



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

p (c|θ, γ) ∝ exp

(
−1

2

{
cT (R (θ, γ) + Pc) c− 2cT (−r (θ, γ) + Pcµc)

})

with:
- µc and Pc to express uncertainty w.r.t initial conditions of the states,

- v1 = −r (θ, γ) + Pcµc and V1 = R (θ, γ) + Pc,

Prior distribution for the ODE-adhesion parameters

γj ∼ Exp
(

10−8
)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state
x (t).

10 / 25



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

p (c|θ, γ) ∝ exp

(
−1

2

{
cTV1c− 2cTv1

})

with:
- µc and Pc to express uncertainty w.r.t initial conditions of the states,
- v1 = −r (θ, γ) + Pcµc and V1 = R (θ, γ) + Pc,

Prior distribution for the ODE-adhesion parameters

γj ∼ Exp
(

10−8
)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state
x (t).

10 / 25



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

p (c|θ, γ) ∝ (det (V1))1/2 exp

(
−1

2

{
cTV1c− 2cTv1 + v1

TV1
−1v1

})

with:
- µc and Pc to express uncertainty w.r.t initial conditions of the states,
- v1 = −r (θ, γ) + Pcµc and V1 = R (θ, γ) + Pc,

Prior distribution for the ODE-adhesion parameters

γj ∼ Exp
(

10−8
)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state
x (t).

10 / 25



Prior distribution for the spline coefficients & the ODE-adhesion parameters

Prior distribution for the spline coefficients (Jaeger and Lambert, 2011)

p (c|θ, γ) ∝ (det (V1))1/2 exp

(
−1

2

{
cTV1c− 2cTv1 + v1

TV1
−1v1

})

with:
- µc and Pc to express uncertainty w.r.t initial conditions of the states,
- v1 = −r (θ, γ) + Pcµc and V1 = R (θ, γ) + Pc,

Prior distribution for the ODE-adhesion parameters

γj ∼ Exp
(

10−8
)

It indicates the prior confidence on the proposed ODE to model the dynamic of the state
x (t).

10 / 25



Specification of the conditional distribution

Conditional error distribution (Komárek and Lesaffre, 2008)

εjk |dj ∼
Lj∑

l=−Lj

πjl (dj)N
(
µjl ;σ

2
j

)

where (µjl)
Lj
l=−Lj

is a fixed large number of pre-selected equidistant means and σ2
j is a

fixed variance, with constraints πjl > 0 and
∑

l πjl = 1.

Generalized logit transformation of the mixture weights

πjl =
exp (aj,l)∑Lj

k=−Lj
exp (aj,k)

with identifiability constraints aj,Lj = 0 for all j ∈ J .
Only dj = vec (aj,l ; l = −Lj , . . . , Lj − 1), j ∈ J have to be estimated to estimate the error
distributions.
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Fitted error densities
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Figure : Fitted error densities (Student, extreme value and mixture of 2 Gaussians)
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Prior distribution for the (transformed) weights and the roughness penalty
parameters

Finite difference penalty on the transformed weights

Q (aj|λj) = −λj

2

∑
l

(aj,l − 3aj,l−1 + 3aj,l−2 − aj,l−3)2

= −λj

2
(Daj)

T Daj

⇒ Q (dj|λj) = −λj

2
dj

TPdj

where:
- λj , j ∈ J is the roughness penalty parameter,
- P is the submatrix of DTD without the last line and last column.
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Bayesian model (Jaeger and Lambert, 2012a)



yjk = x̃j (tjk) + τ
−1/2
j εjk

εjk |dj ∼
Lj∑

l=−Lj

πjl (dj)N

(
µjl + αj ;

(
σj

βj

)2
)

p (c|θ, γ) ∝ (det (V1))1/2 exp

(
−1

2

{
cTV1c− 2cTv1 + v1

TV1
−1v1

})
γj ∼ Exp

(
10−8

)
p (dj|λj) ∝ λ

Lj−1

j exp

(
−λj

2
dj

TPd,jdj

)
λj ∼ Exp

(
10−8

)
τj ∼ G

(
aτj ; bτj

)
θ ∼ p (θ) .
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ODE-model validation (Jaeger and Lambert, 2012b)

If the ODE model is adequate, then one can show that:

lim
γ→∞

(log p (γ|θ, τ , y)− log p (γ))
.

= 0

when no prior information is used for the state functions and one common ODE-adhesion
parameter γ for the complete ODE, where:

- log (p (γ|θ, τ , y)) is the log conditional posterior distribution for γ (marginalized w.r.t
the spline coefficients),
- log (p (γ)) is the log prior distribution for γ.
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Application
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Theophylinne dataset

Differential equation
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Figure : Plasma concentration of theophylline
over time
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Theophylinne dataset

Prior information

- The drug cannot be eliminated more
quickly that it is absorbed: ka > ke ,
- Total confidence on the initial condition of
the state function
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Fitted error density
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Figure : Fitted error densities with pointwise 80% and 95% credibility interval
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Suitability of the ODE-model
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Figure : Histograms of the posterior distribution for γ1 and γ2 with prior density (log10 scale)
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Posterior credibility intervals for the quantity of drug in stomach

Figure : Pointwise 80% (dark grey) and 95% (light grey) posterior credibility intervals for the
quantity of drug in stomach with posterior median
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Posterior credibility intervals for the drug concentration in the plasma

Figure : Pointwise 80% (dark grey) and 95% (light grey) posterior credibility intervals for the
drug concentration with posterior median
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Conclusion
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Conclusion and further work

Conclusion

- Powerful tool that overcomes solving the DE using a numerical method,
- Convenient implementation of the Bayesian ODE-penalized B-spline approach,
- Simple method to include prior information about ODE parameters,
- Possibility to express uncertainty with respect to initial conditions,
- Automatic selection of the ODE-adhesion parameters and of the roughness penalty
parameters,
- ODE-model validation,
- Flexible distributional assumption.

Current/further work

- How to deal with non-homogeneous (non) Gaussian data distribution?
- How to deal with input functions?
- Generalize this approach for nonlinear differential equations.
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