

Faculty of Science

An MCMC approach to parameter estimation in the FitzHugh-Nagumo model

Anders Christian Jensen Department of Mathematical Sciences

June 05, 2012 Slide 1/28

Outline

Model and motivation

- Parameter estimation with known diffusion
- 3 Parameter estimation with unknown diffusion

④ Simulations

5 Future works

UNIVERSITY OF COPENHAGEN

The FitzHugh-Nagumo (FHN) model

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t} x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t} y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential.
- v is a recovery variable modeling channel kinetics
- s > 0 is a time scale separator, typically smaller than one - x is the fast, and y is the slow variable.

UNIVERSITY OF COPENHAGEN

The FitzHugh-Nagumo (FHN) model

• Modeling of neuronal spike generation in axons

• The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon}\left(x_t - x_t^3 - y_t + s\right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential.
- y is a recovery variable modeling channel kinetics.
- s > 0 is a time scale separator, typically smaller than one - x is the fast, and y is the slow variable

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon}\left(x_t - x_t^3 - y_t + s\right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential
- y is a recovery variable modeling channel kinetics.
- s > 0 is a time scale separator, typically smaller than one s v is the fast, and y is the slow variable

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential
- y is a recovery variable modeling channel kinetics
- $\varepsilon > 0$ is a time scale separator, typically smaller than one - x is the fast, and y is the slow variable
- *s* denotes the input current

• γ and β determines the location of the fixed point(s)

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

• x describes the membrane potential

- y is a recovery variable modeling channel kinetics
- $\varepsilon > 0$ is a time scale separator, typically smaller than one x is the fast, and y is the slow variable
- *s* denotes the input current
- γ and β determines the location of the fixed point(s)

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential
- y is a recovery variable modeling channel kinetics
- $\varepsilon > 0$ is a time scale separator, typically smaller than one - x is the fast, and y is the slow variable
- *s* denotes the input current

• γ and β determines the location of the fixed point(s)

Slide 3/28

The FitzHugh-Nagumo (FHN) model

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential
- y is a recovery variable modeling channel kinetics
- $\varepsilon > 0$ is a time scale separator, typically smaller than one
 - x is the fast, and y is the slow variable

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- x describes the membrane potential
- y is a recovery variable modeling channel kinetics
- $\varepsilon > 0$ is a time scale separator, typically smaller than one
 - x is the fast, and y is the slow variable
- s denotes the input current

• γ and β determines the location of the fixed point(s)

- Modeling of neuronal spike generation in axons
- The FHN model is a prototype for more complicated models, like the Hodgkin-Huxley, or Morris-Lecar model

$$\frac{\mathrm{d}}{\mathrm{d}t}x_t = \frac{1}{\varepsilon} \left(x_t - x_t^3 - y_t + s \right)$$
$$\frac{\mathrm{d}}{\mathrm{d}t}y_t = \gamma x_t - y_t + \beta$$

- $\bullet~x$ describes the membrane potential
- y is a recovery variable modeling channel kinetics
- $\varepsilon > 0$ is a time scale separator, typically smaller than one
 - x is the fast, and y is the slow variable
- s denotes the input current
- γ and β determines the location of the fixed point(s)

• Properties of fixed points determine the behavior of the model

- Properties of fixed points determine the behavior of the model
- Stable/unstable fixed points

- Properties of fixed points determine the behavior of the model
- Stable/unstable fixed points

- Properties of fixed points determine the behavior of the model
- Stable/unstable fixed points

• Dynamics in the FHN model are well known

Noise terms account for various sources of noise: Random opening/closing of ion channels or noisy presynaptic currents

 $dX_t = \frac{1}{\varepsilon} \left(X_t - X_t^3 - Y_t + s \right) dt$ $dY_t = \left(\gamma X_t - Y_t + \beta \right) dt$

Noise terms account for various sources of noise: Random opening/closing of ion channels or noisy presynaptic currents

$$dX_t = \frac{1}{\varepsilon} \left(X_t - X_t^3 - Y_t + s \right) dt + \sigma_1 dB_t^{(1)}$$
$$dY_t = \left(\gamma X_t - Y_t + \beta \right) dt + \sigma_2 dB_t^{(2)}$$

Consider a *d*-dimensional diffusion

$$b : \mathbb{R}^d \times \mathbb{R}^p \mapsto \mathbb{R}^d, \quad \Sigma \in \mathcal{M}(d \times d)$$

 $B_t : A \ d \ dimensional \ Brownian \ motion$

Observations D_n := {V₀, V₁, ..., V_n}, with V_i := V_{ti} and t_i = t_{i-1} = Δ
 Initially we assume Σ known

Consider a *d*-dimensional diffusion

$$b : \mathbb{R}^d \times \mathbb{R}^p \mapsto \mathbb{R}^d, \quad \Sigma \in \mathcal{M}(d \times d)$$

 $B_t : A \ d \ \text{dimensional Brownian motion}$

- Observations $D_n := \{V_0, V_1, \dots, V_n\}$, with $V_i := V_{t_i}$ and $t_i t_{i-1} = \Delta$
- Initially we assume Σ known
- Aim: Bayesian inference for $\theta \in \mathbb{R}^p$ conditional on D_n

Consider a *d*-dimensional diffusion

$$b : \mathbb{R}^d \times \mathbb{R}^p \mapsto \mathbb{R}^d, \quad \Sigma \in \mathcal{M}(d \times d)$$

 $B_t : A \ d \ \text{dimensional Brownian motion}$

- Observations $D_n := \{V_0, V_1, \dots, V_n\}$, with $V_i := V_{t_i}$ and $t_i t_{i-1} = \Delta$
- Initially we assume Σ known
- Aim: Bayesian inference for $\theta \in \mathbb{R}^p$ conditional on D_n

Consider a *d*-dimensional diffusion

$$b : \mathbb{R}^d \times \mathbb{R}^p \mapsto \mathbb{R}^d, \quad \Sigma \in \mathcal{M}(d \times d)$$

 $B_t : A \ d \ \text{dimensional Brownian motion}$

- Observations $D_n := \{V_0, V_1, \dots, V_n\}$, with $V_i := V_{t_i}$ and $t_i t_{i-1} = \Delta$
- Initially we assume Σ known
- Aim: Bayesian inference for $\theta \in \mathbb{R}^p$ conditional on D_n

Consider a *d*-dimensional diffusion

$$b : \mathbb{R}^d \times \mathbb{R}^p \mapsto \mathbb{R}^d, \quad \Sigma \in \mathcal{M}(d \times d)$$

 $B_t : A \ d \ \text{dimensional Brownian motion}$

- Observations $D_n := \{V_0, V_1, \dots, V_n\}$, with $V_i := V_{t_i}$ and $t_i t_{i-1} = \Delta$
- $\bullet~$ Initially we assume $\Sigma~$ known
- Aim: Bayesian inference for $\theta \in \mathbb{R}^p$ conditional on D_n

ŀ

$$p(\theta \mid D_n) = \frac{p(\theta)p(D_n \mid \theta)}{\int p(D_n \mid \theta) \, \mathrm{d}\theta}$$
$$\propto_{\theta} p(\theta)p(D_n \mid \theta)$$
$$= p(\theta) \prod_{i=1}^n p(V_i \mid V_{i-1}, \theta)$$

- p(θ) is chosen from a priori knowledge, but p(V_i | V_{i-1}, θ) is typically unknown
- Quick and easy solution: Approximate p(V_i | V_{i-1}, θ), using Euler-Maruyama:

 $V_{t+1} \approx V_t + b(t, V_t)\Delta + \sigma(t, V_t)\sqrt{\Delta}W_j, \quad W_j \sim \mathcal{N}(0, 1)$

• Inaccurate if Δ is too large. .

$$p(\theta \mid D_n) = \frac{p(\theta)p(D_n \mid \theta)}{\int p(D_n \mid \theta) \, \mathrm{d}\theta}$$
$$\propto_{\theta} p(\theta)p(D_n \mid \theta)$$
$$= p(\theta) \prod_{i=1}^{n} p(V_i \mid V_{i-1},$$

- $p(\theta)$ is chosen from a priori knowledge, but $p(V_i | V_{i-1}, \theta)$ is typically unknown
- Quick and easy solution: Approximate p(V_i | V_{i-1}, θ), using Euler-Maruyama:

 $V_{t+1} \approx V_t + b(t, V_t)\Delta + \sigma(t, V_t)\sqrt{\Delta}W_j, \quad W_j \sim \mathcal{N}(0, 1)$

• Inaccurate if Δ is too large. .

$$p(\theta \mid D_n) = \frac{p(\theta)p(D_n \mid \theta)}{\int p(D_n \mid \theta) \, \mathrm{d}\theta}$$
$$\propto_{\theta} p(\theta)p(D_n \mid \theta)$$
$$= p(\theta) \prod_{i=1}^n p(V_i \mid V_{i-1}, \theta)$$

- $p(\theta)$ is chosen from a priori knowledge, but $p(V_i | V_{i-1}, \theta)$ is typically unknown
- Quick and easy solution: Approximate p(V_i | V_{i-1}, θ), using Euler-Maruyama:

 $V_{t+1} \approx V_t + b(t, V_t)\Delta + \sigma(t, V_t)\sqrt{\Delta}W_j, \quad W_j \sim \mathcal{N}(0, 1)$

• Inaccurate if Δ is too large. .

$$p(\theta \mid D_n) = \frac{p(\theta)p(D_n \mid \theta)}{\int p(D_n \mid \theta) \, \mathrm{d}\theta}$$
$$\propto_{\theta} p(\theta)p(D_n \mid \theta)$$
$$= p(\theta) \prod_{i=1}^n p(V_i \mid V_{i-1}, \theta)$$

- $p(\theta)$ is chosen from a priori knowledge, but $p(V_i | V_{i-1}, \theta)$ is typically unknown
- Quick and easy solution: Approximate p(V_i | V_{i-1}, θ), using Euler-Maruyama:

 $V_{t+1} \approx V_t + b(t, V_t)\Delta + \sigma(t, V_t)\sqrt{\Delta}W_j, \quad W_j \sim \mathcal{N}(0, 1)$

• Inaccurate if Δ is too large. .

$$p(\theta \mid D_n) = \frac{p(\theta)p(D_n \mid \theta)}{\int p(D_n \mid \theta) \, \mathrm{d}\theta}$$
$$\propto_{\theta} p(\theta)p(D_n \mid \theta)$$
$$= p(\theta) \prod_{i=1}^n p(V_i \mid V_{i-1}, \theta)$$

- $p(\theta)$ is chosen from a priori knowledge, but $p(V_i | V_{i-1}, \theta)$ is typically unknown
- Quick and easy solution: Approximate p(V_i | V_{i-1}, θ), using Euler-Maruyama:

$$V_{t+1} \approx V_t + b(t, V_t)\Delta + \sigma(t, V_t)\sqrt{\Delta}W_j, \quad W_j \sim \mathcal{N}(0, 1)$$

• Inaccurate if Δ is too large. .

$$p(\theta \mid D_n) = \frac{p(\theta)p(D_n \mid \theta)}{\int p(D_n \mid \theta) \, \mathrm{d}\theta}$$
$$\propto_{\theta} p(\theta)p(D_n \mid \theta)$$
$$= p(\theta) \prod_{i=1}^n p(V_i \mid V_{i-1}, \theta)$$

- $p(\theta)$ is chosen from a priori knowledge, but $p(V_i | V_{i-1}, \theta)$ is typically unknown
- Quick and easy solution: Approximate p(V_i | V_{i-1}, θ), using Euler-Maruyama:

$$V_{t+1} \approx V_t + b(t, V_t)\Delta + \sigma(t, V_t)\sqrt{\Delta}W_j, \quad W_j \sim \mathcal{N}(0, 1)$$

• Inaccurate if Δ is too large. . .

- Let V denote the latent path of V and apply Gibbs sampler on (θ, V) conditional on D_n
- \bullet is sampled directly
- V is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- Note: Imputed paths \bar{V} are in practise finite dimensional
- Conditioning on D_n, means simulation of diffusion bridges

- Let V
 denote the latent path of V and apply Gibbs sampler on (θ, V
 conditional on D_n
- θ is sampled directly
- \overline{V} is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- ullet Note: Imputed paths $ar{V}$ are in practise finite dimensional
- Conditioning on D_n, means simulation of diffusion bridges

- Let V
 denote the latent path of V and apply Gibbs sampler on (θ, V
 conditional on D_n
- θ is sampled directly
- \bar{V} is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- Note: Imputed paths $ar{V}$ are in practise finite dimensional
- Conditioning on D_n, means simulation of diffusion bridges

- Let V
 denote the latent path of V and apply Gibbs sampler on (θ, V
 conditional on D_n
- θ is sampled directly
- \bar{V} is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- ullet Note: Imputed paths $ar{V}$ are in practise finite dimensional
- Conditioning on D_n, means simulation of diffusion bridges

- Let V
 denote the latent path of V and apply Gibbs sampler on (θ, V
 conditional on D_n
- θ is sampled directly
- \bar{V} is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- Note: Imputed paths \overline{V} are in practise finite dimensional
- Conditioning on D_n, means simulation of diffusion bridges

- Let V
 denote the latent path of V and apply Gibbs sampler on (θ, V
 conditional on D_n
- θ is sampled directly
- \bar{V} is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- Note: Imputed paths \bar{V} are in practise finite dimensional
- Conditioning on D_n, means simulation of diffusion bridges

- Let V
 denote the latent path of V and apply Gibbs sampler on (θ, V
 conditional on D_n
- θ is sampled directly
- \bar{V} is sampled using an independent Metropolis-Hastings step using Brownian bridge proposals
- \bullet Note: Imputed paths \bar{V} are in practise finite dimensional
- Conditioning on D_n , means simulation of diffusion bridges

The Gibbs sampler

• Let \bar{V} denote the latent path of V

Initialize

1) Initialize $heta^{(0)}$ and imputed data $ar{V}^{(0)}$

Iterate

At iteration k: 2a) Sample $\overline{V}^{(k)}$ from $p(V \mid \theta^{(k-1)}, D_n)$ 2b) Sample $\theta^{(k)}$ from $p(\theta \mid \overline{V}^{(k)}, D_n)$

= After burn in period; $(\theta^{(b)}, V^{(b)})_b$ resembles draws from $\rho(\theta, V + D_b)$

Allows one to infer about $p(\theta \mid D_n)$

• Let \bar{V} denote the latent path of V

Initialize

1) Initialize $\theta^{(0)}$ and imputed data $\bar{V}^{(0)}$ Iterate

At iteration k: 2a) Sample $\bar{V}^{(k)}$ from $p(V \mid \theta^{(k-1)}, D_n)$ 2b) Sample $\theta^{(k)}$ from $p(\theta \mid \bar{V}^{(k)}, D_n)$

After burn in period, $(\theta^{(0)}, V^{(0)})_{\ell}$ resembles draws from $\rho(\theta, V, |ID_{\ell})$ = $\rho(\theta, V, |ID_{\ell})$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 9/28

• Let \bar{V} denote the latent path of V

• Let \bar{V} denote the latent path of V

- After burn in period, $(\theta^{(k)}, \bar{V}^{(k)})_k$ resembles draws from $p(\theta, \bar{V} \mid D_n)$
- Allows one to infer about $p(\theta \mid D_n)$

• Let \bar{V} denote the latent path of V

- After burn in period, $(\theta^{(k)}, \bar{V}^{(k)})_k$ resembles draws from $p(\theta, \bar{V} \mid D_n)$
- Allows one to infer about $p(\theta \mid D_n)$

• Let \bar{V} denote the latent path of V

- After burn in period, $(\theta^{(k)}, \bar{V}^{(k)})_k$ resembles draws from $p(\theta, \bar{V} \mid D_n)$
- Allows one to infer about $p(\theta \mid D_n)$

• Let \bar{V} denote the latent path of V

- After burn in period, $(\theta^{(k)}, \bar{V}^{(k)})_k$ resembles draws from $p(\theta, \bar{V} \mid D_n)$
- Allows one to infer about $p(\theta \mid D_n)$

• Due to the Markov property

$$p(\bar{V} \mid \theta, D_n) = \prod_{i=1}^n p(\bar{V}_i \mid V_{t_{i-1}}, V_{t_i}, \theta),$$

- Paths \bar{V}_i may be sampled independently
- Sampling directly from the distribution of a diffusion bridge is in general not easy
- Idea: Identify the Radon-Nikodym derivative of the desired distribution with respect to another distribution from which sampling is feasible
- Without loss of generality, focus on a single term of the form $p(V|V_0, V_T, \theta)$

• Due to the Markov property

$$p(\bar{V} \mid \theta, D_n) = \prod_{i=1}^n p(\bar{V}_i \mid V_{t_{i-1}}, V_{t_i}, \theta),$$

- Paths \bar{V}_i may be sampled independently
- Sampling directly from the distribution of a diffusion bridge is in general not easy
- Idea: Identify the Radon-Nikodym derivative of the desired distribution with respect to another distribution from which sampling is feasible
- Without loss of generality, focus on a single term of the form $p(V|V_0, V_T, \theta)$

• Due to the Markov property

$$p(\bar{V} \mid \theta, D_n) = \prod_{i=1}^n p(\bar{V}_i \mid V_{t_{i-1}}, V_{t_i}, \theta),$$

- Paths \bar{V}_i may be sampled independently
- Sampling directly from the distribution of a diffusion bridge is in general not easy
- Idea: Identify the Radon-Nikodym derivative of the desired distribution with respect to another distribution from which sampling is feasible
- Without loss of generality, focus on a single term of the form $p(V|V_0, V_T, \theta)$

• Due to the Markov property

$$p(\bar{V} \mid \theta, D_n) = \prod_{i=1}^n p(\bar{V}_i \mid V_{t_{i-1}}, V_{t_i}, \theta),$$

- Paths \bar{V}_i may be sampled independently
- Sampling directly from the distribution of a diffusion bridge is in general not easy
- Idea: Identify the Radon-Nikodym derivative of the desired distribution with respect to another distribution from which sampling is feasible
- Without loss of generality, focus on a single term of the form $p(V|V_0, V_T, \theta)$

• Due to the Markov property

$$p(\bar{V} \mid \theta, D_n) = \prod_{i=1}^n p(\bar{V}_i \mid V_{t_{i-1}}, V_{t_i}, \theta),$$

- Paths \bar{V}_i may be sampled independently
- Sampling directly from the distribution of a diffusion bridge is in general not easy
- Idea: Identify the Radon-Nikodym derivative of the desired distribution with respect to another distribution from which sampling is feasible
- Without loss of generality, focus on a single term of the form $p(V|V_0, V_T, \theta)$

• Due to the Markov property

$$p(\bar{V} \mid \theta, D_n) = \prod_{i=1}^n p(\bar{V}_i \mid V_{t_{i-1}}, V_{t_i}, \theta),$$

- Paths \bar{V}_i may be sampled independently
- Sampling directly from the distribution of a diffusion bridge is in general not easy
- Idea: Identify the Radon-Nikodym derivative of the desired distribution with respect to another distribution from which sampling is feasible
- Without loss of generality, focus on a single term of the form $p(V|V_0, V_T, \theta)$

Consider the following processes and distributions on the interval [0, T]:

$$P_b: dV_t = b(V_t, \theta) dt + \Sigma dB_t,$$

$$P_0: dV_t = \Sigma dB_t, \quad V_0 = v_0$$

Consider the following processes and distributions on the interval [0, T]:

$$P_b: dV_t = b(V_t, \theta) dt + \Sigma dB_t,$$

$$P_0: dV_t = \Sigma dB_t, \quad V_0 = v_0$$

$$\begin{aligned} P_b^*: \ \mathrm{d} V_t &= b(V_t, \theta) \ \mathrm{d} t + \Sigma \ \mathrm{d} B_t, \\ P_0^*: \ \mathrm{d} V_t &= \Sigma \ \mathrm{d} B_t, \quad V_0 &= v_0, \ V_T &= v_T \end{aligned}$$

Consider the following processes and distributions on the interval [0, T]:

$$P_b: dV_t = b(V_t, \theta) dt + \Sigma dB_t,$$

$$P_0: dV_t = \Sigma dB_t, \quad V_0 = v_0$$

$$\begin{aligned} P_b^*: \ \mathrm{d} V_t &= b(V_t,\theta) \ \mathrm{d} t + \Sigma \ \mathrm{d} B_t, \\ P_0^*: \ \mathrm{d} V_t &= \Sigma \ \mathrm{d} B_t, \quad V_0 &= v_0, V_T = v_T \end{aligned}$$

$$\frac{\mathrm{d}P_b^*}{\mathrm{d}P_0^*}(V \mid \theta) = \frac{\varphi(V_T \mid V_0; \Sigma\Sigma^T T)}{p_{0,T}(V_T \mid V_0, \theta)} \frac{\mathrm{d}P_b(V \mid \theta)}{\mathrm{d}P_0(V \mid \theta)}$$
$$\propto_V \frac{\mathrm{d}P_b(V \mid \theta)}{\mathrm{d}P_0(V \mid \theta)}$$
$$= e^{\int_0^T b(V_u, \theta)^T \Gamma^{-1} \, \mathrm{d}V_u - \frac{1}{2} \int_0^T b(V_u, \theta)^T \Gamma^{-1} b(V_u, \theta) \, \mathrm{d}u}$$
$$:= \phi(V, \theta), \qquad (\Gamma = \Sigma\Sigma^T, \text{ invertible})$$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 11/28

The algorithm for simulating the bridge \bar{V} under P_b^*

Initialize

The algorithm for simulating the bridge \bar{V} under P_b^*

Initialize

1) Initialize a skeleton path $(\bar{V}^M)_0$ according to P_0^* , and compute an approximation of the Radon-Nikodym derivative $\phi((\bar{V}^M)_0, \theta)$, w_0 **Iterate**

The algorithm for simulating the bridge \bar{V} under P_b^*

Initialize

1) Initialize a skeleton path $(\bar{V}^M)_0$ according to P_0^* , and compute an approximation of the Radon-Nikodym derivative $\phi((\bar{V}^M)_0, \theta)$, w_0

Iterate

2) Generate a proposal skeleton path, \tilde{V}^{M} according to the distribution P_{0}^{*} and compute an approximation of the Radon-Nikodym derivative $\phi(\tilde{V}^{M}, \theta)$, \tilde{w}

3) Let $(\bar{V}^M)_{k+1} = \begin{cases} \tilde{V}^M & \text{with prob. min}\left(1, \frac{\tilde{w}}{w_k}\right) \\ (\bar{V}^M)_k & \text{otherwise} \end{cases}$.

• Let \bar{V} denote the latent path of V

- After burn in period, $(\theta^{(k)}, \bar{V}^{(k)})_k$ resembles draws from $p(\theta, \bar{V} \mid D_n)$
- Allows one to infer about $p(\theta \mid D_n)$

• Let \bar{V} denote the latent path of V

- After burn in period, $(\theta^{(k)}, \bar{V}^{(k)})_k$ resembles draws from $p(\theta, \bar{V} \mid D_n)$
- Allows one to infer about $p(\theta \mid D_n)$

$p(\theta \mid \bar{V}, D_n) \propto_{\theta} p(\theta) \phi(\bar{V}, \theta)$

p(θ | V, D_n) may be sampled directly if the drift is an affine transformation of θ:

$$b(V_t,\theta) = f_0(V_t) + \sum_{i=1}^p \theta_i f_i(V_t),$$

where f_i is a $d \times 1$ vector

- $\phi(V, \theta)$ is exponentially quadratic in θ
- A Gaussian prior for θ yields a Gaussian posterior

$p(\theta \mid \bar{V}, D_n) \propto_{\theta} p(\theta) \phi(\bar{V}, \theta)$

p(θ | V, D_n) may be sampled directly if the drift is an affine transformation of θ:

$$b(V_t,\theta) = f_0(V_t) + \sum_{i=1}^p \theta_i f_i(V_t),$$

where f_i is a $d \times 1$ vector

- $\phi(V, \theta)$ is exponentially quadratic in θ
- A Gaussian prior for θ yields a Gaussian posterior

Anders Christian Jensen - An MCMC approach to parameter estimation in the FitzHugh-Nagumo model - June 05, 2012 Slide 14/28

$p(\theta \mid \bar{V}, D_n) \propto_{\theta} p(\theta) \phi(\bar{V}, \theta)$

p(θ | V, D_n) may be sampled directly if the drift is an affine transformation of θ:

$$b(V_t,\theta) = f_0(V_t) + \sum_{i=1}^p \theta_i f_i(V_t),$$

where f_i is a $d \times 1$ vector

- $\phi(V, \theta)$ is exponentially quadratic in θ
- \bullet A Gaussian prior for θ yields a Gaussian posterior

Identifying the Gaussian posterior

• Assume
$$p(\theta) = \varphi(\theta \mid \mu; \Phi)$$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 15/28

Identifying the Gaussian posterior

- Assume $p(\theta) = \varphi(\theta \mid \mu; \Phi)$
- $p(\theta \mid \bar{V}, D_n) \sim \varphi(\theta \mid (R + \Phi^{-1})^{-1}(F + \Phi^{-1}\mu); (R + \Phi^{-1})^{-1}),$ with

$$\begin{aligned} R_{ij} &= \int_0^T f_i(V_u)^T \Gamma^{-1} f_j(V_u) \, \mathrm{d}u, \\ I_i &= \int_0^T f_i(V_u)^T \Gamma^{-1} \, \mathrm{d}V_u, \\ F_i &= I_i - R_{i0} \end{aligned}$$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 15/28

Identifying the Gaussian posterior

- Assume $p(\theta) = \varphi(\theta \mid \mu; \Phi)$
- $p(\theta \mid \bar{V}, D_n) \sim \varphi(\theta \mid (R + \Phi^{-1})^{-1}(F + \Phi^{-1}\mu); (R + \Phi^{-1})^{-1}),$ with

$$\begin{aligned} R_{ij} &= \int_0^T f_i(V_u)^T \Gamma^{-1} f_j(V_u) \, \mathrm{d} u, \\ I_i &= \int_0^T f_i(V_u)^T \Gamma^{-1} \, \mathrm{d} V_u, \\ F_i &= I_i - R_{i0} \end{aligned}$$

• No tuning of parameters is required!

$p(\theta \mid \bar{V}, D_n) \propto_{\theta} p(\theta) p(\bar{V}, D_n \mid \theta)$

• $p(\theta \mid \overline{V}, D_n)$ may be sampled using an MH-step

- Project path \bar{V} onto discrete subset
- Use Euler-Maruyama on small time scale
- Approximate samples from p(θ | V̄, D_n) using Metropolis-Hastings algorithm

$p(\theta \mid \overline{V}, D_n) \propto_{\theta} p(\theta) p(\overline{V}, D_n \mid \theta)$

- $p(\theta \mid \overline{V}, D_n)$ may be sampled using an MH-step
- Project path \bar{V} onto discrete subset
- Use Euler-Maruyama on small time scale

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 16/28

$p(\theta \mid \overline{V}, D_n) \propto_{\theta} p(\theta) p(\overline{V}, D_n \mid \theta)$

- $p(\theta \mid \overline{V}, D_n)$ may be sampled using an MH-step
- Project path \bar{V} onto discrete subset
- Use Euler-Maruyama on small time scale
- Approximate samples from p(θ | V̄, D_n) using Metropolis-Hastings algorithm

$$p(\theta \mid \bar{V}, D_n) \propto_{\theta} p(\theta) p(\bar{V}, D_n \mid \theta)$$

- $p(\theta \mid \overline{V}, D_n)$ may be sampled using an MH-step
- Project path \bar{V} onto discrete subset
- Use Euler-Maruyama on small time scale
- Approximate samples from p(θ | V̄, D_n) using Metropolis-Hastings algorithm

- Drop assumption about Σ known. Instead, assume $\Sigma(\sigma)$, invertible
- For any $t \in [0, T]$

$$\lim_{M \to \infty} \sum_{i=1}^{M} (V_{ti/M} - V_{t(i-1)/M}) (V_{ti/M} - V_{t(i-1)/M})^{T}$$
$$= t \Sigma \Sigma^{T}(\sigma) \text{ in probability}$$

- Gibbs sampler is reducible when sampling σ conditional on the path
- Solution: Apply the one-to-one transformation x → Σ⁻¹(σ)x to V, to obtain

$dZ_t = \alpha(Z_t, \theta, \sigma) dt + dB_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$

where $\alpha(Z_t, \theta, \sigma) = \Sigma^{-1}(\sigma)b(\Sigma(\sigma)Z_t, \theta)$.

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 17/28

- Drop assumption about Σ known. Instead, assume $\Sigma(\sigma)$, invertible
- For any $t \in [0, T]$

$$\lim_{M \to \infty} \sum_{i=1}^{M} (V_{ti/M} - V_{t(i-1)/M}) (V_{ti/M} - V_{t(i-1)/M})^{T}$$
$$= t \Sigma \Sigma^{T}(\sigma) \text{ in probability}$$

- Gibbs sampler is reducible when sampling σ conditional on the path
- Solution: Apply the one-to-one transformation x → Σ⁻¹(σ)x to V, to obtain

$$\mathrm{d}Z_t = \alpha(Z_t, \theta, \sigma) \,\mathrm{d}t + \,\mathrm{d}B_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$$

where
$$\alpha(Z_t, \theta, \sigma) = \Sigma^{-1}(\sigma)b(\Sigma(\sigma)Z_t, \theta)$$
.

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 17/28

- Drop assumption about Σ known. Instead, assume $\Sigma(\sigma)$, invertible
- For any $t \in [0, T]$

$$\lim_{M \to \infty} \sum_{i=1}^{M} (V_{ti/M} - V_{t(i-1)/M}) (V_{ti/M} - V_{t(i-1)/M})^{T}$$
$$= t \Sigma \Sigma^{T}(\sigma) \text{ in probability}$$

- \bullet Gibbs sampler is reducible when sampling σ conditional on the path
- Solution: Apply the one-to-one transformation x → Σ⁻¹(σ)x to V, to obtain

$$\mathrm{d}Z_t = \alpha(Z_t, \theta, \sigma) \mathrm{d}t + \mathrm{d}B_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$$

- Drop assumption about Σ known. Instead, assume $\Sigma(\sigma)$, invertible
- For any $t \in [0, T]$

$$\lim_{M \to \infty} \sum_{i=1}^{M} (V_{ti/M} - V_{t(i-1)/M}) (V_{ti/M} - V_{t(i-1)/M})^{T}$$
$$= t \Sigma \Sigma^{T}(\sigma) \text{ in probability}$$

- \bullet Gibbs sampler is reducible when sampling σ conditional on the path
- Solution: Apply the one-to-one transformation x → Σ⁻¹(σ)x to V, to obtain

$$\mathrm{d}Z_t = \alpha(Z_t, \theta, \sigma) \mathrm{d}t + \mathrm{d}B_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$$

where $\alpha(Z_t, \theta, \sigma) = \Sigma^{-1}(\sigma)b(\Sigma(\sigma)Z_t, \theta).$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 17/28

Imputation of latent data

• Focus on single term, say $p(\bar{V} \mid V_0, V_T, \theta, \sigma)$

- Sampling \overline{V} is equivalent to sampling Z conditionally on $Z_0 = \Sigma^{-1}(\sigma)V_0$ and $Z_T = \Sigma^{-1}(\sigma)V_T$
- The quadratic variation of Z is now independent of σ
- Unfortunately, still perfect dependence between Z and σ via the endpoints of Z

Imputation of latent data

- Focus on single term, say $p(\bar{V} \mid V_0, V_T, \theta, \sigma)$
- Sampling \overline{V} is equivalent to sampling Z conditionally on $Z_0 = \Sigma^{-1}(\sigma)V_0$ and $Z_T = \Sigma^{-1}(\sigma)V_T$
- The quadratic variation of Z is now independent of σ
- \bullet Unfortunately, still perfect dependence between Z and σ via the endpoints of Z

Imputation of latent data

- Focus on single term, say $p(\bar{V} \mid V_0, V_T, \theta, \sigma)$
- Sampling \overline{V} is equivalent to sampling Z conditionally on $Z_0 = \Sigma^{-1}(\sigma)V_0$ and $Z_T = \Sigma^{-1}(\sigma)V_T$
- The quadratic variation of Z is now independent of σ
- Unfortunately, still perfect dependence between Z and σ via the endpoints of Z

Imputation of latent data

- Focus on single term, say $p(\bar{V} \mid V_0, V_T, \theta, \sigma)$
- Sampling \overline{V} is equivalent to sampling Z conditionally on $Z_0 = \Sigma^{-1}(\sigma)V_0$ and $Z_T = \Sigma^{-1}(\sigma)V_T$
- The quadratic variation of Z is now independent of σ
- \bullet Unfortunately, still perfect dependence between Z and σ via the endpoints of Z

$$\mathrm{d} Z_t = \alpha(Z_t,\theta,\sigma) \, \mathrm{d} t + \, \mathrm{d} B_t, \quad Z_0 = \Sigma^{-1}(\sigma) V_0,$$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 19/28

$$\mathrm{d}Z_t = \alpha(Z_t, \theta, \sigma) \mathrm{d}t + \mathrm{d}B_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$$

 \bullet Define \tilde{V} as

$$ilde{V}_t = Z_t - \left(1 - rac{t}{T}\right)Z_0 - rac{t}{T}Z_T$$

for $0 \le t \le T$.

$$\mathrm{d}Z_t = \alpha(Z_t, \theta, \sigma) \mathrm{d}t + \mathrm{d}B_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$$

• Define \tilde{V} as

$$ilde{V}_t = Z_t - \left(1 - rac{t}{T}\right)Z_0 - rac{t}{T}Z_T$$

for $0 \le t \le T$.

• Consider the measure of Z conditionally on endpoints with $\alpha = 0$: Z is a Brownian bridge starting and ending at Z_0 and Z_T

$$\mathrm{d}Z_t = \alpha(Z_t, \theta, \sigma) \mathrm{d}t + \mathrm{d}B_t, \quad Z_0 = \Sigma^{-1}(\sigma)V_0,$$

• Define \tilde{V} as

$$ilde{V}_t = Z_t - \left(1 - rac{t}{T}\right)Z_0 - rac{t}{T}Z_T$$

for $0 \le t \le T$.

- Consider the measure of Z conditionally on endpoints with $\alpha = 0$: Z is a Brownian bridge starting and ending at Z_0 and Z_T
- Using Girsanov

$$\frac{\mathrm{d} P^{\alpha}_{\alpha}}{\mathrm{d} P^{\ast}_{0}}(Z \mid \theta, \sigma, Z_{0}, Z_{T}) \propto_{Z} \phi(Z, \theta, \sigma)$$

where

$$\phi(Z,\theta,\sigma) = e^{\int_0^T \alpha(Z_u,\theta,\sigma)^T \, \mathrm{d}Z_u - \frac{1}{2} \int_0^T \alpha(Z_u,\theta,\sigma)^T \alpha(Z_u,\theta,\sigma) \, \mathrm{d}u}$$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 19/28

• Gibbs sampler works on $(\theta, \sigma, \tilde{V})$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 20/28

- Gibbs sampler works on $(\theta, \sigma, \tilde{V})$
- Sampling from $p(\tilde{V} \mid D_n, \theta, \sigma)$:

- Gibbs sampler works on $(\theta, \sigma, \tilde{V})$
- Sampling from $p(\tilde{V} \mid D_n, \theta, \sigma)$:

Initialize

1) Initialize a skeleton path $(\tilde{V}^M)_0$ according to P_0^* . Compute Z and approximate the Radon-Nikodym derivative $\phi(Z, \theta, \sigma)$, w_0 . **Iterate**

- Gibbs sampler works on $(\theta, \sigma, \tilde{V})$
- Sampling from $p(\tilde{V} \mid D_n, \theta, \sigma)$:

Initialize

1) Initialize a skeleton path $(\tilde{V}^M)_0$ according to P_0^* . Compute Z and approximate the Radon-Nikodym derivative $\phi(Z, \theta, \sigma)$, w_0 . **Iterate**

2) Generate a proposal skeleton path, \tilde{V}_{P}^{M} according to P_{0}^{*} . Compute \tilde{Z} and approximate the Radon-Nikodym derivative $\phi(\tilde{Z}, \theta, \sigma)$, \tilde{w} .

- Gibbs sampler works on $(\theta, \sigma, \tilde{V})$
- Sampling from $p(\tilde{V} \mid D_n, \theta, \sigma)$:

Initialize

1) Initialize a skeleton path $(\tilde{V}^M)_0$ according to P_0^* . Compute Z and approximate the Radon-Nikodym derivative $\phi(Z, \theta, \sigma)$, w_0 . **Iterate**

2) Generate a proposal skeleton path, \tilde{V}_{P}^{M} according to P_{0}^{*} . Compute \tilde{Z} and approximate the Radon-Nikodym derivative $\phi(\tilde{Z}, \theta, \sigma), \tilde{w}$.

3) Let
$$(\tilde{V}^M)_{k+1} = \begin{cases} \tilde{V}^M_P & \text{with prob. min}\left(1, \frac{\tilde{w}}{w_k}\right) \\ (\tilde{V}^M)_k & \text{otherwise} \end{cases}$$

It can be shown that

$$p(\sigma \mid \tilde{V}, D_n, \theta)$$

$$\propto_{\sigma} p(\sigma) |\det(\Sigma(\sigma)^{-1})|^n \cdot \prod_{i=1}^n \varphi(\Sigma(\sigma)^{-1} V_{t_i} \mid \Sigma(\sigma)^{-1} V_{t_{i-1}}; \Delta I_2) \phi_i(\tilde{V}, \theta, \sigma)$$

$$:= h(\sigma),$$

It can be shown that

$$\begin{split} p(\sigma \mid \tilde{V}, D_n, \theta) \\ \propto_{\sigma} p(\sigma) |\det(\Sigma(\sigma)^{-1})|^n \cdot \prod_{i=1}^n \varphi(\Sigma(\sigma)^{-1} V_{t_i} \mid \Sigma(\sigma)^{-1} V_{t_{i-1}}; \Delta I_2) \phi_i(\tilde{V}, \theta, \sigma) \\ &:= h(\sigma), \end{split}$$

One can use a Gaussian random walk on transformed variable $\bar{\sigma} = \log(\sigma)$.

It can be shown that

$$\begin{split} p(\sigma \mid \tilde{V}, D_n, \theta) \\ \propto_{\sigma} p(\sigma) |\det(\Sigma(\sigma)^{-1})|^n \cdot \prod_{i=1}^n \varphi(\Sigma(\sigma)^{-1} V_{t_i} \mid \Sigma(\sigma)^{-1} V_{t_{i-1}}; \Delta I_2) \phi_i(\tilde{V}, \theta, \sigma) \\ &:= h(\sigma), \end{split}$$

One can use a Gaussian random walk on transformed variable $\bar{\sigma} = \log(\sigma)$.

Initialize 1) Initialize $\bar{\sigma}^{(0)}$. Iterate

It can be shown that

$$\begin{split} p(\sigma \mid \tilde{V}, D_n, \theta) \\ \propto_{\sigma} p(\sigma) |\det(\Sigma(\sigma)^{-1})|^n \cdot \prod_{i=1}^n \varphi(\Sigma(\sigma)^{-1} V_{t_i} \mid \Sigma(\sigma)^{-1} V_{t_{i-1}}; \Delta I_2) \phi_i(\tilde{V}, \theta, \sigma) \\ &:= h(\sigma), \end{split}$$

One can use a Gaussian random walk on transformed variable $\bar{\sigma} = \log(\sigma)$.

Initialize 1) Initialize $\bar{\sigma}^{(0)}$. Iterate 2a) Generate a proposal $\tilde{\sigma}$ from $\varphi(\cdot \mid \bar{\sigma}^{(k)}; \Omega)$. 2b) Let $\bar{\sigma}^{(k+1)} = \begin{cases} \tilde{\sigma} & \text{with prob. min} \left(1, \frac{h(\tilde{\sigma})}{h(\bar{\sigma}^{(k)})}\right) \\ \bar{\sigma}^{(k)} & \text{otherwise} \end{cases}$

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 22/28

	ε	5	γ	β	σ_1	σ_2
Oscillatory	0.1	0.5	1.5	0.6	0.5	0.3
Excitatory	0.1	0.5	1.5	1.4	0.5	0.3

• Model was re-parameterized:

$$(\varepsilon, s, \gamma, \beta) \mapsto (1/\varepsilon, s/\varepsilon, \gamma, \beta)$$

	ε	5	γ	β	σ_1	σ_2
Oscillatory	0.1	0.5	1.5	0.6	0.5	0.3
Excitatory	0.1	0.5	1.5	1.4	0.5	0.3

• Model was re-parameterized:

$$(\varepsilon, s, \gamma, \beta) \mapsto (1/\varepsilon, s/\varepsilon, \gamma, \beta)$$

• $\varepsilon > 0$ and thus a further transformation is needed to guarantee positivity of $\tilde{\varepsilon}$. However, for small ε the problem can be neglected for practical implementations.

	ε	5	γ	β	σ_1	σ_2
Oscillatory	0.1	0.5	1.5	0.6	0.5	0.3
Excitatory	0.1	0.5	1.5	1.4	0.5	0.3

• Model was re-parameterized:

$$(\varepsilon, s, \gamma, \beta) \mapsto (1/\varepsilon, s/\varepsilon, \gamma, \beta)$$

- $\varepsilon > 0$ and thus a further transformation is needed to guarantee positivity of $\tilde{\varepsilon}$. However, for small ε the problem can be neglected for practical implementations.
- Radon Nikodym derivatives are evaluated using Riemann approximations

• $n = 200, \Delta = 0.1$

• Black lines: excitatory data, Gray: oscillatory data

Anders Christian Jensen - An MCMC approach to parameter estimation in the FitzHugh-Nagumo model - June 05, 2012 Slide 23/28

- n = 200, $\Delta = 0.1$, oscillatory data
- Shows only every 50th iteration

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 24/28

• n = 200, $\Delta = 0.1$, oscillatory data

Anders Christian Jensen — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 25/28

- Solid black line: excitatory data, solid gray line: oscillatory data $(n = 200, \Delta = 0.1)$
- Dashed black line: excitatory data ($n = 2000, \Delta = 0.01$)

Anders Christian Jensen $\,$ — An MCMC approach to parameter estimation in the FitzHugh-Nagumo model — June 05, 2012 Slide 26/28 $\,$

• n = 200, $\Delta = 0.1$, excitatory data

Anders Christian Jensen - An MCMC approach to parameter estimation in the FitzHugh-Nagumo model - June 05, 2012 Slide 27/28

- Larger simulation study, with parameters designed to stress the procedure
- Optimize implementation and construct R-package
- Propose paths from bridge with linear drift
- Generalize to partial observation of only one coordinate

- Larger simulation study, with parameters designed to stress the procedure
- Optimize implementation and construct R-package
- Propose paths from bridge with linear drift
- Generalize to partial observation of only one coordinate

- Larger simulation study, with parameters designed to stress the procedure
- Optimize implementation and construct R-package
- Propose paths from bridge with linear drift
- Generalize to partial observation of only one coordinate

- Larger simulation study, with parameters designed to stress the procedure
- Optimize implementation and construct R-package
- Propose paths from bridge with linear drift
- Generalize to partial observation of only one coordinate

