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Differential equations as inverse problems

Solutions to PDEs depend on the initial condition

u = Kµ,

where u is the solution, K is the solution operator, and µ is the initial
condition

Such problems are often ill-posed
The solution operator of the differential equation does not have a
well-behaved, continuous inverse, e.g., K is a compact operator
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Statistical inverse problems

We observe the solution perturbed by the noise or measurement errors

Y = Kµ + εZ

where Y is the observed solution, Z is the white noise, ε is the level of
the noise

Estimator for µ
Because of the noise Z, Y is not in the range of K, and therefore K−1Y
is not an answer.

Regularization
Find an operator A “close to” K−1 such that AY is well defined and
then estimate µ by

µ̂ = AY
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Bayesian approach

Bayesian paradigm

I We choose a distribution for µ → prior

I Data Y have distribution given µ → Y |µ
I Bayes theorem gives distribution of µ given Y → µ|Y posterior

Bayesian answer – Posterior distribution

I Point estimator – posterior mean

I Confidence sets – credible sets
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Our results

Our questions

I Does the posterior distribution center at µ?

I Are some priors better than others?

I Does the posterior correctly describe the order of the error?

Our answers

I Yes, we get consistent estimators.

I Performance depends on combinations of the characteristics of the
prior, the true parameter, and the known transformation. It can be
very good and very bad.
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Recovery of the initial condition for the heat equation

The Dirichlet problem for the heat equation

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = µ(x), u(0, t) = u(1, t) = 0,

where u is defined on [0, 1]× [0, T ] and the function µ ∈ L2[0, 1] satisfies
µ(0) = µ(1) = 0

The solution is given by

u(x, T ) =
√

2
∞∑

i=1

µie
−i2π2T sin(iπx) =

∞∑
i=1

κiµiei(x),
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Inverse problem

Recall
u = Kµ

Here

u(x, T ) =
∞∑

i=1

κiµiei(x),

where ei(x) =
√

2 sin(iπx) and κi = e−i2πT form the eigensystem of the
solution operator K, and µi are the coordinates of µ in the eigenbasis of
the operator K
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Recovery of the initial condition for the heat equation
Sequence of the noisy, transformed Fourier coefficients of µ

Yi = κiµi +
1√
n

Zi, i = 1, 2, . . . ,

where Z1, Z2, . . . are independent, standard normal random variables

Product prior on µ of the form

Π =
∞⊗

i=1

N(0, λi)

with two types of prior

λ
(1)
i = i−1−2α, λ

(2)
i = exp(−αi2), for some α > 0.

Coordinates of the true µ0 satisfy for some β > 0
∞∑

i=1

µ2
0,ii

2β < ∞
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Example – λ
(1)
i = i−1−2α, n = 104

Black curve – true µ0, red curve – posterior mean, dashed curves – 20 draws from the posterior
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Example – λ
(1)
i = i−1−2α, n = 108

Black curve – true µ0, red curve – posterior mean, dashed curves – 20 draws from the posterior
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Rate of contraction – polynomial prior

Theorem (K, van der Vaart, van Zanten (2011))
If λi = τ2

ni−1−2α for some α > 0 and τn > 0 such that nτ2
n →∞, then

for every Mn →∞

Eµ0Πn(µ : ‖µ− µ0‖ ≥ Mnεn |Y ) → 0,

where
εn =

(
log(nτ2

n)
)−β/2 + τn

(
log(nτ2

n)
)−α/2

.

The rate is optimal when

I τn ≡ 1 and α ≥ β

I n−1/2+δ . τn . (log n)(α−β)/2, for some δ > 0
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Example – λ
(2)
i = exp(−αi2), n = 104

Black curve – true µ0, red curve – posterior mean, dashed curves – 20 draws from the posterior
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Example – λ
(2)
i = exp(−αi2), n = 108

Black curve – true µ0, red curve – posterior mean, dashed curves – 20 draws from the posterior
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Rate of contraction – exponential prior

Theorem (K, van der Vaart, van Zanten (2011))
If λi = exp(−αi2) for some α > 0, then for every Mn →∞

Eµ0Πn(µ : ‖µ− µ0‖ ≥ Mnεn |Y ) → 0,

where
εn = (log n)−β/2.

The rate is always optimal
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Credible sets

Credible ball
A credible ball centered at the posterior mean µ̂ takes the form

µ̂ + B(rn,γ) = {µ ∈ `2 : ‖µ− µ0‖ < rn,γ}

where the radius rn,γ is determined such that

Πn(µ̂ + B(rn,γ) |Y ) = 1− γ

Credible sets as confidence sets
The frequentist coverage of the credible set is

Pµ0

(
µ0 ∈ µ̂ + B(rn,γ)

)
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Example – λ
(1)
i = i−1−2α, n = 104

Top panels α = 1.5, bottom panels α = 3
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Example – λ
(1)
i = i−1−2α, n = 106

Top panels α = 1.5, bottom panels α = 3
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Example – λ
(1)
i = i−1−2α, n = 108

Top panels α = 1.5, bottom panels α = 3
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Credibility – polynomial prior

Theorem (K, van der Vaart, van Zanten (2011))
If λi = i−1−2α for some α > 0, then asymptotic coverage of the credible
ball centered at the posterior mean is

I 1, when α < β; here rn,γ/r̃n,γ →∞,

I 0, when α > β,

I 1 or 0, depending on the norm of µ0, when α = β.

Undersmoothing leads to very conservative sets, oversmoothing has
disastrous consequences for the coverage.
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Example – λ
(2)
i = exp(−αi2), n = 104

Top panels α = 1, bottom panels α = 5
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Example – λ
(2)
i = exp(−αi2), n = 106

Top panels α = 1, bottom panels α = 5
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Example – λ
(2)
i = exp(−αi2), n = 108

Top panels α = 1, bottom panels α = 5
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Credibility – exponential prior

Theorem (K, van der Vaart, van Zanten (2011))
If λi = exp(−αi2) for some α > 0, then asymptotic coverage of the
credible ball centered at the posterior mean is 0, for every µ0 such that
|µ0,i| & exp(−ci2) for some c < α/2.

Very bad confidence sets for a wide range of µ0
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Concluding remarks

I Inverse problems can be solved using Bayesian procedures

I Many priors yield optimal rate of recovery

I However, one should be (very) careful with credible sets

Thank you!
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