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Motivations

The study of complex systems demands for multidimensional models,
sometimes defined on different scales, with several unknown
parameters to be estimated from data.

Systems are often “partially observed”→ latent variables;

Measurement error is often a non-negligible source of variability
affecting data;

Dynamical systems might evolve randomly→ stochastic differential
equations (SDEs);

Systems biology applications are examples of problems involving the
“complications” above.
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Goal of this talk

Inference for stochastic systems modelled by SDEs observed at
discrete time points is complicated and has generated a large amount of
literature in the past 20 years.

the exploitation of MCMC methodology produced in the ’90s has
broken several barriers and allowed exploration of complex inferential
problems like never before;

the availability of more affordable computational resources has made
the application of intense computational algorithms more viable.

however MCMC Bayesian methodology (e.g. Metropolis-Hastings)
does not scale well for large systems, i.e. the resulting chain might
have poor mixing, resulting in unacceptably long computational times.

Goal is to consider Approximate Bayesian Computation to alleviate
inferential problems in relatively “large”/complex SDE models.
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We are interested in estimating parameters from observation
{yi}i=1,...,n generated from the following state-space model:{

dXt = µ(Xt, t,ψ)dt + σ(Xt, t,ψ)dWt

Yti = f (Xti , εti), εti ∼ N(0,σ2
εId), i = 1, .., n

Xti may be multidimensional ∈ Rd and partially observed;

the εi are to be interpreted as i.i.d measurement error terms
independent of Wt.

And w.l.g we assume:

yi = Xti + εti , i = 1, ..., n

Our goal is to estimate θ = (ψ,σε) conditionally on
y = {y0, y1, ..., yn} using Bayesian methodology.
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Bayesian inference about θ is based on the (marginal) posterior density

π(θ | y) ∝ l(θ; y)π(θ)

We assume that the likelihood function l(θ; y) may be unavailable for
mathematical reasons (not available in closed from) or for computational
reasons (too expensive to calculate).
In our case

data: y = (y0, y1, ..., yn) obtained at times {t0, ..., tn} i.e. yi ≡ yti

and x = (x0, x1, ..., xn) is the SDE solution at time-points {t0, ..., tn}.

l(θ; y) = π(y | θ) =

∫
π(y | x; θ)π(x | θ)dx→ “data augmentation”

from θ to (x, θ)

use MCMC to deal with the multiple integration problem.

Because of increased dimension (from θ to (θ, x)) convergence
properties of the MCMC algorithms are too poor for the algorithm to
be considered. [Marin, Pudlo, Robert and Ryder 2011]
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Approximate Bayesian Computation (ABC, first proposed in Tavaré
et al., 1997) bypass the computation of the likelihood function.

Basic ABC idea (no measurement error here):
for an observation xobs ∼ π(x | θ), under the prior π(θ), keep jointly
simulating

θ ′ ∼ π(θ), x ′ ∼ π(x | θ ′)

until the simulated variable x ′ is equal to the observed one, x ′ = xobs.
Then a θ ′ satisfying such condition is such that θ ′ ∼ π(θ | xobs).
[Tavaré et al., 1997]. proof

In general equality x = xobs is often hardly verified, and it’s even more
unlikely for vectors x = (xt0 , ..., xtn) resulting from a diffusion process.

Choose instead an accuracy threshold δ;

substitute “accept if x ′ = xobs” with “accept if ρ(S(x ′), S(xobs)) < δ”
for some measure ρ(·) and statistics S(·).
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Acceptance probability in Metropolis-Hastings
Suppose at a given iteration of Metropolis-Hastings we are in the
(augmented)-state position (θ#, x#) and wonder whether to move (or
not) to a new state (θ ′, x ′). The move is generated via a proposal
distribution “q((θ#, x#)→ (x ′, θ ′))”.

e.g. “q((θ#, x#)→ (x ′, θ ′))” = u(θ ′|θ#)v(x ′ | θ ′);

move “(θ#, x#)→ (θ ′, x ′)” accepted with probability

α(θ#,x#)→(x′,θ′) = min
(

1,
π(θ ′)π(x ′|θ ′)π(y|x ′, θ ′)q((θ ′, x ′)→ (θ#, x#))

π(θ#)π(x#|θ#)π(y|x#, θ#)q((θ#, x#)→ (θ ′, x ′))

)
= min

(
1,
π(θ ′)π(x ′|θ ′)π(y|x ′, θ ′)u(θ#|θ

′)v(x# | θ#)

π(θ#)π(x#|θ#)π(y|x#, θ#)u(θ ′|θ#)v(x ′ | θ ′)

)
now choose v(x | θ) ≡ π(x | θ)

= min
(

1,
π(θ ′)����π(x ′|θ ′)π(y|x ′, θ ′)u(θ#|θ

′)�����π(x# | θ#)

π(θ#)����π(x#|θ#)π(y|x#, θ#)u(θ ′|θ#)�����
π(x ′ | θ ′)

)
This is likelihood–free! And we only need to know how to generate x ′

(not a problem...)
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As from the previous slide, for dynamical problems we only need to know
how to generate a proposal x ′ = (x ′

0, ..., x ′
n)⇒ for SDEs: Euler-Maruyama,

Milstein, Stochastic RK etc.
We now plug the previous ideas in a MCMC ABC algorithm [Sisson-Fan,
2011]

1. Choose or simulate θstart ∼ π(θ) and xstart ∼

it can be unknown!︷       ︸︸       ︷
π(x|θstart) . Fix δ > 0

and r = 0. Put θr = θstart and (supposedly known!) statistics
S(xr) ≡ S(xstart).
At (r + 1)th MCMC iteration:
2. generate θ ′ ∼ u(θ ′|θr) from its proposal distribution;
3. generate x ′ ∼ π(x ′|θ ′) and calculate S(x ′);

4. with probability min
(

1, π(θ
′)πδ(y|x′,θ′))u(θr|θ

′)
π(θr)πδ(y|xr ,θr)u(θ′|θr)

)
set

(θr+1, S(xr+1)) = (θ ′, S(x ′)) otherwise set (θr+1, S(xr+1)) = (θr, S(xr));
5. increment r to r + 1 and go to step 2.

with e.g. πδ(y | x, θ) = 1
δK
( |S(x)−S(y)|

δ

)
[Bloom 2010].
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The previous algorithm generates a sequence {θr, xr} from the (ABC)
posterior πδ(θ, xr | y). We only retain the {θr} which are thus from πδ(θ | y),
the (marginal) ABC posterior of θ.

In order to apply ABC methodology we are required to specify the statistic
S(·) for θ.

[Fearnhead & Prangle]

(Classic result of Bayesian stats: for quadratic losses) the “optimal” choice of S(y) is
given by S(y) = E(θ | y), the (unknown) posterior of θ.

So Fearnhead & Prangle propose a regression-based approach to determine S(·)
(prior to MCMC start):

for the jth parameter in θ fit the following linear regression models

Sj(y) = Ê(θj|y) = β̂
(j)
0 + β̂(j)η(y), j = 1, 2, ..., dim(θ)

repeat the fitting separately for each θj.

hopefully Sj(y) = β̂
(j)
0 + β̂(j)η(y) will be “almost sufficient” for θj;
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An example (run prior to MCMC start):
1. simulate from the prior θ ′ ∼ π(θ) (very inefficient!)
2. generate simulated data ysim via xsim ∼ π(x | θ ′), ysim = xsim + ε
repeat (1)-(2) many times to get the following matrices:

θ
(1)
1 θ

(1)
2 · · · θ(1)

p

θ
(2)
1 θ

(2)
2 · · · θ(2)

p
...

 ,


y(1)

sim,t0 y(1)
sim,t1 · · · y(1)

sim,tn
y(2)

sim,t0 y(2)
sim,t1 · · · y(2)

sim,tn
...

... · · ·
...


and for each column of the left matrix do a multivariate linear regression (or
Lasso, or MARS,...)

θ
(1)
j

θ
(2)
j
...

 =


1 y(1)

sim,t0 y(1)
sim,t1 · · · y(1)

sim,tn
1 y(2)

sim,t0 y(2)
sim,t1 · · · y(2)

sim,tn
...

... · · ·
...

× βj (j = 1, ..., p),

and obtain an (hopefully almost sufficient!) statistic for θj

Sj(y) = β̂
(j)
0 +β̂(j)η(y) = β̂(j)

0 +β̂
(j)
1 y0+· · ·+β̂(j)

n yn ⇒ plug this into MCMC alg.
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We have also obtained much better results (than with linear
regression) using statistics based on:

regression via MARS (multivariate adaptive regression splines
[Friedman 1991]);

Lasso-like estimation via glmnet [Friedman, Hastie, Tibshirani 2001]:
estimates are found via

β̂ = argminβ

(
1
2

n∑
i=0

(yi −

p∑
j=1

ηijβj)
2 + γ

p∑
j=1

| βj |

)
and the penality γ selected via cross validation methods (the one giving
the smallest mean prediction error is selected).
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An application: Stochastic kinetic networks
[also in Golightly-Wilkinson, 2010]

Consider a set of reactions {R1, R2, ..., R8}:

R1 : DNA + P2 → DNA · P2 R2 : DNA · P2 → DNA + P2

R3 : DNA→ DNA + RNA R4 : RNA→ RNA + P

R5 : 2P→ P2 (dimerization) R6 : P2 → 2P (dimerization)

R7 : RNA→ ∅ (degradation) R8 : P→ ∅ (degradation)

These reactions represent a simplified model for prokaryotic
auto-regulation.
“Reactants” are on the left side of→;
“Products” are on the right side of→;
There are several ways to simulate biochemical networks, e.g. the
“exact” Gillespie algorithm (computationally intense for inferential
purposes).
Or by using a diffusion approximation⇒ SDE.
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Each one of the 8 reactions {R1, R2, ..., R8} has an associated rate
constant ci and a “propensity function” hi(Xt, ci). uh?!

We want to consider the evolution of the “species”
Xt = (RNAt, Pt, P2,t, DNAt) each representing # of molecules (integers!).

A continuous–time approximation for the (innerly discrete) Xt process is
given by:

dXt = Sh(Xt, c)dt +
√

Sdiag(h(Xt, c))STdWt, Xt ∈ R4
+

This is the Chemical Langevin equation.

S =


0 0 1 0 0 0 −1 0
0 0 0 1 −2 2 0 −1
−1 1 0 0 1 −1 0 0
−1 1 0 0 0 0 0 0


and hazard function

h(Xt, c) = (c1DNAt × P2,t, c2(k − DNAt), c3DNAt, c4RNAt, c5Pt(Pt − 1)/2,

c6P2,t, c7RNAt, c8Pt)
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The inferential problem
data D1 fully observed without error

– all coordinates of {Xt} ∈ R4
+ are observed;

– yti ≡ Xti .
– 50 measurements for each coordinate, n = 200 total observations.
– we want to estimate θ = (c1, c2, ..., c8).

data D2 fully observed with known error

– all coordinates of {Xt} ∈ R4
+ are observed;

– yti = Xti + εti , εti ∼ N(0,σεI);
– we want to estimate θ = (c1, c2, ..., c8) (notice σε is known).

D3 partially observed with unknown error

- the DNAt coordinate is not observed⇒ yti ∈ R3
+

– want to estimate θ = (DNA0, c1, c2, ..., c8,σε).
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Priors: log cj ∼ U(−3, 0) and log DNA0 ∼ U(0, 2.3) (when needed).

True parameters D1 D2 D3

DNA0 5 — — 3.110
[1.441, 6.526]

c1 0.1 0.074 0.074 0.074
[0.057, 0.097] [0.055, 0.099] [0.056, 0.097]

c2 0.7 0.521 0.552 0.536
[0.282, 0.970] [0.294, 1.029] [0.345, 0.832]

c1/c2 0.143 0.142 0.135 0.138

c3 0.35 0.216 0.214 0.244
[0.114, 0.4081] [0.109, 0.417] [0.121, 0.492]

c4 0.2 0.164 0.168 0.174
[0.088, 0.308] [0.088, 0.312] [0.089, 0.331]

c5 0.1 0.088 0.088 0.087
[0.070, 0.112] [0.069, 0.114] [0.063, 0.120]

c6 0.9 0.352 0.355 0.379
[0.139, 0.851] [0.136, 0.880] [0.147, 0.937]

c5/c6 0.111 0.250 0.248 0.228

c7 0.3 0.158 0.158 0.157
[0.113, 0.221] [0.108, 0.229] [0.103, 0.240]

c8 0.1 0.160 0.169 0.165
[0.098, 0.266] [0.097, 0.286] [0.091, 0.297]

σε 1.414 — — 0.652
[0.385, 1.106]
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HOWTO: post-hoc selection of δ (the “precision”
parameter) [Bortot et al. 2007]

As previously explained, during the MCMC we let δ vary (according to a
MRW): at rth iteration δr = δr−1 + ∆, ∆ ∼ N(0,ν2).
After the end of the MCMC we have a sequence {θr, δr}r=0,1,2... and for each
parameter {θj,r}r=0,1,2... we produce a plot like the following (e.g. log c3 vs δ):

0 0.5 1 1.5 2 2.5 3 3.5 4
−2.5

−2

−1.5

−1

−0.5

0

bandwidth
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Post-hoc selection of the bandwidth δ, cont’d...

0 0.5 1 1.5 2 2.5

x 10
4

−3

−2

−1

log c
1

0 0.5 1 1.5 2 2.5

x 10
4

−2

−1

0

log c
2

0 0.5 1 1.5 2 2.5

x 10
4

−4

−2

0

log c
3

0 0.5 1 1.5 2 2.5

x 10
4

−4

−2

0

log c
4

0 0.5 1 1.5 2 2.5

x 10
4

−4

−2

0

log c
5

0 0.5 1 1.5 2 2.5

x 10
4

−2

0

2

log c
6

0 0.5 1 1.5 2 2.5

x 10
4

−4

−2

0

log c
7

0 0.5 1 1.5 2 2.5

x 10
4

−4

−2

0

log c
8

0 0.5 1 1.5 2 2.5

x 10
4

−0.5

0

0.5

log σε

0 0.5 1 1.5 2 2.5

x 10
4

0

2

4

bandwidth

Figure : Stochastic networks example using D3: a (non-thinned) sample from the first 23,000
draws from the MCMC. The bandwidth δ is in the bottom-right panel.
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Post-hoc selection of the bandwidth δ, cont’d...
Therefore in practice:

we filter out of the analyses those draws {θr}r=0,1,2,... corresponding to
“large” δ, for statistical precision;

we retain only those {θr}r=0,1,2,... corresponding to a low δ (but not too
low, because of previous considerations).

in the example we retain {θr; δr < 1.5}.

PRO: this is useful as it allows an ex-post selection of δ, i.e. we do not
need to know in advance a suitable value for δ.

CON: by filtering out some of the draws, a disadvantage of the
approach is the need to run very long MCMC simulations in order to
have enough “material” on which to base our posterior inference.

PRO: also notice that by letting δ vary we are effectively considering a
global optimization method (similar to simulated tempering &
tempered transitions).
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Conclusions
Approximate Bayesian Computation allows inference from a wide
class of models which would otherwise be unavailable.
..but it’s not a silver bullet!

free ABC from the choice of summary statistics would be a huge step
forward (but would it still be ABC?!)

construct the statistics S(·) by simulating parameters from the prior is
highly inefficient;

long simulations are needed as a price to be paid in any algorithm that
avoids likelihood calculations (∼ millions of MCMC iterations, but this
is not necessarily very time consuming as we avoid the most
computationally intense part, that is likelihood calculation!);

a general MATLAB implementation for fully and partially observed
SDEs is in preparation and will be made available on
www.maths.lth.se/matstat/staff/umberto/.

Thank you!
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Appendix

Proof that the basic ABC algorithm works

The proof is straightforward.
We know that a draw (θ ′, x ′) produced by the algorithm is such that
(i) θ ′ ∼ π(θ), and (ii) such that x ′ = xobs, where x ′ ∼ π(x | θ ′).

Thus let’s call f (θ ′) the (unknown) density for such θ ′, then because
of (i) and (ii)

f (θ ′) ∝
∑

x

π(θ ′)π(x|θ ′)Ixobs(x) =
∑

x=xobs

π(θ ′, x) ∝ π(θ|xobs).

Therefore θ ′ ∼ π(θ|xobs).
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Appendix

A theoretical motivation to consider ABC

An important (known) result
A fundamental consequence is that if S(·) is a sufficient statistic for θ
then limδ→0 πδ(θ | y) = π(θ | y) the exact (marginal) posterior!!!

uh?!

Otherwise (in general) the algorithm draws from the approximation
π(θ | ρ(S(x), S(y)) < δ).
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Appendix

The straightforward motivation is the following:
consider the (ABC) posterior πδ(θ | y) then

πδ(θ | y) =
∫
πδ(θ, x | y)dx ∝ π(θ)

∫
1
δ

K
(
|S(x) − S(y)|

δ

)
π(x | θ)dx

→ π(θ)π(S(x) = S(y) | θ) (δ→ 0).

Therefore if S(·) is a sufficient statistic for θ then

lim
δ→0

πδ(θ | y) = π(θ | y)

the exact (marginal) posterior!!!
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Appendix

Some remarks on SysBio concepts

a “propensity function” hi(Xt, ci) gives the overall hazard of a type i
reaction occurring, that is the probability of a type i reaction occurring
in the time interval (t, t + dt] is hi(Xt, ci)dt.

a “conservation law” (from redundant rows in S): DNA ·P2 +DNA = k.

In a stoichiometry matrix S reactants appear as negative values and
products appear as positive values.
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Appendix

Choice of kernel function

We follow Fearnhead-Prangle(2012):

we consider bounded kernels K(·) 6 1;

specifically we use the uniform kernel K(z) returning 1 when zTAz < c
and 0 otherwise. In our case z = (S(ysim) − S(y))/δ and A is chosen to
be a p× p diagonal matrix defining the relative weighting of the
parameters in the loss function.

The uniform kernel is defined on a region zTAz bounded by a volume c,
with c = Vp|A|1/p, where Vp = π−1[Γ(p/2)p/2]2/p and p = dim(θ);

such c is the unique value producing a valid probability density
function K i.e. such that the volume of the region zTAz < c equals 1.
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