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Overview

• Currently available methodology for nonparametric Bayes
analysis for SDE’s

• Theoretical performance of methods



Data and simulation examples



I: molecular dynamics

Papaspiliopoulos, Pokern, Roberts, Stuart (Biometrika, to appear):
model dynamics of an angle in a large molecule by an SDE.
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Fig. 2. Molecular Dynamics Example: Top Left:
Time series of Butane Dihedral Angle, Top Right:
Associated Histogram, Bottom Left: Sketch of Dihe-
dral Angle, Bottom Right: Posterior Mean Drift and

one Sigma Credible Region

We choose independent Gaussian priors for �1 = 2a
✓2 � 1

2 and �2 = b
2 with mean zero and

variance 500. Additionally, we use an inverse Gamma prior for the di↵usivity parame-
ter ✓ with parameters (2, 1). While this prior gives positive probability to drifts which
render the process transient, this is of no concern as the data are informative enough to
essentially rule these parameter combinations out.

For the nonparametric model, we employ the same prior for the di↵usivity and impose
a Gaussian prior on the drift ↵(·) in the equation (20). The Gaussian prior is taken to
have the form (10) with prior mean m0 ⌘ 0 and k = 2 with hyperparameters ⌘ and �
fixed at ⌘ = 0.5 and � = 0. However, in this example we do not use periodic boundary
conditions. Rather we specify Gaussian boundary conditions as discussed in subsection
4·3 with mean zero on both sides and variance �2 = 100.

We use N = 100 Hermite finite elements (where the basis functions are piecewise third
order polynomials) setting boundaries q =

p
2 mini Vi and r = 2

p
2 maxi Vi. We run 2500

iterations of the deterministic scan Gibbs sampler where the first 10 iterations have been

Model:
dXt = b(Xt) dt + dWt ,

Drift function b is 2π-periodic.



Bayesian approach: have to put a prior on, for instance, L2(T).

A Gaussian random element W in L2(T) is determined by its mean
and its covariance operator C0. We have

Cov
(∫

Wf

∫
Wg
)

=

∫
f (C0g).

Always: C0 is trace-class, self-adjoint.

PPRS (2011) take as prior the law of a centered Gaussian in L2(T)
with precision operator

C−1
0 = η((−∆)p + κI ),

with p = 2, η = .02 and κ = 0.



Data: essentially viewed as a continuous-time signal.

It can be shown that the posterior is again Gaussian.

Posterior mean solves an ordinary differential equation.

Posterior precision (inverse covariance) is again a differential
operator.

Can use numerical differential equations methods to sample
posterior.



Example of posterior computation:
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(Figures from PPRS (2011))



II: hierarchical series priors

The prior of PPRS (2011) is computationally convenient, but also
has some disadvantages.

In particular: using fixed values for hyper parameters increases the
risk that the prior does not properly reflect the properties of the
true drift.



Series representation the prior of PPRS (2011):

Distribution of

W (x) =
∞∑
i=1

√
λiZiψi (x),

where the Zi are independent, standard normal variables,

λi =
(
η
(

4π2
⌈ i

2

⌉2)p
+ ηκ

)−1

and (ψi ) is the standard Fourier basis of L2(T).



Alternative approach (vdMSvZ (in preparation)): truncate the sum
at a random point and use a random scaling constant.

Hierarchical prior specification:

j ∼ p(j),

s2 ∼ IG (a, b),

θj | j , s2 ∼ Nj(0, s2Ξj),

b | j , s2, θj ∼
j∑

i=1

θj
iψi .



Explicit posterior computations now no longer possible.

Can however devise an efficient MCMC algorithm to sample from
the posterior.

Ingredients in the algorithm:

• Within models (fixed j) have partial conjugacy and do Gibbs
sampling.

• Use reversible jump MCMC to jump between models.

• In case of low-frequency data add Metropolis-Hastings step
for sampling diffusion bridges to achieve data augmentation.



Example: effect of a prior on the scale.

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2

true drift
posterior mean
marginal 0.9 cred.

0.0 0.2 0.4 0.6 0.8 1.0
−

2
−

1
0

1
2

true drift
posterior mean
marginal 0.9 cred.

Simulated diffusion data on [0, 100], using the red curve as drift
function. Left: hierarchical, right: fixed scale.



Theoretical results for the differential equations
approach



I: Computation of the posterior



Recall: model is dXt = b(Xt) dt + dWt , with b 1-periodic. Prior is
the centered Gaussian distribution on L2(T) with inverse
covariance operator

C−1
0 = η((−∆)p + κI ),

Suppose that we observe the diffusion on the time interval [0,T ].

Questions:

• What is the posterior distribution? Is it Gaussian?

• How does the posterior behave as T →∞? Consistency?
Rates?



Thanks to the existence of local time, we can do explicit posterior
computations.

In particular: do not need MCMC methods to compute the
posterior numerically.



Intermezzo: local time

Let (Lt(x ; X ) : t ≥ 0, x ∈ R) be the semimartingale local time of
X : ∫ T

0
f (Xu) du =

∫
R

f (x)LT (x ; X ) dx .

In view of periodicity, define the periodic local time

L◦T (x ; X ) =
∑
k∈Z

LT (x + k ; X ), x ∈ T.

Occupation times formula:∫ T

0
f (Xu) du =

∫ 1

0
f (x)L◦T (x ; X ) dx

for 1-periodic f .



Heuristic posterior computation

Likelihood:

p(XT | b) = e
R T

0 b(Xt) dXt− 1
2

R T
0 b2(Xt) dt = e−ΦT (b;X ),

where

ΦT (b; X ) =
1

2

∫ (
b2 + b′)L◦T − 2χ◦Tb

)
.

Prior: has “density”

p(b) ∝ e−
1
2

R
bC−1

0 b.



Heuristic posterior computation

Hence the posterior has “density”

p(b |XT ) ∝ p(b)p(XT | b)

∝ exp
(
− 1

2

∫
b(C−1

0 + L◦T I )b +

∫
b(

1

2
(L◦T )′ + χ◦T )

)
.

This suggests that the posterior is Gaussian again, with precision
operator

C−1
T = C−1

0 + L◦T I

and mean b̂T satisfying

C−1
T b̂T =

1

2
(L◦T )′ + χ◦T .



Weak formulation of posterior mean equation

For u = b̂T , have equation

η(−1)pu(2p) + κu + L◦Tu =
1

2
(L◦T )′ + χ◦T

Multiplication with a smooth test function v and integrating by
parts gives the weak formulation

a(u, v ; X ) = r(v ; X ), ∀ v ∈ Ḣp(T), (1)

where

a(u, v ; X ) = η

∫
u(p)v (p) +

∫
(κ+ L◦T )uv ,

r(v ; X ) = −1

2

∫
L◦T v ′ +

∫
χ◦T v .

Fact: (1) has a unique solution in Ḣp(T).



Posterior: precise result

Theorem.
A.s., the posterior is the Gaussian measure on L2(T) with
covariance operator CT and mean b̂T which is the unique solution
of (1).

Elements of the proof.

• First consider finite-dimensional approximation of posterior by
projecting on span of first n eigenfunctions of C0.

• Using variational analysis ideas to show that the covariance
operator and mean of the finite-dim approximations
convergence in an appropriate way.



II: Consistency and rates



Bayesian asymptotics for diffusion models

Interested in frequentist asymptotics for Bayes procedures.

There exists all kinds of general results on consistency and
convergence rates for nonparametric Bayes procedures.

They avoid explicit posterior computations, but typically involve
conditions on the small ball probabilities of the prior and on the
metric entropy of (appropriate subsets of) the support of the prior.

For diffusion models: see Van der Meulen, Van der Vaart and vZ
(’06), Panzar and vZ (’09).

In this case we can circumvent the general approach and exploit
the explicit characterization of the posterior.



Result for the posterior mean

Let b0 be the true drift function (1-periodic, mean zero, C 1). Let
ρ0 be the probability density on [0, 1] given by

ρ0(x) ∝ e2
R x

0 b0(y) dy .

Theorem.
If b0 ∈ Ḣp(T), then for all s ∈ (0, 1/2), with probability tending to
1,

‖b̂T − b0‖L2 . OP0

( 1√
T

)
+ T−

p−(1−s)
2p ‖GT‖Hs ,

where

GT (x) =
√

T
(L◦T (x ; X )

T
− ρ0(x)

)
.



Intermezzo: local time again

Bolthausen (’79) for Brownian motion on the circle:

GT =
√

T
(L◦T (·; X )

T
− 1
)
⇒ Gaussian limit

in C [0, 1] as T →∞.

We prove:

Theorem.
If b0 ∈ Ċ (T), then

• ‖L◦T/T − ρ0‖∞ as→ 0.

• GT is asymptotically tight in Hs(T) for all s ∈ (0, 1/2).



We use different arguments than Bolthausen.

Proof ingredients:

• Write i.i.d. representation for local time up to winding times.

• Use LLN’s and CLT’s for Banach space-valued random
variables.

• Deal with the bit after the last winding time separately.



Back to posterior consistency and rates

For the posterior mean:

Theorem.
If b0 ∈ Ḣp(T), then for all δ > 0

‖b̂T − b0‖L2 = OP0

(
T−

p−1/2
2p

+δ
)
.

For the whole posterior:

Theorem.
If b0 ∈ Ḣp(T), then for all δ > 0

Π(b : ‖b − b0‖L2 ≥ MnT
− p−1/2

2p
+δ |XT )

P0→ 0

for all Mn →∞.



Remarks

• The prior essentially has Sobolev regularity p − 1/2. The rate

T−
p−1/2

2p is exactly the usual T−β/(1+2β) for β = p − 1/2.

• We expect/hope the rate result to be true under the weaker
condition b0 ∈ Ḣp−1/2(T).

• We can not derive the result under this minimal assumption
using our direct differential equations approach.

• We believe that using this Gaussian prior, an optimal
convergence rate can only be attained if the regularity of the
true b0 matches the regularity of the prior (p − 1/2).



Conclusions and future directions



Summary

• Have working methods for doing BNP for one-dimensional
SDE models.

• Have some theory on performance.

• Gaussian priors: consistency, but can have sub-optimal rates.



Further questions

• Find minimal conditions for optimal convergence rates.

• Study asymptotics for hierarchical priors. Adaptation?

• More generally: find numerically feasible methods with
good/optimal theoretical properties (adaptation, quality of
credible sets).

• Deal with unknown diffusion functions effectively.

• Asymptotics for low-frequency observations.

• Develop methods and theory for multi-dimensional diffusions.

THANKS!
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