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Analysis 
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Parameterisation 
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Model: JAK-STAT signaling pathway 
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Data is semi-quantitative 
Introduces scaling and offsets 

 
Only sums of states measured 

 
Small enough to perform  
in-silico validation experiments 
 

Raue et al, Bioinformatics (2009) 



JAK-STAT 
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JAK-STAT 
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Propagating 
uncertainty to 

parameters 
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Prior distribution  
 
 
 

Posterior Distribution 

Stochastic methods: 
Monte Carlo 
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Data 
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Stochastic methods: 
Monte Carlo 

Random sampling 
 Most samples fit the data poorly 
 Slow gain in information 
 
 
 
Markov Chain Monte Carlo: 
 Sample in proportion to probability 
 (proportional to likelihood and 
 prior) 
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• Models often non-identifiable 

• We check this by performing a Profile Likelihood prior to the 
Bayesian sampling 

• Non-identifiable parameters require an informative prior 

• Identifiable parameters inferred from data 

 

 

Stochastic methods: 
Markov Chain Monte Carlo 



Posterior distribution 
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Posterior distribution 
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Proposal Distribution 

 

• Adapt to local geometry 

 

• Approximated Fisher 
Information Matrix 

 

• First order sensitivities 

 

• Trust Region 
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Stochastic methods: 
Markov Chain Monte Carlo 



Posterior distribution 
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How does this relate 
to our predictions? 

/ Biomedical Engineering 



Posterior Predictive Distribution (PPD) 
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Posterior Predictive Distribution (PPD) 

PAGE 15 6-6-2012 / Biomedical Engineering 



PAGE 16 6-6-2012 

Parameters Predictions Data 

/ Biomedical Engineering 

Posterior Predictive Distribution (PPD) 
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Parameters Predictions Data 
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Posterior Predictive Distribution (PPD) 



Posterior Predictive Distribution (PPD) 
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• Note that Posterior Predictive Distributions can be 

obtained for any quantity computable from model 

simulations 

− Response time of the system 

− Time to peak 

− Area under curves 

− Ratios 

 

− Anything that can be mathematically obtained from 

model simulations 
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Posterior Predictive Distribution (PPD) 
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Experiment design 
Exploiting the PPD 

 

Vanlier et al, Bioinformatics (2012) 
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Efficacy of a new 
measurement 

/ Biomedical Engineering 



Posterior Predictive Distribution (PPD) 

PAGE 22 6-6-2012 / Biomedical Engineering 



PAGE 23 6-6-2012 

Strive for variance reduction 

post

new

V

V
1

0  - No variance reduction 
1  - High variance reduction 
 

/ Biomedical Engineering 

Experimental Design 
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Experimental Design 

Our hypothesis is based on unmeasurable 
prediction B 
 
 Which measurement gives us the most useful 
information to constrain B? 

Constraints! 
 - Only specific quantities are measurable 
 - Measurement hampered by noise 
 - System partially observed 

/ Biomedical Engineering 



Posterior Predictive Distribution 
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B 

A 



Posterior Predictive Distribution 
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B 
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Posterior Predictive Distribution 
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A new measurement 
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Posterior Predictive Distribution 
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Posterior Predictive Distribution 
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Posterior Predictive Distribution 
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Posterior Predictive Distribution 
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Problem 1: 
New MCMC for every 

potential experiment is too 
much computational 

effort! 



Posterior Predictive Distribution 
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Sampling the updated posterior is not required. 
 
Variance can be expressed in terms of expected 
values. 
 
 

ndydpyE  ...)(][ 1
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Posterior Predictive Distribution 
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Solution: 
Use importance sampling 
to compute the variance 

reduction 
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Posterior Predictive Distribution 
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Solution: 
Use importance sampling 
to compute the variance 

reduction 

/ Biomedical Engineering 
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Posterior 
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Samples from 
Predictive 
Distribution 
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New Measurement 
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Measurement 
Error Model 
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Samples are weighted 
according to the ratio 
of the old and new 
posterior  
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Replace the ratio by its estimate 



Posterior Predictive Distribution 
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Posterior Predictive Distribution 
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Problem 2: 
A priori it is unknown 
where a measurement 

ends up 

/ Biomedical Engineering 



Posterior Predictive Distribution 
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Use available 
information 
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Posterior Predictive Distribution 
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Solution: 
Use every sample from 

current posterior as 
measurement outcomes 

/ Biomedical Engineering 
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Sample 

Expected  
variance 
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Only requires samples from current posterior! 

Easily implemented on GPU 



Example 
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Sample from ‘experiment space’ 
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Now that we are able to predict effectiveness of 
experiment. 

 
Trivial to include multiple measurements in the 

importance sampler 
 
Sample from the space of all possible combinations of 

experiments and determine the best one. 
 
Ability to reject infeasible experiments. 



Objective: 

- Reduce uncertainty of peak time nucleus 
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Example: Two experiments 
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Example: Two experiments 
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Example: Two experiments 
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Average variance reduction 
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Average variance reduction 
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Average variance reduction 
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• Optimal Experiment Design at little extra cost 

• Fits well with existing MCMC toolchain 

• Faster linearised version also available 

• GPU (OpenCL) implementation available 

 

• Multiple experiments at once (Combinatorial) 

 

• Flexibility of observer and target choice 

 

• Flexibility of error models 

PAGE 68 6-6-2012 

Conclusions 

Vanlier et al, Bioinformatics (2012) 



PAGE 69 6-6-2012 



PAGE 70 6-6-2012 



Future/Ongoing work 

• Include temporal uncertainties 

 

• Apply methods to Model Selection (thermodynamic 
integration) 

 

• Improve sampling of experimental design space 

• Initial sweep using linear approximant 

• Sequential Monte Carlo Methods 

• MCMC/Optimisation in design space 
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Thank you 
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Computational Issues 
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Option 1: 

Linearisation of the PPD 
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Linearisation 



Linearisation 

• MC for experimental design takes a long time. Even 

when using Importance Sampling. 

 

• Sampling sparsity might lead to missing important 

experimental combinations. 

 

 

 For the computation of variances/variance reductions a 

speedup is possible!! 
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Linearisation 

• If the new models of the new measurements are 

Gaussians, then we can avoid resampling entirely. 

 

• We can work directly with covariance matrices 

 

 

• Use multidimensional Gaussian PDF’s 
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Linearisation 

• Step 1: Construct covariance matrix of output with 

potential measurements 

 

PAGE 79 6-6-2012 

Compute covariance of output of interest and 

potential measurement (think ellipsoid) 
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Linearisation 

• Step 1: Construct covariance matrix of output with 

potential measurements 

 

• Step 2: Compute new covariance after additional 

measurements (multiplication of two Gaussians) 
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Linearisation 

• Step 1: Construct covariance matrix of output with 

potential measurements 

 

PAGE 81 6-6-2012 

Compute covariance of output of interest and 

potential measurement (think ellipsoid) 
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Linearisation 

• Step 1: Construct covariance matrix of output with 

potential measurements 

 

• Step 2: Compute new covariance after additional 

measurements (multiplication of two Gaussians) 
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Linearisation 

• Step 1: Construct covariance matrix of output with 

potential measurements 

 

• Step 2: Compute new covariance after additional 

measurements (multiplication of two Gaussians) 

 

• Step 3: Compute resulting variance at the output 
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Comparison 
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Option 2: 

GPU Programming 
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OpenCL 
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Comparison with Fisher based 
V-optimal experiment design 
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• Fisher based experimental design 
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Optional Sheets 
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Bayes Factors 

• Commonly used for testing competing hypotheses 
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Evidence for Model 2 Likelihood Parameter prior Prior probabilities models 
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Kullback Leibler 
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Kullback-Leibler 

• The KL divergence effectively measures the average 
likelihood of observing (infinite) data with the distribution p 
if the particular model q actually generated the data. 
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Normalizing constant 

• Kullback Leiber 
 

 

 

p,q  - unnormalised density 

Z  - normalisation constants (integral) 

 

 

 

With Xi sampled from Q (the old posterior) 
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Normalizing constant 

• Kullback Leiber 
 

 

 

 

 

 

 

With Xi sampled from Q (the old posterior) 
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Normalizing constant 

• Kullback Leiber 
 

 

 

 

Again we exploit Importance Sampling 

 

 

 

With Xi sampled from Q (the old posterior) 
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Normalizing constant 

• Kullback Leiber 
 

 

 

 

Again we exploit Importance Sampling 

 

 

 

With Xi sampled from Q (the old posterior) 

PAGE 96 6-6-2012 

]
/)(

/)(
[log)|(

Qi

Pi
p

ZXq

ZXp
EQPKL  




N

i

iERR

Q

P Xp
NZ

Z

1

)(
1









 

P

Q

iERR

N

i P

Q

iERR

Qi

Pi
N

i Qi

Pi

Z

Z
Xp

Z

Z
Xp

NZXq

ZXp

ZXq

ZXp

N
QPKL )(log)(

1

/)(

/)(
log

/)(

/)(1
)|(



Normalizing constant 

• Kullback Leiber 
 

 

 

 

Again we exploit Importance Sampling 

 

 

 

With Xi sampled from Q (the old posterior) 
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Degeneracy 
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Tails 

PAGE 99 6-6-2012 

Tails 
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Worst case scenario for this measurement 
variance 
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Smaller measurement error 
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Not all is lost 



Quick Recap: Importance Sampling 
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Assume independence: 
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Samples from p 

(MCMC) 

Measurement 

Error Model 
Old posterior 



Quick Recap: Importance Sampling 
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Assume independence: 
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only known up to normalising constant! )( inewp 




Quick Recap: Importance Sampling 
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Assume independence: 
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only known up to normalising constant! )( inewp 


Self-normalise 
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Posterior Predictive Distribution 
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Quantities based on expectations: 

Variance 

Kullback-Leibler Divergence 

Var [y] = E[y2] - E[y]2 

KL(P|Q) = E[log(       )] 
p(x) 

q(x) 

‘Distance’ between distributions 
(entropy or ‘information gain’) 



Importance (Re)Sampling Maths 
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Single new datapoint k. Xi comes from the posterior 
No (1/N) in the first expression since we use self normalized 
weights in the IS step. 

Single 
IS step 

Error model 

IS for every 
sample 

/ Biomedical Engineering 



Posterior Predictive Distribution 
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Quantities based on expectations: 

Variance 

Kullback-Leibler Divergence 

Var [y] = E[y2] - E[y]2 

KL(P|Q) = E[log(       )] 
p(x) 

q(x) 

‘Distance’ between distributions 
(entropy or ‘information gain’) 

Incredibly difficult to compute 
(thermodynamic integration) 

Requires priors on all states 



Importance (Re)Sampling Maths 
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Single new datapoint k. Xi comes from the posterior 
No (1/N) in the first expression since we use self normalized 
weights in the IS step. 

Single 
IS step 

Error model 

IS for every 
sample 



Importance (Re)Sampling Maths 
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Single new datapoint k. Xi comes from the posterior 
No (1/N) in the first expression since we use self normalized 
weights in the IS step. 

Single 
IS step 

Error model 

IS for every 
sample 



 

 

Large scale search 
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JAK-STAT (Large Scale Search) 
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Fit error 
Minimum value 
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JAK-STAT (Large Scale Search) 
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Fit error 
Minimum value 
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JAK-STAT (Large Scale Search) 
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Fit error 
Minimum value 
 

/ Biomedical Engineering 

 
 
 
 
 



JAK-STAT (Large Scale Search) 
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Fit error 
Minimum value 
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Linearisation 
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Sampling obtained when planning 2 experiments over 6 outputs whilst MC 

sampling experiment space for 8 hours. 

 

Still rather coarse! 



 

 

Proposal 

Distribution 
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• Proposal distribution 

• Quadratic approximation based on model sensitivities J 

• Include non-uniform priors in approximation   

        H = JTJ + P 

Parameter 1 
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Stochastic methods: 
Markov Chain Monte Carlo 



Stochastic methods: 
Markov Chain Monte Carlo 

• Chain gets ‘stuck’ when quadratic approximation of 

the landscape is poor (or nearly singular)! 

 

• Trust region approach!    

 

• Predict error we’re going to get based on quadratic 

error landscape ‘model’ 

 

• If true error is much higher  Smaller proposal 

 

Htrust = H + λI 



 

 

Effect of Priors 

PAGE 124 6-6-2012 



JAK-STAT analysis 
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Initial concentration   200 ± 20 nM 



Profile Likelihood vs Bayesian 

  Logarithmic Prior    Uniform Prior PAGE 126 6-6-2012 
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Numerical 
experiments 
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Explore the problem: 
Numerical Tests! 

Analytical 2D Posterior distribution 

 

MC4 

 1. Obtain sample Xi from posterior 

 2. For all Xi, run MCMC augmenting ‘data’ with Xi 
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Explore the problem: 
Numerical Tests! 

Analytical 2D Posterior distribution 

 

IRS 

 1. Obtain sample from posterior 

 2. For each sample, employ importance sampling 
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 Mean looks OK. 
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Banana function results: 
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Bias 

PAGE 131 6-6-2012 / Biomedical Engineering 



Quick Recap: Importance Sampling 
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Computing an expected value: 

Probability Quantity Samples from p 
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Quick Recap: Importance Sampling 
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Computing an expected value: 

Probability Quantity Samples from p 
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Quick Recap: Importance Sampling 
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Computing an expected value: 

Probability Quantity Samples from p 
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Quick Recap: Importance Sampling 
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Assume independence: 
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Importance Sampling 
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Computing an expected value using Importance Sampling: 

Quantity 
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Sampling 

distribution 
Probability 
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Samples 

from g 

/ Biomedical Engineering 



From:  Old posterior 

New:  Old posterior + additional experiment 
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Quick Recap: Importance Sampling 
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Assume noise independence: 
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Model Selection 
Can we perform Experiment Design for Model Selection? 
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Bayes Factors 
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• Commonly used for testing competing hypotheses 

• Evidence for each model given the available data 

 

Bayes Factors 
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• Commonly used for testing competing hypotheses 

• Evidence for each model given the available data 

 

Bayes Factors 
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• Commonly used for testing competing hypotheses 

• Evidence for each model given the available data 

 

Bayes Factors 

log10(B)  B Evidence support 

0 to 1/2 1 to 3.2 
Not worth more than a bare 

mention 

1/2 to 1 3.2 to 10 Substantial 

1 to 2 10 to 100 Strong 

>2 >100 Decisive 



Bayes Factors 

• Commonly used for testing competing hypotheses 
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Option 1: Prior Mean Estimator 
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Option 2: Harmonic Mean Estimator 
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Option 2: Harmonic Mean Estimator 
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Option 2: Harmonic Mean Estimator 
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Option 2: Harmonic Mean Estimator 
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Option 2: Harmonic Mean Estimator 
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Option 3: Thermodynamic integration 

Define a set of intermediate distributions and integrate over these  
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Option 3: Thermodynamic integration 

Define a set of intermediate distributions and integrate over these  
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Option 3: Thermodynamic integration 
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Option 3: Thermodynamic integration 

Define a set of intermediate distributions and integrate over these  

 

 

Run a number of MCMC chains at different temperatures (or standard 

deviations). 

 

 

Integrate over the result 
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Option 3: Thermodynamic integration 

Define a set of intermediate distributions and integrate over these  
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Option 3: Thermodynamic integration 

Define a set of intermediate distributions and integrate over these  



• Now we can calculate Bayes Factors 

 

 

 

• But can we predict what happens upon new 

measurements? 
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• Again, the idea was to use the importance sampling 

trick 

 

 

For each temperature we perform importance 

sampling using the new measurement error model 
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• Again, the idea was to use the importance sampling 

trick 

 

 

For each temperature we perform importance 

sampling using the new measurement error model 

 

 

Obtain a distribution of Bayes Factors 
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Distribution of Bayes Factors 

• Assume model 2 is true. 

• For every possible experimental outcome, we 

compute a Bayes Factor 
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Remember this? 
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log10(B)  B Evidence support 

0 to 1/2 1 to 3.2 
Not worth more than a bare 

mention 

1/2 to 1 3.2 to 10 Substantial 

1 to 2 10 to 100 Strong 

>2 >100 Decisive 



Distribution of Bayes Factors 

PAGE 165 6-6-2012 

log10(B)  B Evidence support 

0 to 1/2 1 to 3.2 
Not worth more than a bare 

mention 

1/2 to 1 3.2 to 10 Substantial 

1 to 2 10 to 100 Strong 

>2 >100 Decisive 



Distribution of Bayes Factors 

PAGE 166 6-6-2012 

log10(B)  B Evidence support 

0 to 1/2 1 to 3.2 
Not worth more than a bare 

mention 

1/2 to 1 3.2 to 10 Substantial 

1 to 2 10 to 100 Strong 

>2 >100 Decisive 

Area indicates probability of Model Rejection 



Performing the design 

• The next step is to sample the space of possible 

experiments 
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Two major issues 

• Undersampling during self normalisation 

 

 

• Undersampling measurements that are  

 too precise 
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Why doesn’t it work? 
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• What happens when PPDs have little overlap 
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• What happens when PPDs have little overlap 
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• What happens when PPDs have little overlap 



• Instability of self normalisation 
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Why doesn’t it work? 



• Undersampling when experiments are too precise 
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Why doesn’t it work? 

Two models, with identical distributions 
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Why doesn’t it work? 
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• Undersampling when experiments are too precise 
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Why doesn’t it work? 

Two models, with identical distributions 

Extremely accurate measurement 

Little apparent overlap  Appears to 

be a useful measurement! 
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Possible solutions (not yet explored) 

• Restrict new experiment to Gaussians and 

approximate PPD by multivariate Gaussian 

 

• Thermodynamic integration path from one model to 

the next rather than from prior to posterior 

 

• Approximate distributions using analytic functions 
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