Quantification of Metabolic Pathway Models: Beyond Acceptable Parameter Fits

Eberhard O. Voit

Department of Biomedical Engineering
Georgia Justitute of Technology and Emory University

Workshop on Parameter Estimation for Dynamical Systems 4.6 June 2012, Eurandom, Eindhoven, The Netherlands

Overview

Nederlandse Spoorwegen: Advice on Parameter Estimation

Geloof in wonderen, maar ben er niet afhankelijk van.

Believe in miracles, but better not depend on them.

Overview

Introduction

Caveat emptor: nothing stochastic here!

Generic Issues of Parameter Estimation

Estimation Strategies: "From processes up" versus "From time series down"

Beyond Quality of Fit
System Identification
"Non-parametric" Dynamic Flux Estimation (DFE)
Challenges of DFE and Partial Remedies

Definitions

Parameter:

A quantity in a function or set of equations that remains constant during a mathematical evaluation ("computational experiment"), but may vary from one experiment to the next.

Parameter Estimation (Mathematics):

The process of identifying values of parameters in a model that (typically) minimize the difference between the output of the model and corresponding data.

Example:

$$
F(x)=m x+b
$$

Overall Goal

Parameter estimation in systems analysis requires that we know the functional form of the model or set of equations.

In contrast to statistics, there seem to be no widely-accepted "nonparametric methods" in dynamical systems modeling (outside analog modeling; Ellner et al. 2002 used spline regression).

Goal here: slightly ameliorate the problem (without completely solving it)

Diagnostics of Core Problem: Why don't we have functions?

Physics:
Functions come from theory

Biology:
No theory available

example: Glycolysis in lactococcus

Why Not Use "True" Rate Functions?

Diagnostics of Core Problem

Physics: Functions come from theory

Biology: No theory available
Solution 1: Educated guesses: growth functions
Solution 2: "Partial" theory: Enzyme kinetics
Solution 3: Generic approximation

Biochemical Systems Theory

$$
\begin{gathered}
\xrightarrow{\boldsymbol{V}_{\boldsymbol{i}}^{+}} \xrightarrow[\boldsymbol{X}_{\boldsymbol{i}}]{\boldsymbol{V}_{\boldsymbol{i}}^{-}} \quad \dot{X}_{i}=\frac{d X_{i}}{d t}=V_{i}^{+}-V_{i}^{-} \\
V_{i}^{+}=V_{i}^{+}(\underbrace{X_{1}, X_{2}, \ldots, X_{n}}_{\text {inside }}, \underbrace{X_{n+1}, \ldots, X_{n+m}}_{\text {outside }}) \quad \text { complicat }
\end{gathered}
$$

Solution with Potential:

$$
V_{i k}^{+/-}=\gamma_{i, k} \prod_{j=1}^{n} X_{j}^{f_{k, i, j}}
$$

"Biochemical Systems Theory" (BST)

Note: BST does not solve the problem of unknown functions either, but it provides a rather general and unbiased default for getting started with a model.

Mapping

Structure \Leftrightarrow Parameters

Traditional Estimation Strategy

Voit, Drug Discovery Today, 2004

Estimation Based on Time Series and BST

Voit, Drug Discovery Today, 2004

Quality of Fit

Traditional assessment of an estimation result:

Minimally possible residual error between model and data, given a fixed model structure (including a set of parameters)

Typical example: linear regression

Gutenkunst, Raue, Vilela, ...:

Many almost-equivalent solutions lead to neutral spaces, sloppiness, identifiability problems.

Reasons: Too many parameters; wrong functions; too few data
One remedy: Compute ensembles of solutions, but require functional model

ChaClenges in System Estimation

Technical problems:

Time to convergence; no convergence
Very rough error surfaces
Very shallow error surfaces
Local minima

Problems with data:

Problems with collinear data
Problems with insufficient data (quantity, quality)
Problems with models:
Problems with models containing redundancies
Problems caused by similar fits with different models
Problems with compensation of error among terms
Problems with model-data combination:
Averaging of estimation results
Extrapolation

ChaClenges in System Estimation

Technical problems:
Time to convergence; no convergence
Very rough error surfaces
Very shallow error surfaces
Local minima

Problems with data:

Problems with collinear data
Problems with insufficient data (quantity, quality)
Problems with models:
Problems with models containing redundancies
Problems caused by similar fits with different models
Discuss these

Problems with model-data combination:
Averaging of estimation results
Extrapolation

Problems with Model Redundancies

Example: Collinear Data (in log space):

$D F / d t=\ldots f(X, Y) \ldots$

Example:

$$
\begin{aligned}
f= & 2.45 \cdot X^{1.2} \cdot Y^{-0.3} \\
& =2.45 \cdot X^{1.2} \cdot Y \cdot Y^{-1.3} \\
& =2.45 \cdot X^{1.2} \cdot\left(1.75 \cdot X^{0.8}\right) \cdot Y^{-1.3} \\
& =4.2875 \cdot X^{2} \cdot Y^{-1.3}
\end{aligned}
$$

Similar Fits with Different Models

$$
\begin{gathered}
H(S)=4 S^{2} /\left(8^{2}+S^{2}\right)+0.5 \\
L(S)=4.3 /[1+\exp (-0.24 \cdot(S-8))]
\end{gathered}
$$

Jusufficiently Jnformative Data

Averaging of Estimation Results

$$
w(t)=\left(p_{1}-p_{2} \cdot \exp \left(-p_{3} \cdot t\right)\right)^{p_{4}}
$$

Problems with Compensation

Problems with Compensation

Table S1: Error compensation within the same flux (v_{1})

Set	$\mathbf{V}_{\max }$	$\mathbf{K}_{\mathbf{m}}$	$\mathbf{K}_{\mathbf{i}}$	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{2}}$	$\mathbf{p}_{\mathbf{3}}$	$\mathbf{p}_{\mathbf{4}}$	$\mathbf{p}_{\mathbf{5}}$	Residual
$\mathbf{1}$	88.2533	91.2397	1.8482	1	0.5	1	1	0.5	6.3238
$\mathbf{2}$	18.6819	9.7831	0.5992	1	0.5	1	1	0.5	2.0628
$\mathbf{3}$	63.0698	66.1785	1.9714	1	0.5	1	1	0.5	7.0341
$\mathbf{4}$	91.0532	94.3597	1.855	1	0.5	1	1	0.5	6.4499
$\mathbf{5}$	14.2804	10	1.019	1	0.5	1	1	0.5	3.8237
$\mathbf{6}$	82.7704	87.9852	2.0162	1	0.5	1	1	0.5	7.3094
$\mathbf{7}$	88.7362	93.0726	1.9447	1	0.5	1	1	0.5	6.6048
$\mathbf{8}$	92.4504	97.0702	1.9466	1	0.5	1	1	0.5	6.616
$\mathbf{9}$	68.9295	67.7172	1.6343	1	0.5	1	1	0.5	4.9066
$\mathbf{1 0}$	18.2178	8.9871	0.5458	1	0.5	1	1	0.5	2.2876

$$
\begin{aligned}
& X_{1}=\text { Constant } \\
& \dot{X}=\frac{\left(X_{1}\right) * V_{\max }}{K_{m}\left[1+\frac{X_{3}}{K_{i}}\right]+X_{1}}-p_{1} X_{2}^{p_{2}} X_{3}^{p_{3}} \\
& \dot{X}_{3}=p_{1} X_{2}{ }^{p_{2}} X_{3}^{p_{3}}-p_{4} X_{3}^{p_{5}}
\end{aligned}
$$

Problems with Compensation

Problems with Compensation

Table S2: Error compensation between fluxes (v_{1} and v_{2})

Set	$\mathbf{V}_{\max }$	$\mathbf{K}_{\mathbf{m}}$	$\mathbf{K}_{\mathbf{i}}$	$\mathbf{p}_{\mathbf{l}}$	$\mathbf{p}_{\mathbf{2}}$	$\mathbf{p}_{\mathbf{3}}$	$\mathbf{p}_{\mathbf{4}}$	$\mathbf{p}_{\mathbf{5}}$	Residual
$\mathbf{1}$	104.9701	92.1829	1.3281	1.0021	0.5785	1.0038	1	0.5	3.4688
$\mathbf{2}$	57.0719	91.5615	15.2508	0.9401	0.9865	1.7386	1	0.5	4.4663
$\mathbf{3}$	13.0088	9.5706	1.0968	1.0173	0.5921	0.9671	1	0.5	6.6559
$\mathbf{4}$	103.6876	93.837	1.3967	0.9688	0.6418	1.2038	1	0.5	5.6134
$\mathbf{5}$	12.4525	9.971	1.2927	1.0055	0.5812	1.0271	1	0.5	2.8754
$\mathbf{6}$	10.01	8.8733	1.7075	1	0.6676	1.1052	1	0.5	6.624
$\mathbf{7}$	124.476	88.9055	0.8893	0.9841	0.544	1.0853	1	0.5	3.0074
$\mathbf{8}$	13.5262	9.5896	1.0152	1.013	0.6045	1.0017	1	0.5	7.2336
$\mathbf{9}$	60.7643	96.3775	13.346	0.9117	1.0602	1.8375	1	0.5	6.3344
$\mathbf{1 0}$	12.3914	9.5007	1.1869	1.0086	0.5676	1.0079	1	0.5	2.7299

$$
\begin{aligned}
& X_{1}=\text { Constant } \\
& \dot{X}=\frac{\left(X_{1}\right)^{*} V_{\max }}{K_{m}\left[1+\frac{X_{3}}{K_{i}}\right]+X_{1}}-p_{1} X_{2}{ }^{p_{2}} X_{3}^{p_{3}} \\
& \dot{X}_{3}=p_{1} X_{2}{ }^{p_{2} X_{3}^{p_{3}}-p_{4} X_{3}^{p_{5}}}
\end{aligned}
$$

Problems with Compensation

Problems with Compensation

Table S3: Error compensation among different equations (v_{1} and v_{3})

Set	$\mathbf{V}_{\max }$	$\mathbf{K}_{\mathbf{m}}$	$\mathbf{K}_{\mathbf{i}}$	$\mathbf{p}_{\mathbf{1}}$	$\mathbf{p}_{\mathbf{2}}$	$\mathbf{p}_{\mathbf{3}}$	$\mathbf{p}_{\mathbf{4}}$	$\mathbf{p}_{\mathbf{5}}$	Residual
$\mathbf{1}$	17.5775	9.9988	0.6979	1	0.5	1	1.001	0.5786	4.5287
$\mathbf{2}$	19.0012	9.0003	0.5203	1	0.5	1	1.0178	0.4659	3.2879
$\mathbf{3}$	11.0985	7.5279	1.0842	1	0.5	1	1.0001	0.5842	7.1035
$\mathbf{4}$	16.5287	7.7719	0.5241	1	0.5	1	1.0205	0.4605	3.5256
$\mathbf{5}$	17.8896	9.2186	0.5967	1	0.5	1	1.0206	0.4705	3.1041
$\mathbf{6}$	87.5991	94.1804	2.1613	1	0.5	1	0.9669	0.6658	5.1819
$\mathbf{7}$	15.5174	7.7989	0.5839	1	0.5	1	1.0011	0.5316	2.5845
$\mathbf{8}$	24.2938	8.3902	0.3257	1	0.5	1	1.0057	0.4595	7.4577
$\mathbf{9}$	21.3578	9.055	0.4464	1	0.5	1	1.0248	0.4567	6.3633
$\mathbf{1 0}$	22.064	8.7065	0.4023	1	0.5	1	1.0256	0.4397	7.1653

$$
\begin{aligned}
& X_{1}=\text { Constant } \\
& \dot{X}_{2}=\frac{\left(X_{1}\right) * V_{\max }}{K_{m}\left[1+\frac{X_{3}}{K_{i}}\right]+X_{1}}{ }_{p_{1} X_{2}{ }^{p_{2}} X_{3}^{p_{3}}}^{\dot{X}_{3}=p_{1} X_{2}{ }^{p_{3}-p_{4} X_{3}^{p_{5}}}} .
\end{aligned}
$$

Problems with Compensation

Problems with Compensation

Mild extrapolation: Reduce input X_{1} from 2 to 1.1

Dynamic FCux Estimation (DFE)

Inspired by Stoichiometric and Flux Balance Analysis (purely at steady state)
Extended to dynamic time courses: $\quad \frac{d X_{i}}{d t}=\dot{X}_{i}=\sum$ Influxes $-\sum$ Effluxes .

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=F_{01}-F_{12}-F_{13} \\
& \frac{d N_{2}}{d t}=F_{12}+F_{20 F} \\
& -F_{20 R}-F_{23}-F_{24} \\
& \frac{d N_{3}}{d t}=F_{13}+F_{23}-F_{34} \\
& \frac{d N_{4}}{d t}=F_{24}+F_{34}-F_{40}
\end{aligned}
$$

Dynamic FCux Estimation (DFE)

Concept:

Study flux balance at each time point

Change in variable @ t=All influxes @ t-All effluxes @ t

Linear system; solve as far as possible

Result: values of each flux @ time points t_{i}
(non-parametric; no functional forms!)

Represent fluxes with appropriate models

Dynamic FCux Estimation (DFE)

Goel, Chou, Voit, Bioinformatics, 2008

ProGlems with DFE

Issue 1: The connectivity (reactions and/or regulation) of the system is not fully known.

Issue 2: Some time series were not measured, although metabolites are involved in the pathway.

Issue 3: Some unknown or not measured metabolites are important.

Issue 4: The flux system is under-determined. This situation is the rule rather than the exception.

Solntion Strategies

Issue 1: The connectivity (reactions and/or regulation) of the system is not fully known.

Causality models
Correlation-based approaches
Fitting alternative candidate models
Fitting superstructures (families of models that contain special cases)
Biochemical Systems Theory or other canonical models useful
Requires very good data

SoCution Strategies

Issue 2: Some time series were not measured, although metabolites are involved in the pathway

Mass negligible?
Information about reactions associated with missing metabolite?
Example: reversible isomerization of G6P (measured) to F6P (not measured)

$$
v_{2}=\frac{v_{\max }^{\text {for }} \cdot \frac{[G 6 P]}{K_{m G 6 P}}-v_{\max }^{\text {rev }} \cdot \frac{[F 6 P]}{K_{m F 6 P}}}{1+\frac{[G 6 P]}{K_{m G 6 P}}+\frac{[F 6 P]}{K_{m F 6 P}}+\frac{\left[P_{i}\right]}{K_{m P_{i}}}}
$$

In vivo NMR measurements of G6P in Lactococcus lactis (literature) and time series of F6P (scaled) reconstructed with kinetic literature information

Solntion Strategies

Issue 3: Some unknown or not measured metabolites are important
Affecting pertinent mass? (C versus P or H; G6P ~ F6P; NAD ${ }^{+}$~NADH)
Mass balanced? (Total mass over time ~ constant?)
Yes: metabolites may be ignorable
No: problem with no good solution

Solution Strategies

Issue 4: The flux system is under-determined. This situation is the rule rather than the exception

Determine some fluxes with other means

Kinetic information

New method:
Estimate enough fluxes from time series data
to render the system full rank

Judividual Flux Estimation

Basic Concept: Consider simple dynamics of X_{i}

$$
\begin{aligned}
& X_{j} \rightarrow X_{i} \rightarrow \\
& \dot{X}_{i}=v_{i}^{+}\left(X_{j}\right)-v_{i}^{-}\left(X_{i}\right)
\end{aligned}
$$

Assume that v_{i}^{-}is a function in a strict mathematical sense.
Look for time points (in the same or in similar datasets) where X_{i} has the same value (e.g., c_{i}), whereas X_{j} has a different value at each of these time points. If so, all values of v_{i}^{-}are the same: $v c_{i}$
$\dot{X}_{i}=v_{i}^{+}\left(X_{j}\right)-v c_{i}$
Observe \dot{X}_{i} at several time points; point-estimate v_{i}^{+}

Judividual Flux Estimation

Result: point-estimates of v_{i}^{+}
Can plot these estimates against time or against dependent variable
No functional form!
Functional form may be estimated in second step

Jndividual Flux Estimation

Example
$\dot{X}_{1}=v_{1}-v_{2}$
$\dot{X}_{2}=v_{2}-v_{3}$.
$\dot{X}_{3}=v_{3}-v_{4}$

Unknown fluxes
$v_{1}=1.5 X_{3}^{-6}$
$v_{2}=2.4 X_{1}^{0.8}$
$v_{3}=\frac{V_{\max } X_{2}^{3}}{K_{M}^{3}+X_{2}^{3}}$,
$v_{4}=2 X_{3}^{0.75}$
(a)

(b)

Individual FCux Estimation

Collect data where X_{1} has the same value
Bin values
Assign X_{2} values to binned X_{1} values
Estimate slopes S_{2} (= derivatives of X_{2})

Judividual Flux Estimation

Recall equation of X_{2}
$\dot{X}_{2}=v_{2}-v_{3}$.
For X_{1} with equal value, $v_{2}=2.4 X_{1}^{0.8}$ must have the same (but unknown) value
Estimate slopes S_{2} from data; point-estimate v_{3}

Individual FCux Estimation

Repeat for many sets of X_{1} values; shift as needed; e.g., $v(0)=0$

Example: Trehalose Pathway

Flux system (functions unknown)
$\dot{X}_{1}=-v_{1} / V_{\text {ext }}$
$\dot{X}_{2}=\left(v_{1}+2 v_{4}-v_{2}\right) / V_{\text {int }}$
$\dot{X}_{3}=\left(v_{2}-2 v_{3}-v_{5}-v_{7}\right) / V_{\text {int }}$
$\dot{X}_{4}=\left(v_{3}-v_{4}\right) / V_{\text {int }}$
$\dot{X}_{5}=\left(v_{5}-v_{6}-v_{8}\right) / V_{\text {int }}$
$\dot{X}_{6}=2 v_{6} / V_{\text {ext }}$
$\dot{X}_{7}=v_{7} / V_{\text {int }}$
$\dot{X}_{8}=V_{8} / V_{\text {int }}$

Rank deficiency $=1$

Example: Trehalose Pathway

Same procedure as before for one flux of our choice; here v_{4}
Once one flux estimated, system has full rank

Jndividual FCux Estimation

Same principles for fluxes depending on two metabolites

Example: Trehalose Pathway

Estimated fluxes

Shapes (vs. time and vs. metabolites) characterized Functional representations unknown (non-parametric estimation)

Example: Trehalose Pathway

Reconstruction of dynamics, using estimated fluxes (functional forms unknown)

Snmmary and Acknowledgments

o Parameter estimation complicated (bottleneck of modeling)
o Quality of fit (defined as residual error) not sufficient
o Parameter estimation even more complicated if functions unknown
o DFE works well, if enough data are available and system full rank
o If not, parametric tricks
o Filling rank possible if suitable data available

Funding: NIH, NSF, DOE, Woodruff Foundation, University System of Georgia, Georgia Research Alliance

Information: www.bst.bme.gatech.edu

I-Chun Chou

References

Schulz, A.R.:Enzyme Kinetics: From Diastase to Multi-enzyme Systems, Cambridge University Press, Cambridge; New York, 1994.
Voit, E.O.: Computational Analysis of Biochemical Systems. A Practical Guide for Biochemists and Molecular Biologists, Cambridge University Press, Cambridge, U.K., 2000.
Voit, E.O.: The dawn of a new era of metabolic systems analysis, Drug Discovery Today BioSilico 2(5), 182-189, 2004.
Voit, E.O., J.S. Almeida, S. Marino, R. Lall, G. Goel, A.R. Neves, and H. Santos. Regulation of glycolysis in Lactococcus lactis: An unfinished systems biological case study. IEE Proc. Systems Biol. 153, 286-298, 2006.
Goel, G., I-C. Chou, and E.O. Voit: System estimation from metabolic time series data. Bioinformatics 24, 2505-2511, 2008
Vilela, M., S. Vinga, M. A. Grivet Mattoso Maia, E. O. Voit, J. S. Almeida: Identification of neutral sets of biochemical systems models from time series data. BMC Systems Biology 3:47, 2009.
Voit, E.O., G. Goel , I-C. Chou, and L. da Fonseca: Estimation of metabolic pathway systems from different data sources. IET Systems Biol. 3(6), 513-522, 2009.
Voit, E.O. and I-C. Chou: Parameter estimation in canonical biological systems models. Int. J. Syst. Synth. Biol. 1(1), 1-19, 2010.
Voit, E.O.: What if the fit is unfit? Criteria for biological systems estimation beyond residual errors. In: M. Dehmer, F. Emmert-Streib and A. Salvador (Eds.): Applied Statistics for Biological Networks. J. Wiley and Sons, New York, pp. 183-200, 2011.
Chou, I-C., and E.O. Voit: Estimation of dynamic flux profiles from metabolic time series data. BMC Systems Biology, in press 2012.
Voit, E.O.: A First Course in Systems Biology. Garland Science, New York, NY, 2012.

