
Local limits of random trees and maps
Abstract

These pages form the lecture notes of a mini-course given at the IXth Young European
Probabilists conference that took place in Eindhoven (March 2012). They contain some material
extracted from [2, 8, 9]. We survey some aspects of local limits of random trees and maps and
deal in particular with the so-called geometric Galton-Watson tree conditioned to survive and
the uniform infinite planar quadrangulation.
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1 Maps

1.1 What is a map?

We begin with one possible definition of a planar map.

Definition 1. A planar map is a proper embedding of a finite connected graph in the two-
dimensional sphere, viewed up to orientation-preserving homeomorphisms of the sphere.

There are other definitions of a map such as the surface obtained from the glueing of a
certain number of polygons along their edges: If the resulting surface is a sphere then the map
is planar. It might not be clear using Definition 1 to see that there is only a finite number of
maps with n edges. This is however the case: A planar map can indeed be defined in purely
combinatorial terms e.g. by saying that it is a planar graph together with coherent orientations
around each vertex. We will not go into these formal definitions and will stick to the rather
obvious intuition provided by Definition 1. All the maps considered in these pages are planar
and we will then drop the adjective planar to simplify notation.

= 6=

Figure 1: The same graphs but not the same maps.

A planar map m is thus composed of vertices, edges and faces (the connected components
of the sphere minus the embedding). We denote the set of vertices, edges and faces of m by
V(m),E(m) and F(m) respectively. The cardinalities of these sets satisfy Euler’s relation

#V(m) + #F(m)−#E(m) = 2. (1)

Exercise 1. Prove it!

(Planar) maps are more rigid than planar graphs since they are given with an embedding
(equivalently a planar orientation) whereas planar graphs only possess such an embedding. This
rigidity enables us to enumerate planar maps more easily than planar graphs and this is mainly
why we will consider maps instead of graphs. For a complete rigidity we will only consider
rooted maps, that are, maps given with one distinguished oriented edge called the root edge.
Once rooted, maps loose any non-trivial symmetry. From now on, all the maps considered are
rooted.

1.2 Quadrangulations

The degree of a face f ∈ F(m) is the number of oriented edges adjacent to f . Hence, if an
edge lies entirely into a face it is counted twice in the degree of the face. If a (rooted) map
m has all its faces of degree 4, we say that m is a quadrangulation. Henceforth we will focus
only on quadrangulations because they behave in many respects very nicely and form one of the
simplest family of maps to enumerate (easier than triangulations for example). We denote the
set of all quadrangulations with n faces by Qn.
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Proposition 2. There is a bijection between, on the one hand, the set of all quadrangulations
with n faces, and on the other hand, the set of all planar maps with n edges.

Proof. The one-to-one correspondence is given as follows: If m is a planar map with n edges,
then in each face of m we put an extra point that we link to all (corners of) the vertices adjacent
to this face, see Fig. 2. We then erase all the edges of m and are left with a quadrangulation q
with n faces. The root edge is transferred from m to q as depicted on Fig. 2.

Figure 2: Illustration of the duality between maps and quadrangulations.

Remark. Notice that quadrangulations are bipartite, which means that we can color their ver-
tices into black and white such that any adjacent vertices have different colors. See Fig.2.

As a consequence of the last proposition, the number of planar maps with n edges is the
same as the cardinality of Qn which turns out to be relatively simple:

Theorem 3 (Tutte). We have

#Qn = 3n
2

n+ 2

1

n+ 1

(
2n

n

)
.

We will see a proof of the last theorem in Section 2 based on bijective techniques. Historically,
the first tools used (by Tutte [18]) to enumerate planar maps were generating functions. A link
was later established between enumeration of planar maps and matrix integrals [5].

1.3 What is it useful for?

The theory of planar maps has been triggered in the 60’s motivated by the four colors problem.
Since then, maps occurred in various fields such as algebra (Grothendieck’s “dessins d’enfants”),
physics (Feynman diagrams), matrix integrals or computer science (computational geometry) as
data structures that encode various spatial objects (Google-Earth, surfaces, complex graphs...).
More importantly they have been considered by physicists as a discretization of a fluctuating
random surface (in the so-called “2D quantum gravity” theory). This triggered the probabilistic
theory of random planar maps in the early 2000. Let us be a bit more precise. In the rest of this
text we denote by Qn a random variable uniformly distributed over Qn. The basic question is

What is the geometry of Qn?

Very recently, Le Gall [12] and Miermont [15] proved that (in a certain sense) large random
quadrangulations converge, once renormalized by their sizes to the power 1/4, towards a con-
tinuum random surface called the Brownian map. Hence, in the same way discrete paths are
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Figure 3: A random quadrangulation with 50 000 faces. Simulation made by Jean-François
Marckert.

a discretization of the Brownian motion, discrete quadrangulations are a discretization of the
Brownian map.

The point of view we are going to adopt here is different. We will rather focus on local proper-
ties of large random quadrangulations and prove that Qn converge, without rescaling, towards
a random infinite planar quadrangulation that is called the Uniform Infinite Planar Quadran-
gulation (Section 4). We will then study this random infinite network and show some of its
amazing properties (Section 5).

1.4 Local limits of maps

If m is a map and r ∈ {0, 1, 2, 3, . . .} we denote by Br(m) the map formed by all the faces of
m whose vertices are all at graph distance less than r from the origin of the root edge in m.
This map is called the ball of radius r in m. We now put a topology on the set Qf of all finite
quadrangulations: We say that a sequence (qn)n>0 ∈ Qf converges locally if for all r > 0 the
sequence (Br(qn))n>0 eventually stabilizes. This topology is induced by the following metric

dmap(q, q′) =
(

1 + sup{r > 0 : Br(q) = Br(q
′)}
)−1

. (2)

Note that the space (Qf , dmap) is not complete and we denote Q its completion. The elements
in Q\Qf are called infinite quadrangulations. See [9] for more details. The main theorem
we are going to prove is the following (recall that Qn is a random quadrangulation uniformly
distributed over Qn):

Theorem 4 ([11]). There exists a random infinite quadrangulation Q∞ called the uniform infi-
nite planar quadrangulation (UIPQ) such that we have the following convergence in distribution
for the local topology

Qn
(d)−−−→

n→∞
Q∞.
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This theorem is due to Krikun [11]. In a pioneer work, Angel & Schramm [1] defined a
similar object (the UIPT) in the triangulation case. The proofs of Angel & Schramm and
Krikun are both based on precise enumerative formulæ for the number of quadrangulations and
triangulations with a boundary. The proof we are going to present is adapted from [9] and relies
on a construction of quadrangulations from certain labeled trees.

2 The Cori-Vauquelin-Schaeffer bijection

One of the main tools for studying random quadrangulations is a bijection initially due to
Cori & Vauquelin [7], and that was much developed by Schaeffer [17]. It establishes a one-to-one
correspondence between rooted and pointed quadrangulations with n faces, and pairs consisting
of a labeled tree with n edges and an element of {0, 1}. Let us describe this construction.

2.1 Labeled trees

Throughout this work we will use the standard formalism for plane trees as found in [16]. Let

U =
∞⋃
n=0

(N∗)n

where N∗ = {1, 2, . . .} and (N∗)0 = {∅} by convention. An element u of U is thus a finite
sequence of positive integers. We let |u| be the length of the word u. If u, v ∈ U , uv denotes
the concatenation of u and v. If v is of the form uj with j ∈ N, we say that u is the parent of
v or that v is a child of u. More generally, if v is of the form uw, for u,w ∈ U , we say that u is
an ancestor of v or that v is a descendant of u. A plane tree τ is a (finite or infinite) subset of
U such that

1. ∅ ∈ τ (∅ is called the root of τ),

2. if v ∈ τ and v 6= ∅, the parent of v belongs to τ

3. for every u ∈ U there exists ku(τ) > 0 such that uj ∈ τ if and only if j 6 ku(τ).

A plane tree can be seen as a graph, in which an edge links two vertices u, v such that u is the
parent of v or vice-versa. This graph is of course a tree in the graph-theoretic sense, and has a
natural embedding in the plane, in which the edges from a vertex u to its children u1, . . . , uku(τ)
are drawn from left to right. All the trees considered in these pages are plane trees. The integer
|τ | denotes the number of edges of τ and is called the size of τ . For any vertex u ∈ τ , we denote
the shifted tree at u by σu(τ) := {v ∈ τ : uv ∈ τ}. If a and b are two vertices of τ , we denote
the set of vertices along the unique geodesic path going from a to b in τ by [[a, b]].

We denote by T the set of all plane trees and by Tn = {τ ∈ T : |τ | = n} the set of all plane
trees with n edges. We recall the classical enumeration result #Tn = Cat(n), where Cat(n) is
the nth Catalan number:

Cat(n) =
1

n+ 1

(
2n

n

)
.

Exercise 2. Prove it!

A labeled tree is a pair θ = (τ, (`(u))u∈τ ) that consists of a plane tree τ and a collection of
integer labels assigned to the vertices of τ , such that `(∅) = 0 and if u, v ∈ τ and v is a child of
u, then |`(u)− `(v)| 6 1. If θ = (τ, `) is a labeled tree, |θ| := |τ | is the size of θ. We denote by
Ln the set of all labeled trees with n edges and by Lf = ∪nLn the set of all finite labeled trees.

Exercise 3. Let τ be a finite plane tree. Prove that τ has 3|τ | different labelings.
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A rooted and pointed quadrangulation is a pair q = (q, ρ) where q is a rooted quadrangu-
lation and ρ is a distinguished vertex of q. We write Q•n for the set of all rooted and pointed
quadrangulations with n faces.

Theorem 5 (Cori-Vauquelin-Schaeffer). There exists a very nice bijection Φ : Ln × {0, 1} −→
Q•n that has a lot of wonderful properties.

The application Φ will be constructed in the following sections. Let us give an application
of this result:

Proof of Theorem 3. By the last exercise we have #Ln = 3n#Tn = 3nCat(n) which is also half
of the cardinality of Q•n by the above theorem. However, any quadrangulation with n faces has
n+ 2 vertices by Euler’s formula. We deduce that #Qn = 2 · 3nCat(n)/(n+ 2) as desired.

2.2 From quadrangulations to trees

We first describe the inverse mapping Φ−1 : Q•n −→ Ln×{0, 1}. Details can be found in [6]. Let
(q, ρ) be a finite quadrangulation rooted at ~e and given with a distinguished vertex ρ ∈ V (q).
We define a labeling ` of the vertices of the quadrangulation by setting

`(v) = dqgr(v, ρ), v ∈ V (q),

where dqgr denotes the graph distance in q. Since the map q is bipartite, if u, v are neighbors
in q then |`(u)− `(v)| = 1. Thus the faces of q can be decomposed into two subsets: The faces
such that the labels of the vertices listed in clockwise order are (i, i+ 1, i, i+ 1) for some i > 0
or those for which these labels are (i, i+ 1, i+ 2, i+ 1) for some i > 0. We then draw on top of
the quadrangulation a ”red” edge in each face according to the rules given by the figure below
(which should display red edges inside the faces if the printer allows it).

i i+ 1

i+ 2i+ 1

i i+ 1

ii+ 1

Figure 4: Rules for the reverse Schaeffer construction.

Proposition 6 ([6, Proposition 1]). The graph τ formed by the edges red in the faces of q is a
spanning tree of V (q)\{ρ}.

Proof. Suppose that q has n faces. Thus the graph formed by the red edges has cardinality
n. Furthermore, it is easy to see that if u is a vertex of V (q)\{ρ} then u will be one of the
extremities of at least one red edge. Indeed, consider a geodesic path going from u to ρ. Then
since i = `(u) > 0 the first edge of this path is an edge linking a vertex of label i to a vertex of
label i− 1. According to the rules presented in Fig. 4, the face on the right of this edge oriented
from i→ (i− 1) thus has a red edge adjacent to u.

By Euler’s formula q has n+ 2 vertices. The graph formed by the red edges is thus a graph
with n edges living on a set of n+ 1 points. It is then standard that this graph is a tree if and
only if it has no cycle. Let us suppose by contradiction that the red edges form a cycle C and
choose u ∈ C with minimal distance i to ρ.
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i

i− 1

i− 1

i

i

i+ 1

ρ ρ

i− 1

i

i− 1

i

i+ 1

Figure 5: Proof of Proposition 6.

By analyzing the local structure around u, one is always able to find two vertices on both
sides of C with labels i − 1, see Fig. 5. This leads to a contradiction since (by the discrete
Jordan’s lemma) one of the geodesic paths from these vertices towards ρ has to cross C thus
giving a vertex with label smaller than i, see Fig. 5.

This tree comes with a natural embedding in the plane, and we root τ on the corner incident
to the vertex of minimal label of the root edge. Finally, we shift the labeling of τ inherited from
the labeling on V (q)\{ρ} by the label of the root of τ ,

˜̀(u) = `(u)− `(∅), u ∈ τ,

and we declare Φ−1
(
(q, ρ)

)
=
(
(τ, ˜̀),1`(~e+)>`(~e−)

)
.

Exercise 4. Try the construction on this rooted pointed map:

2.3 From trees to quadrangulations

We now describe the mapping Φ from labeled trees to quadrangulations.

Let θ = (τ, `) be an element of Lf . We view τ as embedded in the plane. A corner of a
vertex in τ is an angular sector formed by two consecutive edges in clockwise order around this
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vertex. Note that a vertex of degree k in τ has exactly k corners. If c is a corner of τ , V(c)
denotes the vertex incident to c. By extension, the label `(c) of a corner c is the label of V(c).

The corners are ordered clockwise cyclically around the tree in the so-called contour order.
We index the corners by letting (c0, c1, c2, . . . , c2n−1) be the sequence of corners visited during
the contour process of τ , starting from the corner c0 incident to ∅ that is located to the left of
the oriented edge going from ∅ to 1 in τ . We extend this sequence of corners into a sequence
(ci, i > 0) by periodicity, letting ci+2n = ci. For i ∈ Z+, the successor S(ci) of ci is the first
corner cj in the list ci+1, ci+2, ci+3, . . . of label `(cj) = `(ci) − 1, if such a corner exists. In the
opposite case, the successor of ci is an extra element ∂, not in {ci, i > 0}.

Finally, we construct a new graph as follows. Add an extra vertex ρ in the plane, that
does not belong to (the embedding of) τ . For every corner c, draw an arc between c and its
successor if this successor is not ∂, or draw an arc between c and ρ if the successor of c is ∂.
The construction can be made in such a way that the arcs do not cross. After the interior of the
edges of τ has been removed, the resulting embedded graph, with vertex set τ ∪ {ρ} and edges
given by the newly drawn arcs, is a quadrangulation q. In order to root this quadrangulation,
we consider some extra parameter η ∈ {0, 1}. If η = 0, the root of q is the arc from c0 to its
successor, oriented in this direction. If η = 1 then the root of q is the same edge, but with the
opposite orientation. We then let q = Φ(θ, η) ∈ Q•n (q comes naturally with the distinguished
vertex ρ).

Exercise 5. Try the construction on these two labeled trees...

0

1

0

−1

−1

−2 −2

−2

0

1

2

1

0

−1
−1

−1

η = 0 η = 1

... and check that the resulting quadrangulations are the same up to re-rooting and also
correspond to the one of the last exercise!

Exercise 6. Prove that q = Φ(θ, η) is indeed a quadrangulation and that for every vertex v of q
not equal to ρ, one has

dqgr(v, ρ) = `(v)−min
u∈τ

`(u) + 1 , (3)

where we recall that every vertex of q not equal to ρ is identified with a vertex of τ . Prove that
Φ(Φ−1(.)) = Id, you may consult [6] for help.
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3 The uniform infinite labeled tree

3.1 Local limits of trees

In the same spirit as what we did for maps, we can define a distance on the set T of all plane
trees. If τ ∈ T and if k > 0 is an integer we denote by [τ ]k = {u ∈ τ : |u| 6 k} the subtree of τ
made of its k first generations and we set

dtree(τ, τ
′) =

(
1 + sup{r > 0 : [τ ]r = [τ ′]r}

)−1
. (4)

Exercise 7. Prove that dtree is a metric on T such that (T, dtree) is Polish. Prove furthermore
that τn → τ for dtree if and only if for every k ∈ {0, 1, 2, ...} we eventually have [τn]k = [τ ]k.

Theorem 7. Let Tn be uniformly distributed over Tn. Then we have the following convergence
in distribution for dtree

Tn
(d)−−−→

n→∞
T∞,

where T∞ is an infinite random plane tree known as the critical geometric Galton-Watson tree
conditioned to survive.

This result is due to Kesten [10] (maybe not with this particular conditioning, but almost).
Before proving this theorem, let us describe the distribution of the infinite random tree T∞.

3.2 Description of T∞
Let τ ∈ T be an infinite tree. A spine in τ is an infinite sequence u0, u1, u2, . . . in τ such that
u0 = ∅ and ui is the parent of ui+1 for every i > 0. We let S be the set of all (infinite) trees
with only one spine that we denote by ∅ = Sτ (0), Sτ (1), Sτ (2), . . .. If τ ∈ S , the spine then
splits τ in two parts and every vertex Sτ (n) of the spine determines a (plane) subtree of τ to its
left and one to its right. These trees are denoted by Gn(τ), Dn(τ). We can of course reconstruct
the tree τ from the sequence (Gn(τ), Dn(τ))n>0.

We briefly recall the standard definition of Galton-Watson trees. Let ρ be a probability
measure on N such that ρ(1) < 1. The law of a ρ-Galton-Watson tree τ is characterized by the
following two properties:

(i) the distribution of k∅ is ρ,

(ii) conditionally on {k∅ = j}, the j subtrees σ1(τ), ..., σj(τ) are i.i.d. ρ-Galton-Watson trees.

By standard facts on Galton-Watson trees, ρ has mean less than or equal to 1 if and only if τ
is almost surely finite. In the sequel, ρ1/2 is the geometric distribution of parameter 1/2 that is
for k ∈ {0, 1, 2, ...} we have

ρ1/2(k) = 2−k−1.

Exercise 8. Let T be a Galton-Watson tree with offspring distribution ρ1/2. We consider the
contour function C of T defined by the picture below. Let Sn = X1 + ... + Xn be a simple
random walk with i.i.d. increments P (Xi = ±1) = 1/2 and τ = inf{i > 1 : Sn = −1}. Show
that C has the same distribution as (Sn) stopped at τ − 1. In particular, deduce that

P (Height(T ) > n) =
1

n+ 1
. (5)
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1

2

3

0

Figure 6: The contour function associated with a plane tree.

Definition 8. The law of T∞ (the critical geometric Galton-Watson tree conditioned to survive)
is described by the following two properties

(i) T∞ ∈ S almost surely,

(ii) (Gi(T∞))i>0 and (Di(T∞))i>0 are independent sequences of i.i.d. ρ1/2-Galton-Watson trees.

Remark. The definition we gave of T∞ is specific to the case of the geometric distribution. In
general, if a distribution ξ has mean 1, the law of a ξ-Galton-Watson tree T∞ conditioned to
survive is described as follows [10, 14]. We let ξ be the size-biased distribution of ξ defined by
ξ(k) = kξ(k) for k > 0. Let (Di)i>0 be a sequence of i.i.d. random variables distributed according
to ξ. Let also (Ui)i>1 be a sequence of random variables, such that, conditionally on (Di)i>0, the
(Ui)i>1 are independent and Uk+1 is uniformly distributed over {1, 2, ..., Dk} for every k > 0.
The tree T∞ has a unique spine, that is a unique infinite path (∅, U1, U1U2, U1U2U3, ...) ∈ N∗N

∗

and the degree of U1U2...Uk is Dk. Finally, conditionally on (Ui)i>1 and (Di)i>0 all the remaining
subtrees are independent ξ-Galton-Waton trees, in particular T∞ ∈ S . See Fig. 7.

∅
1 12

122 1224

12241

GWξ GWξ

GWξ

GWξ

GWξ

GWξ

GWξ

GWξ

GWξ GWξ

GWξ

GWξ

GWξ

GWξ

∞

Figure 7: Construction of a general critical Galton-Watson tree conditioned to survive.

3.3 Proof of Theorem 7

In the following, T is a Galton-Watson tree with geometric offspring distribution of parameter
1/2, Tn is uniformly distributed over Tn and T∞ is the critical geometric Galton-Watson tree
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conditioned to survive.

First of all, if τ ∈ T and k ∈ {0, 1, 2, ...} we denote by Lτ (k) = {u ∈ τ : |u| = k} the set
of all individuals at generation k in τ . If k =∞ then Lk(τ) = ∅ by convention. The following
exercise will be useful in the proof of Theorem 7.

Exercise 9. Show that if T is a Galton-Watson tree with geometric offspring distribution with
parameter 1/2 (that is, P (k∅ = k) = 2−k−1), then for any plane tree τ and for any k ∈
{0, 1, 2, ...} ∪ {∞} we have

P ([T ]k = τ) = 4−|τ |2#Lτ (k)−1. (6)

Using the above exercise, we deduce in particular that if τ ∈ Tn then P (T = τ) = 4−n/2 is
independent of the shape of τ , hence the distribution of T conditioned on |T | = n is uniform
over Tn. Since #Tn = Cat(n) we deduce that∑

k>0

4−kCat(k) = 2. (7)

By Stirling’s formula, we also have the asymptotic

Cat(n) ∼ 1√
π

4nn−3/2, as n→∞. (8)

Exercise 10. Find another proof of (7).

Proof of Theorem 7. Let k ∈ {0, 1, 2, 3, ...} and fix a finite plane tree τ0 whose height does not
exceed k. It is sufficient to show that P ([Tn]k = τ0)→ P ([T∞]k = τ0) as n→∞, see Theorem
2.2 of [3].

We first compute P ([Tn]k = τ0) (for n > |τ0|). On the event {[Tn]k = τ0}, the tree Tn is
obtained from τ0 by grafting plane trees on top of the elements of Lτ0(k) such that the sum of
the sizes of these trees is equal to n − |τ0|. We set i = #Lτ0(k) and n′ = n − |τ0| to simplify
notation. A simple counting argument shows that

P ([Tn]k = τ0) =
1

Cat(n)

∑
k1+...+ki=n′

i∏
j=1

Cat(kj), (9)

We also set pk = 4−kCat(k) and recall that
∑
pk = 2. Equation (9) thus becomes

P ([Tn]k = τ0) =
4−|τ0|

pn

∑
k1+...+ki=n′

i∏
j=1

pkj .

We will show that when n is large, the main contribution in the previous sum is obtained
when the indices k1, ..., ki are such that only one of them is of order n′ and the others are small
in comparison. Let A > 1. Firstly, notice that at least one of the indices k1, ..., ki is larger than
n′/i. Secondly, let us evaluate the contribution of the sum when k1 > n′/i and k2 is larger than
A. Using the asymptotic behavior of the Catalan numbers (8) we have

∑
k1+···+ki=n′
k1>n′/i
k2>A

i∏
j=1

pkj 6 sup
k1>n′/i

pk1 ·

∑
k2>A

pk2

 · i∏
j=3

 ∞∑
kj=1

pkj

 6 Cn−3/2A−1/2,
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for some constant C > 0 which is independent of n. We thus deduce that the main contribution
in (9) is made by those k1, ..., ki for which one is big and the other are O(1) thus

P ([Tn]k = τ0) = i
4−|τ0|

pn

∑
06k2,...,ki6A

pn−∑j>2 kj

i∏
j=2

pkj +O(A−1/2),

where the O(A−1/2) is uniform in n. Thus letting n→∞ followed by A→∞ we deduce using
(7) that the desired probability is equal to i4−|τ0|2#Lτ0 (k)−1.

Let us now compute P ([T∞]k = τ0). To do this we split the event {[T∞]k = τ0} into #Lτ0(k)
events according to the position of the kth vertex of the spine of T∞ in the set Lτ0(k). On each
of these events, the critical subtrees grafted to the left and right-hand side of the jth vertex
spine have a definite [.]k−i structure. But recall that for any r > 0 we know that P ([T ]r =
|τ |) = 4−|τ |2#Lτ (r)−1. From this, it is easy to see that P ([T∞]k = τ0) = i4−|τ0|2#Lτ0 (k)−1 thus
completing the proof of the theorem.

Remark. During the proof we encountered the formula P ([T∞]k = τ0) = #Lτ0(k)P ([T ]k = τ0).
This relation still holds in the general case of critical Galton-Watson trees and can serve as a
characterization of the critical Galton-Watson conditioned to survive, see [13].

4 The UIPQ

Let L∞ be the set of all labeled trees θ = (τ, `) where τ ∈ S and such that infi `(Sτ (i)) =
−∞. We now aim at extending the construction of Φ to elements of L∞.

4.1 Extension of Φ

Let θ = (τ, `) ∈ L∞. Again, we consider an embedding of τ in the plane, with isolated vertices.
This is always possible (since τ is locally finite). The notion of a corner is unchanged in this
setting, and there is still a notion of clockwise contour order for the corners of τ , this order
being now a total order, isomorphic to (Z,6), rather than a cyclic order. We consider the

sequence (c
(L)
0 , c

(L)
1 , c

(L)
2 , . . .) of corners visited by the contour process of the left side of the tree

in clockwise order. Similarly, we denote the sequence of corners visited on the right side by

(c
(R)
0 , c

(R)
1 , c

(R)
2 , . . .), in counterclockwise order. Notice that c

(L)
0 = c

(R)
0 denotes the corner where

the tree has been rooted. We now concatenate these two sequences into a unique sequence
indexed by Z, by letting, for i ∈ Z,

ci =

{
c
(L)
i if i > 0

c
(R)
−i if i < 0 .

In the sequel, we will write ci 6 cj if i 6 j. For any i ∈ Z, the successor S(ci) of ci is the
first corner cj > ci+1 such that the label `(cj) is equal to `(ci) − 1. From the assumption that

infi>0 `(Sτ (i)) = −∞, and since all the vertices of the spine appear in the sequence (c
(L)
i )i>0,

it holds that each corner has one successor. We can associate with (τ, `) an embedded graph q
by drawing an arc between every corner and its successor. See Fig. 8. Note that, in contrast
with the above description of the Schaeffer bijection on Ln × {0, 1}, we do not have to add an
extra distinguished vertex ρ in this context. Hence, the vertex set of q exactly corresponds to
the vertices of τ .

In a similar way as before, the embedded graph q is rooted at the edge emerging from the
distinguished corner c0 of ∅, that is, the edge between c0 and its successor S(c0). The direction

12
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Figure 8: Illustration of the Schaeffer correspondence. The tree is represented in dotted
lines and the quadrangulation in solid lines.

of the edge is given by an extra parameter η ∈ {0, 1}, see Fig. 8. We leave the reader checking
that Φ(θ, η) is an infinite rooted quadrangulation with one end.

4.2 Bounds on distances

Let q = Φ(θ, η) be constructed from a labeled tree θ = (τ, `) in L∞. We now present some
useful bounds on the distances in q. Let us start with a trivial one: Since every pair {u, v}
of neighboring vertices in q satisfies |`(u) − `(v)| = 1 and thus for every a, b ∈ q linked by a
geodesic a = a0, a1, . . . , adqgr(a,b) = b we have the crude bound

dqgr(a, b) =

dqgr(a,b)∑
i=1

|`(ai)− `(ai−1)| >

∣∣∣∣∣∣
dqgr(a,b)∑
i=1

`(ai)− `(ai−1)

∣∣∣∣∣∣ = |`(a)− `(b)|. (10)

A better lower bound is given by the so-called cactus bound

dqgr(a, b) > `(a) + `(b)− 2 min
v∈[[a,b]]

`(v), (11)

where we recall that [[a, b]] represents the geodesic line in τ between a and b. The idea goes
as follows: let w be of minimal label on [[a, b]], and assume w /∈ {a, b} to avoid trivialities.
Removing w breaks the tree τ into two connected parts, containing respectively a and b. Now a
path from a to b has to “pass over”w using an arc between a corner (in the first component) to
its successor (in the other component), and this can only happen by visiting a vertex with label
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less than `(w). Using (10) we deduce that this path at length at least `(a)− `(w) + `(b)− `(w),
as wanted. We also have the upper bound

dgr(u, v) 6 2 + `(u) + `(v)− 2 max
{

min
c16c6c2

`(V(c)) : {V(c1),V(c2)} = {u, v}
}
, (12)

where 6 is the contour order on the corners of τ . Indeed, consider a corner ci of u and a corner cj
of v and suppose that i 6 j. We construct the path starting from ci and cj following iteratively
their successors. These two paths merge at the first corner after cj with label min[ci,cj ] ` − 1
and the concatenation of these two paths up to the merging point gives the bound dgr(u, v) 6
2 + `(u) + `(v)− 2 min{`(c) : c ∈ [ci, cj ]}. The other cases are similar.

The topology induced by dtree on the set of plane trees can obviously be extended to the
set of labeled plane trees by considering the labeling as well. We will use this topology is the
following proposition.

Proposition 9. The extended mapping Φ :
(
L∞ ∪ Lf

)
× {0, 1} → Q is continuous.

Proof. To prove the continuity of Φ, let θn = (τn, `n) be a sequence in L∞ ∪ Lf converging
to θ = (τ, `) ∈ L∞ ∪ Lf . Fix also η ∈ {0, 1}. To simplify notation we let Φ(θ) := Φ(θ, η)
and Φ(θn) := Φ(θn, η) in the following. If θ ∈ Lf then θn = θ for every n large enough, so
the fact that Φ(θn) → Φ(θ) is obvious. So let us assume that θ ∈ L∞, with spine vertices
Sτ (0),Sτ (1), . . ..

Fix r > 0, we have to prove that Br(Φ(θ)) = Br(Φ(θn)) for n large enough. We let i = i(r)
be the first i > 1 such that `(Sτ (i)) = −r − 2 (i exists since inf `(Sτ (.)) = −∞). And let H
be the height of the subtree obtained from τ by pruning off at Sτ (i). Now, for every n large
enough, it holds that [θn]H = [θ]H . We claim that this implies Br(Φ(θ)) = Br(Φ(θn)). Indeed,
by the cactus bound, any vertex u /∈ [θn]H satisfies dgr(∅, u) > r + 2 and thus does not belong
to Br(θn). Thus all the edges belonging to Br(Φ(θn)) are arcs drawn between two vertices of
[θn]H , it is then easy to check that all these edges have correspondents in [θi] and vice-versa.

4.3 The UIPQ

If τ is random (finite or infinite) plane tree, we can assign labels to its vertices in a uniform
way: Conditionally on τ , we consider a sequence of independent random variables uniformly
distributed over {−1, 0,+1} carried by each edge of τ . For any vertex u ∈ τ , the label `(u) of u
is then defined as the sum of the variables carried by the edges along the geodesic path from the
root ∅ to u, in particular `(∅) = 0. The random labeled tree θ = (τ, `) hence obtained is called
the uniform labeling of τ . In particular, when τ = Tn is uniformly distributed over the set of all
plane trees with n edges, the labeled tree Θn = (Tn, `n) obtained by this procedure is uniformly
distributed over Ln. When τ = T∞ is the critical geometric Galton-Watson tree conditioned to
survive, the labeled tree Θ∞ = (T∞, `) obtained is called the uniform infinite labeled tree and
almost surely belongs to L∞.

Let η be uniformly distributed over {0, 1} independent of the Θ′s. An easy consequence of
Theorem 7 then entails that

(Θn, η)
(d)−−−→

n→∞
(Θ∞, η), (13)

for the local topology. By Theorem 5, the rooted and pointed quadrangulation Φ(Θn, η) is
uniformly distributed over Q•n. Hence, the quadrangulation obtained from it after forgetting
the pointed vertex is uniformly distributed over Qn. Using (13) and Proposition 9 we deduce
that Qn converges towards some random infinite rooted quadrangulation Q∞ that satisfies
Q∞ = Φ(Θ∞, η) in distribution. Of course, this object is identified with the UIPQ introduced
in Theorem 4.
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Exercise 11. Using the construction Q∞ = Φ(Θ∞, η) compute the probability that the origin of
the root edge in Q∞ is of degree 1.

5 Applications

5.1 Reconstruction

Since Q∞ = Φ((T∞, `), η) in distribution, a natural question is: Are the tree T∞, the labeling `
(and the variable η) measurable functions of Q∞? The answer is yes. In fact, it is sufficient to
recover the labeling ` from Q∞ and then the tree T∞ can be recovered by an inverse Schaeffer
construction as in Section 2.2.

Theorem 10 ([9]). If Q∞ = Φ(Θ∞, η), then, with the usual identification of the vertices of Q∞
with those of T∞, one has, almost surely,

`(u)− `(v) = lim
z→∞

(
dQ∞gr (u, z)− dQ∞gr (v, z)

)
, ∀u, v ∈ Q∞ . (14)

We are not going to prove this theorem. It relies on fine properties of the discrete geodesics
in the UIPQ. Note however that (14) can be interpreted as a generalization of (3) in the infinite
setting. See [9] for more details.

5.2 Volume growth

If (Yn)n>0 is a random process indexed by N with values in R+, we write Yn � nα resp. Yn � nα
for α > 0 if there exists a constant κ > 0 such that we almost surely have

lim inf
n→∞

Yn

nα log−κ(n)
=∞ resp. lim sup

n→∞

Yn
nα logκ(n)

= 0.

If we have both Yn � nα and nα � Yn we write Yn ≈ nα. In words Yn ≈ nα means that almost
surely Yn grows like nα up to polylogarithmic fluctuations.

The goal of this section is to show:

Theorem 11. We have |Br(Q∞)| ≈ r4.

Although planar, the geometry of the UIPQ is thus weird since the volume growth of Q∞ is
very different from that of Z2 for example. The UIPQ has many folds, bottlenecks, mushrooms
and bubbles at every scale. This nested“baby universe”structure (name used by some physicists)
is responsible of the large volume growth of the UIPQ.

In the following, (T∞, `) always denotes the tree constructed above that we call the uniform
infinite labeled tree. For n > 0 we denote by Tn the (labeled) subtree obtained from (T∞, `)
after pruning at the nth vertex of the spine sn, that is, we remove all the offspring of sn (but
we keep sn). Recall that |Tn| is the number of vertices of Tn. We also denote by ∅(Tn) the
diameter max{dist(u, v) : u, v ∈ Tn} where dist(., .) is the graph distance in Tn.

Proposition 12. We have

∅(Tn) ≈ n,

|Tn| ≈ n2, (15)

∆(Tn) ≈ n1/2. (16)
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Proof. Let n > 0. The tree Tn is composed of the first n+ 1 vertices on the spine together with
2n independent critical geometric Galton-Watson trees grafted to the right-hand side and to
the left-hand side of s0, s1, . . . , sn−1 (when there is no tree on one side of a vertex of spine we
consider that we grafted the tree with a single vertex). Thus we have

|Tn| = 1− n+

2n∑
i=1

Xi and n 6 ∅(Tn) 6 2
(
n+ max

16i62n
Hi

)
where X1, H1, X2, H2, . . . are respectively the size and the height of the 2n critical geometric
Galton-Watson trees grafted on the n first vertices of the spine. Recall from that P (H1 > n) ∼
n−1. From this we easily deduce using Borel-Cantelli lemma that eventually Hi 6 i log2(i) and
thus ∅(Tn) ≈ n.

Concerning the size |Tn|, recall (8).The analogue of the law of the iterated logarithm in the
case of infinite variance (see [4, Section 3.9]) directly show that Sn =

∑2n
i=1Xi ≈ n2 which

implies |Tn| ≈ n2.
Let us now turn to (16). Recall that conditionally on the tree structure of Tn the labels

evolve along the branches of Tn as a random walk (Zk)k>0 whose increments are uniform in
{−1, 0,+1}. Looking at the labels of s0, ..., sn−1 we deduce that ∆(Tn) > max06i6n−1 |`(si)|
which gives the lower bound ∆(Tn) � n1/2. For the upper bound, we have

P
(

∆(Tn) > log2(n)n1/2
∣∣∣ Structure of Tn

)
6 |Tn|P

(
sup

06k6∅(Tn)
Zk > log2(n)n1/2

)
.

On the event An := {|Tn| 6 n3 and ∅(Tn) 6 n log2(n)} the right-hand side of the last display
is O(n−2). But the previous estimates imply that An eventually occur and thus an application
of Borel-Cantelli proves ∆(Tn) � n1/2.

Proof of Theorem 11. Here also we consider that Q∞ = Φ(T∞, `). We begin with the upper
bound |Ball(Q∞, r)| � r4. Let r > 1. We introduce the tree THr consisting of T∞ pruned at
the first vertex sHr of the spine reaching label −r. Thanks to (11) the vertices at distance less
than r + 2 from the origin of Q∞ must be vertices of THr+3 , hence

|Ball(Q∞, r)| 6 |THr+3 |. (17)

Since Hr is the hitting time of −r by a random walk with steps distribution uniform in

{−1, 0,+1}, we have Hr = H
(1)
1 + . . . + H

(r)
1 where de H

(i)
1 are i.i.d. and distributed as H1.

Standard calculations show that P (H1 > n) ∼ Cn−1/2 for some C > 0. Hence similar ar-
guments as those presented in the proof of Proposition 12 show that Hr ≈ r2. Thus we can
combine this fact together with (15) and (17) to complete the upper bound.

We now turn to the lower bound. For r > 1, we put

Lr = sup{i > 0 : ∆(Ti) < r}.

Consistently with the preceding notation we write TLr for the tree T∞ pruned at sLr . Using the
bound (12), one sees that all the vertices in TLr are at a graph distance at most 3r + 2 from ∅
in Q∞, which implies

TLr 6 Ball(Q∞, 3r + 4), (18)

in terms of vertex sets. Using (16) we deduce that Lr ≈ r2. Henceforth by (15) we have
|TLr | ≈ r4 which together with (18) completes the proof of the proposition.
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5.3 The uniform infinite planar map

We can use the local convergence of random quadrangulations towards the UIPQ to deduce
the local convergence of uniform planar maps towards an infinite random map that we call the
uniform infinite planar map. Specifically, we let Mn be the set of all (rooted) planar maps
with n edges and Mf the set of all finite planar maps. Similarly as in Section 1.4 we define a
topology on Mf by saying that mn → m if for all r > 0 we have

Br(mn) −−−→
n→∞

Br(m).

This topology is metrizable by dmap. Here also, Mf is not complete for this topology and we
have to work in its completion M.

Theorem 13. Let Mn be uniformly distributed over Mn. Then there exists a random infinite
map M∞ called the uniform infinite planar map such that we have the following convergence in
distribution for dmap

Mn
(d)−−−→

n→∞
M∞.

Proof. Obviously, this theorem will follow from Theorem 4 using the bijection between planar
maps and quadrangulations: Recall from Proposition 2 the bijection G : Qf →Mf that sends a
rooted quadrangulation with n faces on a rooted planar map with n edges. In particular, if Qn
is uniformly distributed over Qn then G(Qn) is uniformly distributed over Mn. The mapping G
can be extended continuously G : Q →M. Indeed suppose that qn → q and suppose q /∈ Q to
avoid trivialities. Since qn is bipartite we can partition the vertices of qn into black and white
vertices q◦n ∪ q•n. We suppose that the origin of qn is in q◦n such that the vertices of G(qn) are in
correspondence with q◦n. The key observation is that if u, v ∈ q◦n then we have

1

2
dqngr (u, v) 6 dG(qn)gr (u, v). (19)

Hence the ball Br(G(qn)) of radius r in G(qn) is a deterministic function of B2r(qn). Since
B2r(qn) eventually stabilizes the same holds for Br(G(qn)). This shows that G : Qf →Mf can
be extended continuously to Q→M.

It then flows from Theorem 4 that

Mn
(d)
= G(Qn)

(d)−−−→
n→∞

M∞
(d)
= G(Q∞),

in distribution for dmap, thus completing the proof of the theorem.

The uniform infinite planar map (UIPM) can thus be seen as the infinite map G(Q∞) con-
structed by duality from the UIPQ. But there is another notion of duality: If m is a planar map
we define the dual map D(m) by placing in each face of m a vertex of D(m) and for each edge
e in m we introduce a new edge in D(m) connecting the two vertices in D(m) corresponding to
the two faces in m that share the edge e.

Proposition 14. The UIPM is self-dual, that is M∞ = D(M∞) in distribution.

Proof. We can suppose M∞ = G(Q∞) and Q∞ = Φ(Θ∞, η). Then notice that D(M∞) = G(
←−−
Q∞)

where ←−q is the quadrangulation obtained from q by reversing the orientation of the oriented
edge of q (draw a picture). We can conclude since

M∞ = G(Q∞) = G
(

Φ(Θ∞, η)
)

(d)
= G

(
Φ(Θ∞, 1− η)

)
= G(

←−−
Q∞) = D(M∞).
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