Some results on inhomogeneous percolation

E J Janse van Rensburg

January 2013

Let \mathbb{L} be the *d*-dimensional hypercubic lattice and let \mathbb{L}_0 be an *s*-dimensional hypercubic sublattice of \mathbb{L} which contains the origin (and where $2 \leq s < d$).

Percolation at densities (p, σ) can be set up in \mathbb{L} by declaring edges in \mathbb{L}_0 open with probability σ , and edges in $\mathbb{L} \setminus \mathbb{L}_0$ open with probability p. The probability that the open cluster C at the origin is open is given by

$$\theta^{I}(p,\sigma) = P_{p,\sigma}^{I}(|C| = \infty).$$

In this talk we examine the (p, σ) -parameter space of this model. We prove existence of a critical curve $\sigma^*(p)$ such that the model is subcritical if $\sigma < \sigma^*(p)$ and supercritical if $\sigma > \sigma^*(p)$. We show that $\sigma^*(p)$ is strictly decreasing with $p \in (0, p_c(d))$, and $\sigma^*(p) = 0$ if $p \in (p_c(d), 1)$ (where $p_c(d)$ is the critical density for homogeneous percolation in \mathbb{L}).

Other results, including uniqueness of the critical point and decays of the sub- and supercritical cluster distributions will be given, and a connection to a model of collapsing lattice animals will be made.

Joint work with G Iliev and N Madras