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• First view to come to mind: 
– Multi-class queueing systems with class-dependent 

priorities (either given or decided, e.g., by an index rule) 
– Scheduling subject to those priorities 

• The view for this talk: 
– Generally a single class of customers 
– Defining priorities to induce a global optimum when 

customers act selfishly, subject to those priorities 
– As a simpler approach to find the global optimum 

 

Two Views of  
“Scheduling and priorities 

in queueing systems” 
 



• Determining and characterizing GO = globally optimal 
policies is often hard. 

• Determining and characterizing IO = individually 
optimal (selfish) policies, holding others’ policies 
fixed, is often easy. 

• If we can set individual priorities to make the two 
coincide (IO = GO), we have an easy route to solve a 
hard problem. 

• The IO = GO approach is often easy to generalize,  
• And it provides a simple means for (decentralized) 

implementation and computation. 
 

Overview of the Second View 



I. Very simple example:  The stochastic 
sequential assignment problem 

- Without arrivals 
- With arrivals 

II. Energy-aware scheduling (e.g., in web 
server farms) 

III. Diminishing marginal returns to flexibility 
in a routing problem (e.g., in call centers) 

Outline – 3 Examples 



I:  Stochastic Sequential Assignment 

• Worker i has value wi, w1 ≥ w2 ≥ … ≥ wn  
• Poisson job arrivals, job values Xi, i.i.d. 
• Assigning a job of value x (job x) to a worker of 

value w earns a reward of wx 
• Decision:  Assign an arriving job to a particular 

worker or reject it (no recall) 
• Objective:  Maximize the total expected 

discounted reward, Wn 
• Derman, Lieberman and Ross, 1972 (and many 

others) 
 



Applications 

• Kidney transplants  
– David and Yechiali (‘90,’95), Su and Zenios (2005) 

• Aviation security 
– Nikolaev, Jacobson, and McLay (2010) 

• Asset selling 
– Saario (1985) 

• Flexible service 
– Akҫay, Balakrishnan, and Xu (2010) 

• Buying decisions in supply chains 
– You (2000) 

 



Globally Optimal (GO) Policy 

Worker weights:  w1 ≥ w2 ≥ … ≥ wn 

Theorem:  There exist thresholds  
 ∞ =: v0 > v1 ≥ v2 ≥ … ≥ vn ≥ vn+1 := 0 
such that the optimal policy is to assign job x 
(an arriving job of value x)  to worker i if          
   vi-1 > x ≥ vi    
(assignment to n+1 = rejection) 
regardless of wi and of n.  
 



Globally Optimal (GO) Policy 

Assign to worker 1 
v1 

Assign to worker 2 

v2 
Assign to worker 3 

v3 

Job 
Value 

x 

Workers “move up” after each assignment. 
We’ll prove the GO structure by way of the selfish, 
individually optimal (IO) policy. 



Selfish, or IO, Policy 

• Worker i is given i’th priority 
• Jobs are offered to workers in priority 

order 
• Each worker tries to maximize its own 

discounted assigned job value, given all 
other workers are doing the same 



IO Policy – Key Observation 

Observation:  Workers i+1,…,n have no effect  
on worker i for all i 
Corollary:  Worker n imposes no externality   
 (worker n only gets the rejects) 
Lemma:  The IO policy for worker i is to    
accept job x if x ≥ vi, if x is offered to i, where    
vi = worker i’s expected discounted job value 
for waiting under IO, for any n ≥ i 
Proof: Almost immediate (stopping problem) 

 



Theorem:  IO = GO when wi ≡ 1  

wi ≡ 1       workers are indistinguishable   
   the GO decision:  accept/reject job 

For the IO policy, worker priorities are arbitrary 
Theorem:  When wi ≡ 1, the individually optimal 
policy is globally optimal 
The GO policy is to accept a job if x ≥ vn, and 
Vn := optimal total expected discounted reward                
 = Σvi 



Proof Sketch:  IO = GO when wi ≡ 1  

(Backward) induction on finite horizon of N jobs.   
N=1 is easy. 
Suppose IO = GO for N-1, and suppose that for N 
and for the first job, with value x, GO = π ≠ IO    
(and π = IO for future jobs/decisions, by induction) 
That is, suppose 
π = GO              
π ≠ IO for first decision, for job x, and          
π = IO for future jobs/decisions 
 
 



Proof Sketch:  IO = GO when wi ≡ 1  

(Backward) induction on finite horizon of N jobs.   
Suppose 
π = GO              
●  π ≠ IO for first decision, for job x, and         
π = IO for future jobs/decisions 
We’ll show π ≠ GO 
●  Case 1:  IO accepts and π rejects job x 
●  Case 2:  IO rejects and π accepts job x 
 
 



Proof Sketch:  IO = GO when wi ≡ 1  

π = GO               
●  π ≠ IO for first decision, for job x, and         
π = IO for future jobs/decisions 
●  Case 1:  IO accepts and π rejects job x (x > vi): 
Let π’ assign x to worker n and then agree with IO.  
Then π’ = π for workers 1,…,n-1,    
 (under IO, worker n has no externality) and 
 π’    π for worker n,           
 (worker n wants job x under IO) 
So π’    π for every worker, i.e., π ≠ GO. 
 







Proof Sketch:  IO = GO when wi ≡ 1  

Case 1:  IO accepts and π rejects job x: π ≠ GO. 

Case 2:  IO rejects and π accepts job x (x < vi):
 (π assigns x to worker n, wlog: wi ≡ 1) 
Let π’ reject x and then agree with IO.  (So π’ = IO)  
Then π’ = π for workers 1,…,n-1,    
 (under IO, worker n has no externality) and
 π’    π for worker n,           
 (worker n does not want job x under IO) 
So π’    π for every worker, i.e., π ≠ GO. ■ 
 







Proof Summary:  IO = GO when wi ≡ 1  

Deviating from IO for the first time step (with 
the lowest priority worker) and then following IO  
 hurts the lowest priority worker, and  
 has no effect on the other workers 
 because the lowest priority worker has no 

externality 
  Such a deviation cannot be GO 



wi ≡ 1  Multiple GO Implementations 

GO policy: Accept job x iff x ≥ vn. 
Accepted jobs can be assigned to any worker, 
because workers are indistinguishable when 
wi ≡ 1. 
For example, a worker could be chosen at 
random (for fairness). 
The IO implementation with priorities is only 
needed for the proof of GO = IO = threshold. 



Corollary:  IO = GO for any wi’s  

Proof Sketch:     (w1 ≥ w2 ≥ … ≥ wn)  
For an arbitrary policy, let  
ui = E[discounted job value assigned to worker i] 

   (partial sum) 
Wn = the total expected discounted reward 

Then 

IO = GO when wi ≡ 1  IO maximizes Ui for all i  
 (job i imposes no externality on jobs 1,…,i-1) 
 IO maximizes  Wn  because  wi – wi+1 ≥ 0          ■ 
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Corollary:  IO = GO for any wi’s  

Note that when the wi’s are not identical, we 
must maintain the IO priorities in the GO 
policy. 
That is, workers with higher values must get 
higher priority. 



Arriving Workers, wi ≡ 1  

New extension to the classic problem 
Workers arrive according to a Poisson process 
with rate γ 
IO policy:  Each worker tries to maximize its own 
discounted assigned job value, given all other 
workers are doing the same, and given          
LCFP (last-come-first-priority), i.e., the most 
recently arriving worker has highest priority 
Again, with LCFP, the lowest priority worker 
imposes no externality (e.g., Hassin, 1986) 
 



Theorem:  IO = GO when wi ≡ 1  

The same IO proof gives us (Righter, 2011): 
Theorem:  For wi ≡ 1 and arriving workers,  
IO = GO, and, under IO, 
Worker i, i = 1,…,n, will accept (offered) job x       
if x ≥ vi, where vi = worker i’s expected discounted 
job value under the IO policy   
 the GO policy is a threshold policy:         
accept job x if x ≥ vn (assign it to any worker)         
when n workers are in the system. 
Or, equivalently, accept job x if n ≥ t(x), t(x) ↓ in x. 



wi ≡ 1  Multiple GO Implementations 

For the IO policy to be globally optimal       
(to produce incentive compatibility),      
we need it to be implemented with LCFP. 

However, because workers are identical,  
once we have the thresholds from IO-LCFP, 
we can implement the globally optimal policy 
by assigning workers arbitrarily (e.g., FCFS) 
to acceptable (above threshold vn) jobs. 



Arriving Workers and Arbitrary wi’s 

Priorities for IO Policy? 
Most reasonable candidate:   
 Higher priority for higher wi’s 
 LCFP within a class (with the same wi) 
Theorem:  IO ≠ GO 
Indeed, now the GO policy depends on the 
wi’s.  The lowest priority worker in a given 
class poses an externality on workers in 
lower classes 



Extensions of IO = GO, threshold policy 

• More general arrival processes 
• More general discounting 
• Finite horizon 
• Randomly varying, possibly unknown job 

value distributions (with, e.g., Bayesian 
updating)  

• Impatient workers 
IO policy is still a (state-dependent) threshold 
policy, and IO = GO 

 



Example II:  Energy-Aware Scheduling 



• Server farms and cloud    
computing networks 

• Energy consumption and greenhouse gas 
emission have become major concerns 

• Servers vary in their processing speeds 
and energy consumption 

• How do we schedule our work to balance 
energy consumption and congestion? 

Motivation 



II.  Energy-Aware Scheduling – Model 

• n identical jobs with holding cost rate h 
• m servers, exponential service times with 

service rate μi and server usage cost βi 

• Objective:  Minimize total expected cost 
• (Global) decision:  Assign a job to an 

available server or leave the server idle 
• Extension of “Slow-Server Problem,” 

which has no server usage costs, βi = 0 



II.  Comparison with SSAP (Example 1) 

• Now the roles of jobs and workers 
(servers) are interchanged 

I.  Sequential assignment, basic case: 
– Fixed set of workers assigned to arriving jobs 

II.  Energy-aware scheduling: 
– Fixed set of jobs assigned to “arriving” servers 

• The energy-aware scheduling problem is 
harder; now have “recall” of idle servers 
 

 



II.  Energy-Aware Scheduling 

• n identical jobs with holding cost rate h 
• m servers, exponential service times with 

service rate μi and server usage cost βi 

• Two cases: 
(i) Jobs can be reassigned to a new server at 

any time 
(ii) Jobs cannot be reassigned  
Surprisingly, (ii) is easier, so start with (ii) 



(ii)  No Reassignment – IO Policy 

Theorem:  IO policy is a threshold policy:                       
- Servers (j) are ordered in increasing order of
      
 j

jh





- Job i will accept the lowest indexed available 
server, j, if it is offered to it and if  

)1( 
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vi(j-1) := expected cost for job i if it waits for one 
of the servers 1,…,j-1 

= E[cost for job 1 to use j] 
 

E[server j cost] ≤ E[cost to wait] 



IO policy – “No recall” 

Corollary 1:  Under the IO policy, rejected 
servers will never be used 
  Under the IO policy, lower priority jobs have 

no effect on higher priority jobs   
Job n has no externality 
 
Corollary 2:   
The IO thresholds are easily computed  
 
   
 



Theorem:  IO = GO 

Theorem:  The individually optimal policy is 
also globally optimal 
 Proof outline.  Same idea:  
Deviating from IO for the first time step (with 
the lowest priority job) and then following IO  
 hurts the lowest priority job, and  
 has no effect on the other jobs 
 because the lowest priority job has no 

externality 



Corollary for GO policy 

The GO policy is a threshold policy:    
There are thresholds, tj,  
that are easily computed via the IO policy, 
s.t. if j is the lowest indexed available server,  
and if n ≥ tj,  
the GO policy assigns any job to server j  
regardless of the states of less preferred 
servers 
 



E-A Scheduling with Reassignment 

• Reassignment – can move jobs from one 
server to another at any time, without penalty 

• GO = IO = threshold policy (similar proof) 
• Preference order of servers is more difficult 

(no longer an index) 
• Threshold computations are more difficult 
• Versus the slow server problem (no usage 

cost), optimal to use the fastest min{m,n} 
servers (m servers, n jobs) easy 



E-A Scheduling – Arrivals, Reassignment 

• Arrivals of new jobs 
• Reassignment (easier with arrivals) 
• Now the priorities for the IO policy must be 

LCFP-P (Preemptive LCFP) 
– Arriving (higher priority) jobs can preempt jobs 

in service and can move to different servers 
 lower priority jobs have no effect on higher 
priority jobs, i.e., 
– Lowest priority job has no externality 
 



Theorem:  With reassignment and arrivals,     
 IO = GO, a threshold policy 

• Same proof 
• Policy even more complicated:  e.g., 

preference order for servers depends on 
arrival rate 

E-A Scheduling – Arrivals, Reassignment 



• Arrivals of new jobs 
• No reassignment and Two servers  
• IO Priorities: LCFP-P (Preemptive LCFP) 

– Arriving (higher priority) jobs can preempt jobs 
in service, but cannot move (unless preempted) 

 With two servers, lower priority jobs have no 
effect on higher priority jobs, i.e., 
– Lowest priority job has no externality 

 

E-A Scheduling – Arrivals, No Reassignment 



Theorem:  Without reassignment and two 
servers, IO = GO, a threshold policy 
• Same proof 
• Can implement GO with FCFS, without moving 

jobs 
Theorem:  Without reassignment and more 
than two servers, IO ≠ GO 
• Now the lowest priority job in queue imposes an 

externality on other jobs 
 
 

E-A Scheduling – Arrivals, No Reassignment 



Energy-Aware Scheduling – Summary 

Theorem: The IO policy is a threshold policy, 
and IO = GO, when 
• No arrivals, with or without reassignment 
• Arrivals, and jobs can be reassigned 
• Arrivals, no reassignment, and 2 servers 
IO ≠ GO with arrivals, no reassignment, > 2 servers     
Conjecture:  (arrivals, no reassignment, > 2 servers) 
GO is a threshold policy, server j threshold will depend 
on states of servers j+1,…m  (like Weber’s slow-server 
conjecture, but server preference order complicated) 



Motivation:  Multi-lingual call center        
with bilingual and monolingual customers: 

    Press 1 for English.     
   Press 2 for Spanish. 

What is the benefit of inserting                                                      
   Press 0 for bilingual? 

How does it depend on           
  p:  the proportion who are bilingual? 

Mobile Millennium project (cell phones and traffic) 
Product substitution in make-to-order systems 
Internet packet routing 

III.  Marginal Returns to Routing Flexibility 



III.  Model with Customer Flexibility 

Flexible customers follow JSQ = Join the Shortest Queue 
Total Arrival Process:  Strongly mixing, state-
 independent, Bernoulli splitting 
Stationary and ergodic  
 

λ(1-p)/2 

λ(1-p)/2 

λp flexible 

A proportion p of arrivals are flexible,      
the rest are dedicated to a particular server 

dedicated 

dedicated 
Exp(μ) 



Mean # in system as a function of p 

ρ = 90% 

2 servers 

Flexible servers: 

Flexible customers: 

No flexibility: 

Single fast server: 

At 20% flexible, 
achieve 80% of 

maximum possible 
improvement 



He and Down (2009):  In the diffusion limit, the 
full benefit of customer flexibility is achieved 
for p arbitrarily close to 0 

    

A little flexibility goes a long way 

ρ→1 



   That W(p) is decreasing in p follows from the 
optimality of JSQ = Join the shortest queue.  

  Winston (1977),  Weber (1978),  
  Ephremides,  Varaiya and Walrand (1980), 
  Johri (1989),  Hordijk and Koole (1990), 
  Menich and Serfozo (1991),   
  Sparaggis et al. (1990, 1993, 1994,1999),  
  Bambos and Michailidis (2002),  
  Movaghar (2005) 
 We will show monotonicity as the first step to 

convexity, by way of IO = GO. 
 

Steady-State Mean Waiting Time, W(p) 



Marginal Behavior of W(p) 

Consider a single tagged “ε” customer that 
has lowest preemptive priority, and that 
may be flexible or dedicated. 

 The ε customer has no externality on the 
other customers 
 The ε customer “embodies” the marginal 
difference of more flexibility in the mean 
waiting time  



Y(p)  := the difference in mean waiting time for the ε 
customer if it goes to the long queue rather than the 
short queue upon arrival  

        = “the marginal (IO) flexibility advantage” 

Theorem:  The ε customer embodies the GO 
flexibility advantage: 

IO for ε customer = GO 

2/)(
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 The factor of 2 is because a dedicated customer will 
go to the short queue with probability ½. 



The ε customer 

? 
ε 

Note that under FCFS:      
 JSQ = IO for the ε customer   – immediate 

Theorem:  Given the ε customer has lowest 
preemptive priority, then JSQ = IO for the ε 
customer, i.e., Y(p) ≥ 0.  

 JSQ = GO and W(p) ↓ in p. 



Consider a sample path from the time the ε 
customer arrives until the first of 

• The two queues (excluding the ε customer) are 
equal      Y(p) = 0 

• The ε customer leaves the short queue 
       Y(p) ≥ 0     ■ 

  JSQ is IO for the ε customer 
  JSQ is GO (IO = GO)  W(p) decreasing 

Y(p) ≥ 0, i.e., JSQ is IO – Proof Idea 



Theorem:  Y’(p) ≤ 0 (so W(p) is convex in p) 
Proof Idea:  In addition to the ε customer, 

let there be a single “δ” customer  

that is flexible in system 1 and dedicated in system 2, 

and that has lowest preemptive priority, except with 
respect to the ε customer. 

The δ customer “embodies” the marginal impact of 
more flexibility on the ε customer.  

 

 
    

Convexity of W(p):  Y’(p) ≤ 0 

2/)(''
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The “δ” customer is   `          
flexible in system 1 and dedicated in system 2.  

Consider coupled sample paths from the time the ε 
customer arrives until the first of 

• The two queues (excluding the ε customer) are equal
       Y’(p) = 0 

• The δ customer arrives and goes to the short queue 
in system 1, coin flip in system 2  

    ε customer with JSQ may be delayed in system 1
       Y’(p) ≤ 0      ■ 

 

Proof Idea Continued 



• More than two queues 
• Multiple-server stations 
• Customer impatience (abandonment, 

reneging) 
• Common random service rate (e.g., due to 

preventive maintenance) 

Extensions 



• Using customer flexibility may be much 
cheaper than creating server flexibility   
(cross training servers) 

• The model and results also apply to cross 
training, p = proportion of customers that 
servers are cross trained to serve     
(e.g., easy or general queries)  

• Dedicated customers are better off with 
more flexible customers:  Wd(p) ↓ p 

Aside on Customer Flexibility 



• JSQ alternative:  Flexible customers “virtually” join 
all queues, and start service as early as possible   
  JSW = join the smallest work 

• Or, for maximum efficiency,             
queue flexible customers separately and    
schedule optimally:       
 DCF:  Serve Dedicated Customers First 
 Lose incentive compatibility    

• JSW is the overall best: 
– W(p) is (empirically) almost as low as DCF 
– Incentive compatible 

Aside on Customer Flexibility 



• Characterizing GO policies is often hard. 
• Characterizing IO policies is often easy. 
• To make the two coincide, we define a lowest 

priority worker/customer/job that “embodies” 
the (global) marginal effect of an extra 
worker, extra job, or extra flexibility, and has 
no externality. 

• The IO perspective is often easier to 
generalize and it gives a simple means for 
implementation and computation. 
 

Conclusions 


