
Using Priorities and
Selfish Scheduling to
Obtain Global Optima

Rhonda Righter, IEOR, UC Berkeley

Joint work with
Osman Akgun, Bailard Inc.
Doug Down, McMaster University
Ron Wolff, IEOR, UC Berkeley

• First view to come to mind:
– Multi-class queueing systems with class-dependent

priorities (either given or decided, e.g., by an index rule)
– Scheduling subject to those priorities

• The view for this talk:
– Generally a single class of customers
– Defining priorities to induce a global optimum when

customers act selfishly, subject to those priorities
– As a simpler approach to find the global optimum

Two Views of
“Scheduling and priorities

in queueing systems”

• Determining and characterizing GO = globally optimal
policies is often hard.

• Determining and characterizing IO = individually
optimal (selfish) policies, holding others’ policies
fixed, is often easy.

• If we can set individual priorities to make the two
coincide (IO = GO), we have an easy route to solve a
hard problem.

• The IO = GO approach is often easy to generalize,
• And it provides a simple means for (decentralized)

implementation and computation.

Overview of the Second View

I. Very simple example: The stochastic
sequential assignment problem

- Without arrivals
- With arrivals

II. Energy-aware scheduling (e.g., in web
server farms)

III. Diminishing marginal returns to flexibility
in a routing problem (e.g., in call centers)

Outline – 3 Examples

I: Stochastic Sequential Assignment

• Worker i has value wi, w1 ≥ w2 ≥ … ≥ wn
• Poisson job arrivals, job values Xi, i.i.d.
• Assigning a job of value x (job x) to a worker of

value w earns a reward of wx
• Decision: Assign an arriving job to a particular

worker or reject it (no recall)
• Objective: Maximize the total expected

discounted reward, Wn
• Derman, Lieberman and Ross, 1972 (and many

others)

Applications

• Kidney transplants
– David and Yechiali (‘90,’95), Su and Zenios (2005)

• Aviation security
– Nikolaev, Jacobson, and McLay (2010)

• Asset selling
– Saario (1985)

• Flexible service
– Akҫay, Balakrishnan, and Xu (2010)

• Buying decisions in supply chains
– You (2000)

Globally Optimal (GO) Policy

Worker weights: w1 ≥ w2 ≥ … ≥ wn

Theorem: There exist thresholds
 ∞ =: v0 > v1 ≥ v2 ≥ … ≥ vn ≥ vn+1 := 0
such that the optimal policy is to assign job x
(an arriving job of value x) to worker i if
 vi-1 > x ≥ vi
(assignment to n+1 = rejection)
regardless of wi and of n.

Globally Optimal (GO) Policy

Assign to worker 1
v1

Assign to worker 2

v2
Assign to worker 3

v3

Job
Value

x

Workers “move up” after each assignment.
We’ll prove the GO structure by way of the selfish,
individually optimal (IO) policy.

Selfish, or IO, Policy

• Worker i is given i’th priority
• Jobs are offered to workers in priority

order
• Each worker tries to maximize its own

discounted assigned job value, given all
other workers are doing the same

IO Policy – Key Observation

Observation: Workers i+1,…,n have no effect
on worker i for all i
Corollary: Worker n imposes no externality
 (worker n only gets the rejects)
Lemma: The IO policy for worker i is to
accept job x if x ≥ vi, if x is offered to i, where
vi = worker i’s expected discounted job value
for waiting under IO, for any n ≥ i
Proof: Almost immediate (stopping problem)

Theorem: IO = GO when wi ≡ 1

wi ≡ 1 workers are indistinguishable
 the GO decision: accept/reject job

For the IO policy, worker priorities are arbitrary
Theorem: When wi ≡ 1, the individually optimal
policy is globally optimal
The GO policy is to accept a job if x ≥ vn, and
Vn := optimal total expected discounted reward
 = Σvi

Proof Sketch: IO = GO when wi ≡ 1

(Backward) induction on finite horizon of N jobs.
N=1 is easy.
Suppose IO = GO for N-1, and suppose that for N
and for the first job, with value x, GO = π ≠ IO
(and π = IO for future jobs/decisions, by induction)
That is, suppose
π = GO
π ≠ IO for first decision, for job x, and
π = IO for future jobs/decisions

Proof Sketch: IO = GO when wi ≡ 1

(Backward) induction on finite horizon of N jobs.
Suppose
π = GO
● π ≠ IO for first decision, for job x, and
π = IO for future jobs/decisions
We’ll show π ≠ GO
● Case 1: IO accepts and π rejects job x
● Case 2: IO rejects and π accepts job x

Proof Sketch: IO = GO when wi ≡ 1

π = GO
● π ≠ IO for first decision, for job x, and
π = IO for future jobs/decisions
● Case 1: IO accepts and π rejects job x (x > vi):
Let π’ assign x to worker n and then agree with IO.
Then π’ = π for workers 1,…,n-1,
 (under IO, worker n has no externality) and
 π’ π for worker n,
 (worker n wants job x under IO)
So π’ π for every worker, i.e., π ≠ GO.

Proof Sketch: IO = GO when wi ≡ 1

Case 1: IO accepts and π rejects job x: π ≠ GO.

Case 2: IO rejects and π accepts job x (x < vi):
 (π assigns x to worker n, wlog: wi ≡ 1)
Let π’ reject x and then agree with IO. (So π’ = IO)
Then π’ = π for workers 1,…,n-1,
 (under IO, worker n has no externality) and
 π’ π for worker n,
 (worker n does not want job x under IO)
So π’ π for every worker, i.e., π ≠ GO. ■

Proof Summary: IO = GO when wi ≡ 1

Deviating from IO for the first time step (with
the lowest priority worker) and then following IO
 hurts the lowest priority worker, and
 has no effect on the other workers
 because the lowest priority worker has no

externality
 Such a deviation cannot be GO

wi ≡ 1 Multiple GO Implementations

GO policy: Accept job x iff x ≥ vn.
Accepted jobs can be assigned to any worker,
because workers are indistinguishable when
wi ≡ 1.
For example, a worker could be chosen at
random (for fairness).
The IO implementation with priorities is only
needed for the proof of GO = IO = threshold.

Corollary: IO = GO for any wi’s

Proof Sketch: (w1 ≥ w2 ≥ … ≥ wn)
For an arbitrary policy, let
ui = E[discounted job value assigned to worker i]

 (partial sum)
Wn = the total expected discounted reward

Then

IO = GO when wi ≡ 1 IO maximizes Ui for all i
 (job i imposes no externality on jobs 1,…,i-1)
 IO maximizes Wn because wi – wi+1 ≥ 0 ■

i

j

ji uU
1

n

i

iii

n

i

i

j

jii

n

i

iin UwwuwwuwW
1

1

1 1

1

1

)()(

Corollary: IO = GO for any wi’s

Note that when the wi’s are not identical, we
must maintain the IO priorities in the GO
policy.
That is, workers with higher values must get
higher priority.

Arriving Workers, wi ≡ 1

New extension to the classic problem
Workers arrive according to a Poisson process
with rate γ
IO policy: Each worker tries to maximize its own
discounted assigned job value, given all other
workers are doing the same, and given
LCFP (last-come-first-priority), i.e., the most
recently arriving worker has highest priority
Again, with LCFP, the lowest priority worker
imposes no externality (e.g., Hassin, 1986)

Theorem: IO = GO when wi ≡ 1

The same IO proof gives us (Righter, 2011):
Theorem: For wi ≡ 1 and arriving workers,
IO = GO, and, under IO,
Worker i, i = 1,…,n, will accept (offered) job x
if x ≥ vi, where vi = worker i’s expected discounted
job value under the IO policy
 the GO policy is a threshold policy:
accept job x if x ≥ vn (assign it to any worker)
when n workers are in the system.
Or, equivalently, accept job x if n ≥ t(x), t(x) ↓ in x.

wi ≡ 1 Multiple GO Implementations

For the IO policy to be globally optimal
(to produce incentive compatibility),
we need it to be implemented with LCFP.

However, because workers are identical,
once we have the thresholds from IO-LCFP,
we can implement the globally optimal policy
by assigning workers arbitrarily (e.g., FCFS)
to acceptable (above threshold vn) jobs.

Arriving Workers and Arbitrary wi’s

Priorities for IO Policy?
Most reasonable candidate:
 Higher priority for higher wi’s
 LCFP within a class (with the same wi)
Theorem: IO ≠ GO
Indeed, now the GO policy depends on the
wi’s. The lowest priority worker in a given
class poses an externality on workers in
lower classes

Extensions of IO = GO, threshold policy

• More general arrival processes
• More general discounting
• Finite horizon
• Randomly varying, possibly unknown job

value distributions (with, e.g., Bayesian
updating)

• Impatient workers
IO policy is still a (state-dependent) threshold
policy, and IO = GO

Example II: Energy-Aware Scheduling

• Server farms and cloud
computing networks

• Energy consumption and greenhouse gas
emission have become major concerns

• Servers vary in their processing speeds
and energy consumption

• How do we schedule our work to balance
energy consumption and congestion?

Motivation

II. Energy-Aware Scheduling – Model

• n identical jobs with holding cost rate h
• m servers, exponential service times with

service rate μi and server usage cost βi

• Objective: Minimize total expected cost
• (Global) decision: Assign a job to an

available server or leave the server idle
• Extension of “Slow-Server Problem,”

which has no server usage costs, βi = 0

II. Comparison with SSAP (Example 1)

• Now the roles of jobs and workers
(servers) are interchanged

I. Sequential assignment, basic case:
– Fixed set of workers assigned to arriving jobs

II. Energy-aware scheduling:
– Fixed set of jobs assigned to “arriving” servers

• The energy-aware scheduling problem is
harder; now have “recall” of idle servers

II. Energy-Aware Scheduling

• n identical jobs with holding cost rate h
• m servers, exponential service times with

service rate μi and server usage cost βi

• Two cases:
(i) Jobs can be reassigned to a new server at

any time
(ii) Jobs cannot be reassigned
Surprisingly, (ii) is easier, so start with (ii)

(ii) No Reassignment – IO Policy

Theorem: IO policy is a threshold policy:
- Servers (j) are ordered in increasing order of

 j

jh

- Job i will accept the lowest indexed available
server, j, if it is offered to it and if

)1(

jv
h

i

j

j

vi(j-1) := expected cost for job i if it waits for one
of the servers 1,…,j-1

= E[cost for job 1 to use j]

E[server j cost] ≤ E[cost to wait]

IO policy – “No recall”

Corollary 1: Under the IO policy, rejected
servers will never be used
 Under the IO policy, lower priority jobs have

no effect on higher priority jobs
Job n has no externality

Corollary 2:
The IO thresholds are easily computed

Theorem: IO = GO

Theorem: The individually optimal policy is
also globally optimal
 Proof outline. Same idea:
Deviating from IO for the first time step (with
the lowest priority job) and then following IO
 hurts the lowest priority job, and
 has no effect on the other jobs
 because the lowest priority job has no

externality

Corollary for GO policy

The GO policy is a threshold policy:
There are thresholds, tj,
that are easily computed via the IO policy,
s.t. if j is the lowest indexed available server,
and if n ≥ tj,
the GO policy assigns any job to server j
regardless of the states of less preferred
servers

E-A Scheduling with Reassignment

• Reassignment – can move jobs from one
server to another at any time, without penalty

• GO = IO = threshold policy (similar proof)
• Preference order of servers is more difficult

(no longer an index)
• Threshold computations are more difficult
• Versus the slow server problem (no usage

cost), optimal to use the fastest min{m,n}
servers (m servers, n jobs) easy

E-A Scheduling – Arrivals, Reassignment

• Arrivals of new jobs
• Reassignment (easier with arrivals)
• Now the priorities for the IO policy must be

LCFP-P (Preemptive LCFP)
– Arriving (higher priority) jobs can preempt jobs

in service and can move to different servers
 lower priority jobs have no effect on higher
priority jobs, i.e.,
– Lowest priority job has no externality

Theorem: With reassignment and arrivals,
 IO = GO, a threshold policy

• Same proof
• Policy even more complicated: e.g.,

preference order for servers depends on
arrival rate

E-A Scheduling – Arrivals, Reassignment

• Arrivals of new jobs
• No reassignment and Two servers
• IO Priorities: LCFP-P (Preemptive LCFP)

– Arriving (higher priority) jobs can preempt jobs
in service, but cannot move (unless preempted)

 With two servers, lower priority jobs have no
effect on higher priority jobs, i.e.,
– Lowest priority job has no externality

E-A Scheduling – Arrivals, No Reassignment

Theorem: Without reassignment and two
servers, IO = GO, a threshold policy
• Same proof
• Can implement GO with FCFS, without moving

jobs
Theorem: Without reassignment and more
than two servers, IO ≠ GO
• Now the lowest priority job in queue imposes an

externality on other jobs

E-A Scheduling – Arrivals, No Reassignment

Energy-Aware Scheduling – Summary

Theorem: The IO policy is a threshold policy,
and IO = GO, when
• No arrivals, with or without reassignment
• Arrivals, and jobs can be reassigned
• Arrivals, no reassignment, and 2 servers
IO ≠ GO with arrivals, no reassignment, > 2 servers
Conjecture: (arrivals, no reassignment, > 2 servers)
GO is a threshold policy, server j threshold will depend
on states of servers j+1,…m (like Weber’s slow-server
conjecture, but server preference order complicated)

Motivation: Multi-lingual call center
with bilingual and monolingual customers:

 Press 1 for English.
 Press 2 for Spanish.

What is the benefit of inserting
 Press 0 for bilingual?

How does it depend on
 p: the proportion who are bilingual?

Mobile Millennium project (cell phones and traffic)
Product substitution in make-to-order systems
Internet packet routing

III. Marginal Returns to Routing Flexibility

III. Model with Customer Flexibility

Flexible customers follow JSQ = Join the Shortest Queue
Total Arrival Process: Strongly mixing, state-
 independent, Bernoulli splitting
Stationary and ergodic

λ(1-p)/2

λ(1-p)/2

λp flexible

A proportion p of arrivals are flexible,
the rest are dedicated to a particular server

dedicated

dedicated
Exp(μ)

Mean # in system as a function of p

ρ = 90%

2 servers

Flexible servers:

Flexible customers:

No flexibility:

Single fast server:

At 20% flexible,
achieve 80% of

maximum possible
improvement

He and Down (2009): In the diffusion limit, the
full benefit of customer flexibility is achieved
for p arbitrarily close to 0

A little flexibility goes a long way

ρ→1

 That W(p) is decreasing in p follows from the
optimality of JSQ = Join the shortest queue.

 Winston (1977), Weber (1978),
 Ephremides, Varaiya and Walrand (1980),
 Johri (1989), Hordijk and Koole (1990),
 Menich and Serfozo (1991),
 Sparaggis et al. (1990, 1993, 1994,1999),
 Bambos and Michailidis (2002),
 Movaghar (2005)
 We will show monotonicity as the first step to

convexity, by way of IO = GO.

Steady-State Mean Waiting Time, W(p)

Marginal Behavior of W(p)

Consider a single tagged “ε” customer that
has lowest preemptive priority, and that
may be flexible or dedicated.

 The ε customer has no externality on the
other customers
 The ε customer “embodies” the marginal
difference of more flexibility in the mean
waiting time

Y(p) := the difference in mean waiting time for the ε
customer if it goes to the long queue rather than the
short queue upon arrival

 = “the marginal (IO) flexibility advantage”

Theorem: The ε customer embodies the GO
flexibility advantage:

IO for ε customer = GO

2/)(
)()(

lim)(' 0 pY
pWpW

pW

 The factor of 2 is because a dedicated customer will
go to the short queue with probability ½.

The ε customer

?
ε

Note that under FCFS:
 JSQ = IO for the ε customer – immediate

Theorem: Given the ε customer has lowest
preemptive priority, then JSQ = IO for the ε
customer, i.e., Y(p) ≥ 0.

 JSQ = GO and W(p) ↓ in p.

Consider a sample path from the time the ε
customer arrives until the first of

• The two queues (excluding the ε customer) are
equal Y(p) = 0

• The ε customer leaves the short queue
 Y(p) ≥ 0 ■

 JSQ is IO for the ε customer
 JSQ is GO (IO = GO) W(p) decreasing

Y(p) ≥ 0, i.e., JSQ is IO – Proof Idea

Theorem: Y’(p) ≤ 0 (so W(p) is convex in p)
Proof Idea: In addition to the ε customer,

let there be a single “δ” customer

that is flexible in system 1 and dedicated in system 2,

and that has lowest preemptive priority, except with
respect to the ε customer.

The δ customer “embodies” the marginal impact of
more flexibility on the ε customer.

Convexity of W(p): Y’(p) ≤ 0

2/)(''
)()(

lim)(' 0 pW
pYpY

pY

The “δ” customer is `
flexible in system 1 and dedicated in system 2.

Consider coupled sample paths from the time the ε
customer arrives until the first of

• The two queues (excluding the ε customer) are equal
 Y’(p) = 0

• The δ customer arrives and goes to the short queue
in system 1, coin flip in system 2

 ε customer with JSQ may be delayed in system 1
 Y’(p) ≤ 0 ■

Proof Idea Continued

• More than two queues
• Multiple-server stations
• Customer impatience (abandonment,

reneging)
• Common random service rate (e.g., due to

preventive maintenance)

Extensions

• Using customer flexibility may be much
cheaper than creating server flexibility
(cross training servers)

• The model and results also apply to cross
training, p = proportion of customers that
servers are cross trained to serve
(e.g., easy or general queries)

• Dedicated customers are better off with
more flexible customers: Wd(p) ↓ p

Aside on Customer Flexibility

• JSQ alternative: Flexible customers “virtually” join
all queues, and start service as early as possible
 JSW = join the smallest work

• Or, for maximum efficiency,
queue flexible customers separately and
schedule optimally:
 DCF: Serve Dedicated Customers First
 Lose incentive compatibility

• JSW is the overall best:
– W(p) is (empirically) almost as low as DCF
– Incentive compatible

Aside on Customer Flexibility

• Characterizing GO policies is often hard.
• Characterizing IO policies is often easy.
• To make the two coincide, we define a lowest

priority worker/customer/job that “embodies”
the (global) marginal effect of an extra
worker, extra job, or extra flexibility, and has
no externality.

• The IO perspective is often easier to
generalize and it gives a simple means for
implementation and computation.

Conclusions

