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Abstract 
 

This tutorial will focus on single-hop stochastic processing networks. That is, in the network 
models to be considered, arriving jobs of various types each require a single service before 
departing, but that service may be obtainable from several different servers, or may require 
capacity allocations from several servers simultaneously. In the heavy traffic parameter 
regime, the dynamic scheduling problem for the processing network is formally 
approximated by a corresponding Brownian control problem (BCP). In all cases the 
approximating BCP is more tractable than the conventional scheduling problem that it 
replaces. In particular, the approximating BCP may have a smaller effective dimension than 
the original problem, and if its effective dimension is one, then the approximating BCP can 
be solved explicitly. Many open problems remain, especially concerning the translation of 
Brownian solutions back into the conventional model context. 
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The Processing Network Paradigm 

 
A processing network model involves the following primitive elements.  (A processing net-
work might be called by a more specific name, like “transport system” or “service supply 
chain” if the speaker wants to emphasize a particular application domain.) 

 
• m materials  (jobs, customers, applications, requests, etc.) 
• n activities  (elemental units of technology) 
• p resources  (endowed with capacities, not consumed by activities) 

 
Resources engage in activities.  Activities create, destroy or transform materials. 
 

References 
 
T. C. Koopmans (1951), Activity analysis of production and allocation, Wiley, New York.  
 
L. V. Kantorovich, Mathematical methods in the organization and planning of production 
(1960), Management Science, 6, 366–422. 
 
G. B. Dantzig (1963), Linear programming and extensions, Princeton U. Press. 
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Stochastic Processing Networks 

 
Queueing and inventory models, the central focus of stochastic OR, are suggestive of 
something quite fundamental, but the standard textbook treatment of those subjects is 
narrow in its applicability.  Can one place conventional stochastic models in a broader 
framework that has greater conceptual scope? Yes. Generalize the framework proposed by 
Koopmans et al. to allow the amount of input flow or output flow produced by an activity, 
and the magnitude of exogenous input flows and output flows, to be stochastic. 
 

 
General References 

 
Harrison, J. M. (2000). Brownian models of open processing networks: Canonical 
representation of workload. Ann. Appl. Probab., 10 75-103.  Correction 13 (2003) 390-393. 
 
Harrison, J. M. (2002). Stochastic Networks and Activity Analysis, in Yu. Suhov (ed.), 
Analytic Methods in Applied Probability.  In Memory of Fridrih Karpelevich. American 
Mathematical Society, Providence, RI, 53-76. 

 
http://www.math.ucsd.edu/~williams/talks/belz/belz1.pdf 
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A Multi-Mode Resource Sharing Model 
(Bandwidth Sharing Model with Multi-Path Routing) 

 
• Jobs of types 1, …, m arrive via independent renewal processes at rates λ1, …, λm. 
 

• The processing system is composed of resources (or servers) numbered 1, …, p. The 
capacity of each resource is 1 by convention. 

 

• Processing activities are indexed by j = 1, …, n. We assume that each activity serves just 
one job type. By definition, one unit of activity j provides one unit of service to the 
associated job type. Define Mij = 1 if activity j serves type i, and Mij = 0 otherwise. 

 

• Each type i job has a size that is drawn from a type-specific distribution with mean µ𝑖
−1. 

When the cumulative amount of service provided to a job equals its size, the job departs. 
 

• An activity may, in general, consume the capacity of more than one resource. We denote 
by Akj the rate at which activity j consumes the capacity of resource k.  

 

• Thus the n-vector x of activity levels (or activity rates) that is chosen at any given time 
must satisfy Ax ≤ e, where A is the p×n matrix (Akj) and e is the p-vector of ones. 
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A Simple Parallel-Server Model  
 

     
 
 

M = �1 1 0
0 0 1� 

 
 

A = �1 0 0
0 2 1� 

  

1 2

21

= 1.3ρ
= 1

= 0.4ρ
= 1
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A Bandwidth Sharing Model

λ6=0.3ρ

λ1=0.4ρ λ2=0.2ρ

Link 1 Link 2

λ3=0.5ρ

Link 3

λ5=0.2ρ

λ4=0.3ρ

Mean file size is 1 for each job type 

At ρ=1, all three resources (links) are critically loaded 
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Mathematical Formulation 
 

Taken as primitive are a non-decreasing normalized input process Ei = {Ei(t), t ≥ 0} and a 
non-decreasing output processes Fi = {Fi (t), t ≥ 0} for each job type i = 1, …, m. These are 
renewal processes with E(Ei(t)) ∼  t and E(Fi (t)) ∼ µit  as t → ∞. 
 

Also given are a strictly positive m-vector λ = (λi) of average arrival rates, an m×n matrix 
M = (Mij) having a single 1 in each column and the rest zeros, and a non-negative p×m 
matrix  A = (Akj) of capacity consumption rates.  
 

A control policy is an adapted, non-negative, n-dimensional process x = {x(t), t ≥ 0} whose 
components xj(t) specify activity levels as functions of time.  
 
𝑆𝑖(𝑡) = ∑ 𝑀𝑖𝑗

𝑛
𝑗=1 ∫ 𝑥𝑗(𝑢) 𝑑𝑢𝑡

0   for i = 1, …, m    and t ≥ 0 (cumulative service levels)  
 
𝐽𝑖(t) = 𝐸𝑖(λi t) −𝐹𝑖(𝑆𝑖(𝑡))         for i = 1, …, m    and t ≥ 0 (job count process) 
  
Ax(t) ≤ e (the p-vector of ones)   t ≥ 0  (capacity constraints) 
 
J(t) ≥ 0  t ≥ 0  (state space constraint) 
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Cost Structure 
 
We are also given a strictly convex holding cost function h: 𝐑+

𝑚→ 𝐑 of the form 
 

ℎ(𝑧) = ∑ 𝑐𝑖𝑧𝑖1+α𝑚
𝑖=1 , where c1, …, cm > 0 and α > 0, 

 
and we define the cumulative cost process 
 

ξ(t) = ∫ ℎ(𝐽(𝑢)) 𝑑𝑢𝑡
0 ,   t ≥ 0. 

 
For concreteness, let’s say that the system manager’s objective is to  
 

minimize E[ξ(T)] , 
 
where the time horizon T is large. 
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Reduction to a Standard Model 
 

Let us define the achievable region 𝑅 = {𝑦∈𝐑+
𝑚:𝑦 = 𝑀𝑥,𝐴𝑥 ≤ 𝑒, 𝑥 ≥ 0}. That is, R 

consists of all service rate vectors y = Mx that are available to the system manager.  
 
Theorem. 𝑅 = {𝑦∈𝐑+

𝑚: 𝐴̂𝑦 ≤ 𝑒}, where 𝐴̂ is a non-negative 𝑝̂×m matrix (𝑝̂ is a positive 
integer) having at least one positive element in each column, and e is the 𝑝̂-vector of ones. 
 
Proof.  This is Proposition 5.1 of Kang et al. (2009), but essentially the same result appeared 
in Section 3.3 of Kelly, F.P. (1991). Loss networks. Ann. Appl. Probab. 1 319-378. 
 
Thus we see that the original model is completely equivalent to another one whose service 
rate matrix 𝑀�  is the m×m identity matrix. That is, in the equivalent model each activity i = 1, 
… , m simply serves job type i at unit rate. The equivalent model has 𝑝̂ resources, each with 
unit capacity, and has capacity consumption matrix 𝐴̂. We call the equivalent model 
standard if 𝑝̂ is minimal. 
 

Reference 
 
Kang, W. N., Kelly, F. P., Lee, N. H. and Williams, R. J. (2009). State space collapse and 
diffusion approximation for a network operating under a fair bandwidth sharing policy. Ann. 
Appl. Probab. 19 1719–1780.          
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The Simple Parallel-Server Example  
 
 

                                                                
   
 
   M = �1 1 0

0 0 1�                                    𝑀�  = �1 0
0 1� 

 
 
                  A = �1 0 0

0 2 1�                    𝐴̂ = �2/3 1/3
0 1 � 

y1

1

y2

1 3/20

Achievable Region R
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A Last Bit of Notation 
 

 
Let  D = diag(µ1, …,µm) and 
 

∆ = {δ∈𝐑+
𝑚: δ = Dy, y∈R}. 

 
Thus ∆ is the set of all long-run average departure rates for the various job types that are 
achievable given our resource capacity constraints. 
 
For our simple parallel server example, ∆ = R. 
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The Heavy Traffic Parameter Regime 
 

Consider a standard model with data (λ, µ, A), and define the set ∆ of achievable departure 
rates as above. We say that the network is in heavy traffic if (i) the arrival rate vector λ is 
close to a vector λ∗ > 0 that is on the boundary of ∆, and (ii) the relevant time horizon T is 
large. More precisely, we define heavy traffic as follows: there exists λ∗ > 0 on the 
boundary of ∆, and a large parameter r > 0, such that 
 

•  the time horizon T is of order r 2 or larger, and  
•  all components of the m-vector θ = r (λ − λ∗) are moderate 
 

 

                          

δ1

δ2

= (1.3, 0.4)

1

1

•
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Approximating Brownian Control Problem 
 
Consider a standard model in heavy traffic, as above, and suppose that 𝐴𝐷−1λ∗= e. (That is, 
to match the nominal arrival rates λ𝑖

∗ one must use the full capacity of all p resources, or to 
put it another way, all p resources are critical in the heavy traffic limit under consideration.) 
The system manager’s problem is then plausibly well approximated by the following 
Brownian control problem (BCP). 
  
Here 𝑋 = {𝑋(𝑡), 0 ≤ 𝑡 ≤ τ} is an m-dimensional Brownian motion with drift vector θ and a 
certain covariance matrix Σ. The chosen control 𝑌 = {𝑌(𝑡), 0 ≤ 𝑡 ≤ τ} must be continuous 
and adapted to X with Y(0) = 0, and must further satisfy constraints (1) and (2) below: 
  
(1) 𝑍(𝑡) ≡ 𝑋(𝑡) + 𝑌(𝑡) ≥ 0   (normalized job counts must remain non-negative) 
 

(2) 𝑈(⋅) ≡ A𝑌(⋅) is ↑  (cumulative idleness is non-decreasing for each resource) 
 

(3) E{∫ ℎ(𝑍(𝑡)𝑑𝑡}τ
0   objective to be minimized 

  
Interpretations:  𝑍(𝑡) = 𝑟−1𝐽(𝑟2𝑡)   

 𝑌(𝑡) = 𝑟−1[λ∗𝑟2𝑡 − 𝐷𝑆(𝑟2𝑡)]   
 𝑋(𝑡) = 𝑟−1[𝐸(𝑟2𝑡) − 𝐹(𝑆̅(𝑡)] 
 𝑆̅(𝑡) = 𝑟−2[𝑆̅(𝑟2𝑡) 
       τ = 𝑟−2𝑇 
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Equivalent Workload Formulation of the BCP 
  

Defining the p-dimensional workload process 𝑊(𝑡) ≡ 𝐴𝐷−1𝑍(𝑡), and the p-dimensional 
Brownian motion 𝐵(𝑡) ≡ 𝐴𝐷−1𝑋(𝑡), we can restate problem (1)-(3) as follows: choose a 
control 𝑈 = {𝑈(𝑡), 0 ≤ 𝑡 ≤ τ} to satisfy 
 
(4) minimize  E{∫ ℎ(𝑍(𝑡)𝑑𝑡}τ

0    where  
 
(5) 𝑊(𝑡) =  𝐵(𝑡) + 𝑈(𝑡),  0 ≤ t ≤ τ 
 
(6) 𝑈(⋅)  is  ↑  with  𝑈(0) = 0 
 
(7) 𝑊(𝑡) = 𝐴𝐷−1𝑍(𝑡),  0 ≤ t ≤ τ, 
         for some continuous process 𝑍(𝑡) ≥ 0. 
 
Of, course, (7) requires that 𝑈(⋅) be chosen so as to keep 𝑊(⋅) in the column span of 𝐴𝐷−1 
(see picture above). 

Reference 
 
Harrison, J. M. (2000). Brownian models of open processing networks: Canonical 
representation of workload. Ann. Appl. Probab., 10 75-103.  Correction 13 (2003) 390-393. 

W1

W2

W2 = 2W1

0

U2

U1
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Heavy Traffic Limit with Just One Critical Resource 
 
If some, but not all, of the standard model’s p capacity constraints are binding with the 
nominal arrival rate vector λ∗, we simply drop non-critical resources from the approximating 
BCP, and similarly drop any job classes that require only non-critical resources for their 
processing. We denote by 𝑝� the number of critical resources, and by 𝑚�  the number of critical 
job classes that are retained in the approximating BCP. 
 
The extreme scenario, illustrated by our simple parallel-server example (see below), is that 
with a single critical resource (that is, 𝑝� = 1), which means that λ∗ lies on just one of the 
hyperplanes that form the outer boundary of the polytope ∆.  
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When 𝑝� = 1 and non-critical resources are dropped from the model, the resulting capacity 
consumption matrix 𝐴̃ is a 1×𝑚�  vector normal to the (unique) boundary hyperplane of ∆ on 
which λ∗ lies. 
  

δ1

δ2

1

1

•

2/3,1/3)
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Equivalent Workload Formulation  
of a One-Dimensional BCP 

  
Assuming that 𝑝� = 1, define the one-dimensional Brownian motion 𝐵(𝑡) ≡ 𝐴̃𝑋(𝑡). The 
problem is to choose a one-dimensional control 𝑈 = {𝑈(𝑡), 0 ≤ 𝑡 ≤ τ}  to  
 
(4) minimize  E{∫ ℎ(𝑍(𝑡)𝑑𝑡}τ

0    where  
 
(5) 𝑊(𝑡) =  𝐵(𝑡) + 𝑈(𝑡),  0 ≤ t ≤ τ 
 
(6) 𝑈(⋅)  is  ↑  with  𝑈(0) = 0 
 
(7) 𝑊(𝑡) = 𝐴̃𝑍(𝑡) for some continuous process 𝑍(𝑡) ≥ 0. 
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Pathwise Solution of a One-Dimensional BCP 
 
The optimal solution is 

𝑈∗(𝑡) = − 𝑚𝑖𝑛
0≤𝑢≤𝑡 𝐵(𝑢),  0 ≤ t ≤ τ, 

 
which minimizes cumulative idleness of the one critical resource, and hence also minimizes 
workload for that resource, at all times t simultaneously, together with 
 

𝑍∗(𝑡) ∈ argmin {ℎ(𝑧): 𝐴̃𝑧 = 𝑊∗(𝑡), 𝑧∈𝐑+
𝑚},          

 
where 𝑊∗(𝑡) = 𝐵(𝑡) + 𝑈∗(𝑡). That is, the optimal control strategy minimizes workload in 
the pathwise sense, and holds the workload at each time t in a least-cost job count vector. 
 

 
Further Detail on the Pathwise Solution 

  
With a cost function of the assumed form ℎ(𝑧) = ∑ 𝑐𝑖𝑧𝑖1+α𝑚�

𝑖=1 , the optimal choice 
𝑍∗(𝑡) given 𝑊∗(𝑡) is  
 

𝑍𝑖∗(𝑡) = β𝑖𝑊
∗(𝑡)   where  β𝑖 = 𝑐𝑖

−1/α/∑ 𝐴̃1𝑖𝑐𝑘
−1/α𝑚�

𝑘=1   for i = 1, …, 𝑚� . 
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MaxWeight (MW) Scheduling  
  

For our standard model with 𝑝 resources, m job classes, arrival rate vector λ, and capacity 
consumption matrix 𝐴, the MW scheduling rule is as follows: at each time t choose the m-
vector y of service rates so as to  
 

maximize  ∑ 𝑐𝑖µ𝑖𝑦𝑖  𝐽𝑖
α𝑚

𝑖=1 (𝑡)   subject to  𝐴𝑦 ≤ 𝑒,  y ≥ 0. 
 
This is the vector y which maximizes the expected rate of decrease in the cost rate h(J(t)). 
 

Theorem. Consider a standard model with capacity consumption matrix 𝐴. Let there be 
given a sequence of arrival rate vectors {λ𝑟 , 𝑟 = 0, 1, … } that approach a limit λ∗ > 0 
that lies on just one boundary hyperplane of the polytope ∆. Let there also be given a 
sequence of time horizons {𝑇𝑟 , 𝑟 = 0, 1, … }. Assume that r(λ𝑟 − λ∗) → θ ∈ 𝐑𝑚 and 
𝑟−2𝑇𝑟→ τ > 0 as r → ∞.  
 
Let  𝑍𝑟 = { 𝑍𝑟(𝑡), 0 ≤ 𝑡 ≤ τ } be the corresponding sequence of diffusion-scaled job 
count processes using MaxWeight scheduling, and let  𝑍∗ = { 𝑍∗(𝑡), 0 ≤ 𝑡 ≤ τ } be the 
optimal solution of the one-dimensional BCP described earlier. Then  𝑍𝑟 converges 
weakly (that is, converges in distribution) to  𝑍∗ as r → ∞. 
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Stolyar, A. L. (2004). MaxWeight scheduling in a generalized switch: State space collapse 
and workload minimization in heavy traffic. Ann. Appl. Probab., 14 1–53. 
 
Mandelbaum, A., and Stolyar, A. L. (2004). Scheduling flexible servers with convex delay 
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855. 
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 How MW Scheduling Works in Heavy Traffic  
  

Assuming that 𝑝� = 1 (just one resource constraint binding in the standard model), let us 
define the one-dimensional workload process 𝑤(𝑡) = 𝐴̃𝐽(𝑡). In heavy traffic (that is, when 
λ is close to λ∗), the value of  𝑤(𝑡) changes slowly.  
 
Because MW continually strives to maximize the expected rate of decrease in the cost rate 
h(J(t)), at any given workload level 𝑤(𝑡) = 𝑤, it drives J(⋅) toward the vector z* which 
minimizes h(z) subject to the constraints 𝐴̃𝑧 = 𝑤, 𝑧 ≥ 0. The solution to that optimization 
problem is 𝑧∗ = β 𝑤, where β = (β𝑖) is the strictly positive m-vector identified above. Thus 
the processes 𝐽(𝑡) and β 𝑤(𝑡) are indistinguishable in the heavy traffic limit. This is called 
state space collapse. 
 
Given that job types are held in essentially fixed ratios, the MW rule selects very nearly the 
same service rate vector y at all times, namely, the vector  
 

𝑦 = (λ1
∗

µ1
, … , λ𝑚

∗

µ𝑚
). 

 

That service rate vector fully utilizes the one critical resource, provided that there is work in 
the system for the critical resource to do. Thus, cumulative idleness of the critical resource 
is minimized, or to put it another way, the associated workload process w(⋅) is minimized in 
the pathwise sense. 
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A Complex Parallel-Server Example 
   
 

 
 
 

Is this system in heavy traffic? 
 

If so, does the corresponding standard model have a single critical resource?  

1 2

1 2

3 4

3
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The Static Planning Problem 
 
Find average activity rates  x1 , …, xn  and a scalar ρ to  
 

minimize   ρ   
  subject to the constraints   DMx = λ ,  Ax ≤ ρe,  and  x ≥ 0 

 
Interpret ρ as an upper bound on utilization rates for the various resources under processing 
plan x. 
 
 

The Dual of the Static Planning Problem 
 
Find vectors u  =  (u1 , …, um)  and  v = (v1 , …, vp) to  
 

maximize   u ′λ 
   subject to the constraints   u′M ≤ v′A,  v′e = 1,  and  v ≥ 0. 

 
 
Interpret ui as the total work content ascribed to a type i job, and vk as the relative capacity 
of resource k. 
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The Complex Parallel-Server Example in Harrison-Lopez (1999) 

 

•  The static planning problem has a unique optimal solution (x*, ρ*).  Moreover, ρ* = 1 
and  Ax* = e. It follows that λ lies on the boundary of the achievable region 𝑅. 

 
•  The dual of the static planning problem has a unique optimal solution (u*, v*).  It follows 

that the corresponding standard model has a single critical resource (that is, just one 
resource constraint is binding in the equivalent standard model), and v* is normal to the 
single boundary hyperplane on which λ lies. 

 
•  Thus, assuming that the time horizon T is large, this is a system in heavy traffic, its 

approximating Brownian control problem is one-dimensional, and the MaxWeight 
scheduling rule is asymptotically optimal in the heavy traffic limit.  

 
 

Why does this stochastic processing network behave essentially like a 
single-resource system? That is, in what sense do its three processing 
resources, each critically loaded under the given arrival rate vector λ, 
constitute a single pool of fungible capacity? (This phenomenon is 
called complete resource pooling.) 
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The Complex Parallel-Server Example (Continued) 
 
 

 
 
 
 

References 
 
Harrison, J. M., and Lopez, M. J.  (1999). Heavy Traffic Resource Pooling in Parallel-
Server Systems, Queueing Systems, 33 339-368. 
 
Stolyar, A. L. (2004). MaxWeight scheduling in a generalized switch: State space collapse 
and workload minimization in heavy traffic. Ann. Appl. Probab., 14 1–53. 
 

1 2 3 4

1 2 3

The arrows in this diagram 
correspond to activities j which 
are used at positive levels in the 
nominal processing plan 

The system is effectively one-
dimensional because all servers 
communicate.
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Dynamic Scheduling with Linear Costs 
 

If we take α  =  0 in our cost function, then the MW scheduling rule amounts to the following: 
choose the vector y of service rates to 
 

maximize   ∑ 𝑐𝑖µ𝑖𝑦𝑖
𝑚
𝑖=1   subject to    𝑦 = 𝑀𝑥, 𝐴𝑥 ≤ 𝑒, 𝑥 ≥ 0. 

 
This is the classical cµ rule. It directs us to choose instantaneous service rates greedily, striving 
to drive down the current cost rate ℎ(𝐽(𝑡)) = ∑ 𝑐𝑖  𝐽𝑖(𝑡)𝑚

𝑖=1  as fast as possible.  
 
For our simple parallel server model, this means the  
following: server 2, given a choice between serving job  
type 1 at rate ½ and serving job type 2 at rate 1, will  
always choose the former. 
 
This seems consistent with the optimal solution of the  
approximating BCP, which has the following naïve verbal  
paraphrase: never let either server be idle if there is work  
for it in the system, and never allow a queue of type 1 jobs 
to develop. 
 
What is the effect of this priority scheme over the long run? 

1 2

21

= 3

= 2 = 1

= 1
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Greedy Scheduling is Potentially Disastrous with Linear Costs 
 

The graph at right shows the backlog of type 1  
jobs (very few) and of type 2 jobs (growing  
linearly) for the simple parallel-server example 
with greedy scheduling and ρ = 0.95. 
 

Two modifications of greedy scheduling have 
been analyzed in the literature, each restoring 
asymptotic optimality if its policy parameters  
are chosen properly. 
 
•   discrete-review policies  
•   threshold policies 

References 
 
Harrison, J. M. (1998), Heavy traffic analysis of a system with parallel servers: Asymptotic 
analysis of discrete-review policies, Ann. Appl. Probab., 8 822-848. 
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The Bandwidth Sharing Model of Massoulie and Roberts 
 

Files (jobs) of different types arrive according to independent Poisson processes. File sizes 
for type j are random, drawn from an exponential distribution with mean 1/µ𝑗. 
Transmission of a file is treated as pumping of a fluid; amount of fluid to be pumped = size 
of file. Network resources are transmission links (or servers). Link i has capacity Ci (see 
below for the meaning of this). Assume there is “local traffic” on every link. 
 
 

 
 

References 
 
Massoulié, L. and Roberts, J. (2000). Bandwidth sharing and admission control for elastic 
traffic. Telecommunication Systems, 15 185–201. 
 
Kang, W. N., Kelly, F. P., Lee, N. H. and Williams, R. J. (2009). State space collapse and 
diffusion approximation for a network operating under a fair bandwidth sharing policy. Ann. 
Appl. Probab., 19 1719–1780.  

Link 1 Link 2

34 



 
E(Tot) as a Performance Measure 

 
For purposes of this presentation, let us consider a linear cost structure with ci = 1 for all i, 
and further focus on steady-state performance. That is, the performance measure on which 
we focus is 

𝐸(𝑇𝑜𝑡) = �𝐄[𝐽𝑖(∞)]
𝑚

𝑖=1

 

 
 

Bandwidth Sharing Networks versus 
Conventional Queueing Networks 

 
•   No internal buffering 
•   Simultaneous resource possession 
•   Each job has just one “service time” (same for all resources involved in its processing) 
•   Services can be interrupted without penalty or efficiency loss 
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Reference 
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=ρ/2 Link 1 Link 2

Simple Two-Link Linear Network (S2LLN)

λi = rate of Poisson arrival process for jobs of type i
ρ = common load factor for the two links

File size distribution is exponential with mean 1 for each type 

=ρ/2 =ρ/2

36 



λ4=ρ/2

λ1=ρ/2 λ2=ρ/2

Link 1 Link 2

λ3=ρ/2

Link 3

Simple Three-Link Linear Network (S3LLN)

λi = rate of Poisson arrival process for jobs of type i
ρ = common load factor for the three links

File size distribution is exponential with mean 1 for each type 
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Complex Three-Link Linear Network (C3LLN)

λ6=0.3ρ

λ1=0.4ρ λ2=0.2ρ

Link 1 Link 2

λ3=0.5ρ

Link 3

λ5=0.2ρ

λ4=0.3ρ

File size distribution is exponential with mean 1 for each type 
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Proportionally Fair (PF) Resource Allocations 
 
Let J(t) = n = (ni) be the vector of job counts for different types at a given time t. The vector 
y = (yi) of proportionally fair service rates solves the following problem:  
 

(1)       
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
𝐴𝑦 ≤ 𝑒
𝑦∈Φ(𝑛)

∑ 𝑛𝑖𝑖 log𝑦𝑖 , 

 
where Φ(𝑛) is the set of allocation vectors y ≥ 0 such that yi = 0 if ni = 0.  
 
 
PF allocations are non-extremal: every job that is currently active gets some bandwidth 
allocation, regardless of network status. 
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Can We Improve on Proportional Fairness? 
 

• S2LLN 
Load (ρ) 𝑬(𝑻𝒐𝒕) under  

PF 
𝑬(𝑻𝒐𝒕) under 
UFOS 

Improvement 

0.80 7.33 6.05 17.4% 
0.90 17.17 13.26 22.8% 
0.95 37.11 27.13 26.9% 

 
• S3LLN 

Load (ρ) 𝑬(𝑻𝒐𝒕) under  
PF 

𝑬(𝑻𝒐𝒕) under 
UFOS 

Improvement 

0.80 10.56 9.03 14.5% 
0.90 25.20 19.66 22.0% 
0.95 53.97 41.71 22.7% 

 
• C3LLN 

Load (ρ) 𝑬(𝑻𝒐𝒕) under  
PF 

𝑬(𝑻𝒐𝒕) under 
UFOS 

Improvement 

0.80 10.34 8.12 21.5% 
0.90 24.75 17.57 29.0% 
0.95 54.29 36.23 33.3% 
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Brownian Control Problem (BCP) 
 

• formally approximates the dynamic bandwidth allocation problem 
• approximating BCP is reduced to an equivalent workload formulation 
• state descriptor is a Brownian analog W of the workload process w defined earlier 
• components of control process 𝑈 represent cumulative unused capacity for links 
• main system equation is  𝑊(𝑡) = 𝐵(𝑡) + 𝑈(𝑡), 𝑡 ≥ 0,  where B is a Brownian motion 
 

 
  

W1

W2

0

U1

U2

W must be kept within a certain polyhedral cone,
and because of our local traffic assumption, that
cone is the entire orthant.

Thus there exists an admissible control U* in the
approximating BCP that gives a minimal work-
load process W*,

W* is a reflected Brownian motion (RBM) living
in the entire non-negative orthant, with normal
reflection from each boundary.
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Brownian Approximation (Continued) 
  

In the approximating BCP, moreover, the Brownian analog of the job count process J can be 
any process 𝑍 = {𝑍(𝑡), 𝑡 ≥ 0} that is consistent with the chosen workload process W, 
meaning that 𝑊(𝑡) = 𝐴𝑍(𝑡) and 𝑍(𝑡) ≥ 0 for each 𝑡 ≥ 0. The best choice is 𝑍(𝑡) =
𝑓(𝑊(𝑡)), where 
 

𝑓(𝑊) = 𝑎𝑟𝑔𝑚𝑖𝑛  {ℎ(𝑍) ∶ 𝐴𝑍 = 𝑊, 𝑍 ≥ 0}   for  𝑊 ≥ 0. 
 

 
Hierarchical Greedy Ideal (HGI Performance) 

 
𝐸�ℎ�𝐽(𝑡)�� =  𝐸[𝑓(𝑤∗(𝑡) )]  for all t ≥ 0. 

 
(a) Workload process closely approximates the minimal workload 𝑤∗. That is, we approach 

the ideal where no link’s capacity is ever under-utilized while there is work for that link 
anywhere in the system 

 
(b) Instantaneous cost rate ℎ�𝐽(𝑡)� at each time t is near its minimum possible value given 

the current workload vector. That is, the workload is held in a nearly-least-cost 
configuration.  
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Does HGI Performance = Optimal Performance? 
 

For the S3LLN (pictured below) one has 
 

f (1,0,1) = (1,0,1,0)  with associated cost  h(1,0,1,0) = 2 
 

f (1,1,1) = (0,0,0,1)  with associated cost  h(0,0,0,1) = 1 
 
 

 
 
  
Thus, in general, the function f (⋅) is not necessarily monotone, and hence HGI performance 
is not necessarily optimal performance. 
  

λ4=ρ/2

λ1=ρ/2 λ2=ρ/2

Link 1 Link 2

λ3=ρ/2

Link 3
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Striving for HGI Performance via the UFOS Algorithm 

 
Assume the ultimate goal is to minimize E(Tot) for an M-R network. UFOS (utilization first, 
output second) is the following hierarchical greedy algorithm. 
 
Let n = (nj) be the vector of current job counts for different types. We first identify the set of 
allocation vectors x = (xj) that solve the following problem (maximize total utilization first):  
 

(1)       
𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 
𝐴𝑥 ≤ 𝐶
𝑥∈Φ(𝑛)

∑ (𝐴𝑥)𝑖𝑖  . 

 
where Φ(𝑛) is the set of allocation vectors x ≥ 0 such that xj = 0 if nj = 0. Within the set of 
allocation vectors that achieve the max in (1), choose one that solves the following problem 
(output second): 
 
(2)       maximize ∑ µ𝑗𝑥𝑗𝑗  , 
 
where µ𝑗

 −1 is the mean file size for class j.  
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UFOS versus HGI for the Three Examples 
 

 
 

 
 

  
  

UFOS HGI Difference

S2LLN 6.06 5.74 5.58%

S3LLN 8.94 8.80 1.57%

C3LLN 8.12 7.31 11.12%

S2LLN 13.19 12.66 4.20%

S3LLN 19.81 19.06 3.94%

C3LLN 17.57 16.00 9.84%

S2LLN 27.16 26.46 2.67%

S3LLN 40.47 39.46 2.56%

C3LLN 36.23 33.29 8.82%

E(Tot)

ρ=0.8

ρ=0.9

ρ=0.95
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Open Problem 
 
 

How to achieve HGI performance in general. 
 
 
 
 

 
 
 
 
 
 

Reference 
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