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@ Maker-Breaker Games

o

Maker-Breaker Games



@ Two player, complete information game
@ Collection of winning subsets F c 2E(G)
@ Breaker and Maker alternately claim edges of G

@ Maker wins if he claims some subset in F.
Otherwise Breaker wins.

o Typically,
F ={F C E | G[F] has property P}

where P is an increasing graph property (e.g. has
spanning tree, Hamilton cycle, or perfect matching)

Maker-Breaker Games



Two Classic Results
o P. Erdés and J. Selfridge, On a Combinatorial Game, 1973.
@ V. Chvatal and P. Erdds, Biased Positional Games, 1978.

The Book on Combinatorial Games
@ J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, 2008.

A Recent Break-Through

@ M. Krivelevich, The Critical Bias for the Hamiltonicity Game
is(1+o(1))n/Inn, 2011.
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Some additional recent results

@ M. Stojakovi¢ and T. Szabo, Positional Games on Random
Graphs, 2005

o D. Hefetz, M. Krivelevich, M. Stojakovi¢, and T. Szabé, A
Sharp Threshold for the Hamilton Cycle Maker-Breaker
game, 2009.

@ S. Ben-Shimon, M. Krivelevich, and B. Sudakov, Local
Resilience and Hamiltonicity Maker-Breaker Games in
Random Regular Graphs, 2011.

@ S. Ben-Shimon, A. Ferber, D. Hefetz, and M. Krivelevich,
Hitting Time Results for Maker-Breaker Games, 2011.
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Introduction
of the RG

Random Geometric Graph G(n, rp)

Maker-Breaker Games

@ Pick random points
X1,...,Xn €[0,1]2

@ Connectivity radius r,

° XiXj € E +—
X =Xl < rn

@ Study expected behavior
as n— oo

@ Aj, holds whp means
Pr(A,) =1—-o0(1)
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Maker-Breaker Games
Random Geometric Graphs

Connectivity of RGG

Theorem (cf. Penrose, Random Geometric Graphs, 2003)
Let x € R be a constant. If

2 _ Inn+ w(1)
n- n

then

lim P[G(n, r,) connected | = 1.
n—o0

Key idea:
E(deg(v)) =n-area(B(v,rm)) = Inn

and this is enough to guarantee connectivity.

Maker-Breaker Games on Random Geometric Graphs



The hitting radius of increasing graph property P is

pn(P) =inf{r > 0: G(n, r) satisfies P}

Example:

The hitting radius for connectivity is

: Inn
pn(Gis connected) =/ —.
™hn

Maker-Breaker Games
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Theorem (cf. Penrose, Random Geometric Graphs, 2003)
Let x € R be a constant.
e Hitting radius for minimum degree 2 is

Inn+Ininn

>2) =4/ ——M—

pn(3(G) > 2) -
e Hitting radius for minimum degree 4 is

Inn+5Ininn
m™n

pn(6(G) = 4) =

Maker-Breaker Games
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Structure of the RGG

Maker-Breaker Games
Conclusion

The hitting radius for the random geometric graph G(n, r) to be
Maker’s win corresponds to a simple minimum degree condition
as follows:

@ Connectivity game <= 6(G(n,r)) > 2
@ Hamilton Cycle game <= §(G(n,r)) > 4

@ Perfect Matching game <= 6(G(n, r)) = 2 and minimum
edge degree > 3.

Maker-Breaker Games



Introduction
Maker-Breaker Games
Random Geometric Graphs

Why are these minimum degree conditions
necessary?

when 6(G) is... | then Breaker wins...

1 Connectivity game

3 Hamilton Cycle game

because Breaker goes first!

Maker-Breaker Games on Random Geometric Graphs



Game Minimum Degree Hitting Radius
Condition (essentially)

Connectivity i(G)>2 r= \/w

Game mh

Perfect Matching

)(G) > 2, and fif

e Inn+Ininn
Sy n

Game xix; € E(G) then
IN({xi, x;})| = 3
. Inn+5Ininn
Hamilton  Cycle | 6(G) > 4 r=4/ —————
Game ™n
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@ Dissection of [0, 1]? into Tiny Cells
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Introduction
the RGG

If we had §(G) = w(1), then our games would be easy
Maker-win. Must deal with vertices of constant degree.

@ We dissect the square [0, 1] into very small cells
(squares).

@ The good news: most points have lots of neighbors in
nearby dense cells.

@ The not-so-bad news: the rest are in clusters of
well-separated sparse cells.

The dense cells provide the backbone of our strategy. We use
them to handle the sprinkling of sparse cells.

Maker-Breaker Games
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Structure of the RGG

Maker-Breaker Games
Conclusion

IQ

Maker-Breaker Games

Given

2 _ Inn+©(Inlnn)
™n

Let » > 0 be a small constant.
Choose g = q(n) such that

q=nr
This ensures that you need

1 <
N — <00
772

g x g squares to cover B(v,r).



Introduction
Structure of the RG

Maker-Brea

IS

o Fix a large constant T > 0.

@ Acell cis good if
V| > T. Otherwise, ¢ is u
bad.

Define graph I using good cells of
dissection D.

@ V(') = all good cells
@ E(I') ={cc :dist(c,c) <r}

Gives rise to connected components 'max and other smaller
components 5, I3, ...

Maker-Breaker Games
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Structure of the RG

Maker-Brea

o Fix a large constant T > 0.

@ Acell cis good if
V| > T. Otherwise, ¢ is u
bad.

Define graph I using good cells of
dissection D.

@ V(') = all good cells
@ E(I') ={cc :dist(c,c) <r}

Gives rise to connected components 'max and other smaller
components 5, I3, ...
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Dissection of [0, 1]? into Tiny Cells
Structural Lemmas
Obstructions

Structure of the RGG

Cells of I are Good or Bad

Maker-Breaker Games on Random Geometric Graphs
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Structure of the RGG

Maker-Breaker Games
Co 5

Components are Nax and the smaller ', I3, . ..

Categorize each v € V as follows:

@ vis safe: has > T neighbors in a good cell ¢ of Npax

@ visrisky: has > T neighbors in a good cell ¢ of I';, for
i>2
@ v is dangerous: otherwise

Vertices in good cells are safe or risky.

Vertices in bad cells can be safe, risky or dangerous.

Maker-Breaker Games
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Structure of the RGG

Maker-Breaker Games
Col S

Partition G into the unique Giant and a collection of two types
of Obstructions.

The Giant
@ Ihax = Mmax and its nearby safe points

The Obstructions

(<) r,.+ = ['; and its nearby risky points
@ Dangerous Cluster: a maximal clique of dangerous points

Maker-Breaker Games
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@ Structural Lemmas

o
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Structure of the RGG

The Dissection Lemma

The largest component '}, is giant.

max contains > 0.99 - |D| cells whp.

The Obstructions are small and very far apart.

Whp, for obstructions O; # O;
e diam(O;) < r/100
o dist(0;,0)) > r- 1010

Obstructions = small components and dangerous clusters

Maker-Breaker Games



Dissection of [0, 1]? into Tiny Cells
Structural Lemmas
Obstructions

Structure of the RGG

Mmax contains > 0.99 - |D| cells

Lemma (The Giant)
Imax contains > 0.99 - |D| cells whp.

Recall: cell ¢ has side length g = nr

i

SetK>l2>0. E
n

Pick any B = K x K block of cells. M

Maker-Breaker Games on Random Geometric Graphs



Dissection of [0, 1]? into Tiny Cells
Structural Lemmas
Obstructions

Structure of the RGG

Mmax contains > 0.99 - |D| cells

Lemma (The Giant)
Imax contains > 0.99 - |D| cells whp.

Recall: cell ¢ has side length g = nr

i

Set K > lz > 0. e T
T’ NESEEEE EEEEEEEEEENENNTG
Pick any B = K x K block of cells. M
K? o
Area(B) = ?B(V, f') B(v,r)

Maker-Breaker Games on Random Geometric Graphs
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Structure of the RGG

Maker-Breaker Games
Conclusion

Recall: cell ¢ has side length g = nr
Set K > lz > 0.

n
Pick any B = K x K block of cells.

@ 0.99% rows/columns have no
bad cells, because
E(lVne|)=0O(logn) > T.

Maker-Breaker Games
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Maker-Breaker Games
Conclusion

Recall: cell ¢ has side length g = nr
Set K > lz > 0.

n
Pick any B = K x K block of cells.

@ 0.99% rows/columns have no
bad cells, because
E(lVne|)=0O(logn) > T.
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Structure of the RGG

Maker-Break s
C

Recall: cell ¢ has side length g = nr
1

SetK > — > 0.
n

Pick any B = K x K block of cells.

@ 0.99% rows/columns have no
bad cells, because
E(lVnec|)=06(logn) > T.

@ Creates largest component in B

Maker-Breaker Games
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Structure of the RGG

Maker-Br

Recall: cell ¢ has side length g = nr
1

SetK > — > 0.
n

Pick any B = K x K block of cells.

@ 0.99% rows/columns have no
bad cells, because
E(lVnec|)=06(logn) > T.

@ Creates largest component in B

@ Take overlapping blocks to get
["max U

Maker-Breaker Games




Dissection of [0, 1]? into Tiny Cells

Structure of the RGG e [P

Obstructions

diam(r'") < r/100 when j > 2

Whp, diam(r;") <r/100 fori> 2.

@ No good cells in surrounding
half-disks of radius r

o If diam(I';") > r/100 then there
are too many bad cells in a small
area O

Similar proofs that other obstructions are small & that pairs of
obstructions are well-separated

Maker-Breaker Games on Random Geometric Graphs
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@ Obstructions
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Dissection of [0, 1]? into Tiny Cells
Structural Lemmas
Obstructions

Structure of the RGG

Crucial & Important Vertices for an Obstruction

Assign vertices to help with obstruction O

Point v € V is crucial for O if
@ vis safe, and
@ O cCB(v;r),and

rmax

Recall: v safe = dc € [max with
|B(v;r)necnV|>T

The T vertices in ¢ are important for
v and for O.

Maker-Breaker Games on Random Geometric Graphs



Structure of the RGG

The Obstruction Lemma

Consider G(n, r) where

72 =Inn+ (2k — 3)Ininn + O(1),
with k > 2 fixed. Whp the following holds for all obstructions O.
Let |O|=s
e If2 < s < Tthen O has > k + s — 2 crucial vertices;
e If s> T, then O has > k crucial vertices.

Note: Obstructions far apart = crucial vertices for O; # O; are
distinct.

Maker-Breaker Games
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Structure of the RGG
Maker-Breaker Games
Conclusion

0 |0|<T
@ Must be a finite number
of vertices in outer ring

@ Forces existence of
vertices in middle ring
o These vertices
adjacentto O
o Not part of O = safe
or risky
o Must be adjacent to
good cells in [max

Maker-Breaker Games
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Structure of the RGG

Maker-Br

@ There is a giant component I max
of dense cells

@ Obstructions are small and far
from one another

@ Obstructions have enough
crucial vertices to help connect
them to Mmax

Maker-Breaker Games
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Structure of the RGG

Maker-Breaker Games
Conclusion

Minimum Degree §(G) = min,cy deg(v)

With High Probability (whp)
Event A = A, holds whp if lim,_,o, Pr(A,) = 1.

Hitting Radius
The hitting radius of increasing graph property P is

pn(P) =inf{r > 0: G(n, r) satisfies P}

o If r < pp then G(n, r) DOES NOT have property P whp.
o If r > pp then G(n, r) DOES have property P whp.

Maker-Breaker Games



Maker-Breaker Games

Theorem (BDFMS 2013+)
Whp, the RGG process G(n, r) satisfies

pn(Maker wins connectivity game) = pn(6(G(n, r)) > 2).

In particular, if
anr® =Inn+Ininn+ x,

then
1 if Xp — +o0,
nILm P(Maker wins) = ¢ e~ (e7"+Vvme™) jf x. » x ¢ R,
0 if X, — —o0.

Maker-Breaker Games



Connectivity Game
Hamilton Game

Maker-Breaker Games Perfect Matching Game

Hitting Radius for the Connectivity Game

Breaker wins when §(G) < 1
@ Breaker makes an isolated vertex on the very first move

When §(G) > 2

@ We use the Shannon Switching Game result

Theorem (A. Lehman, 1964)

Tthe connectivity game is Maker-win if and only if G admits two
disjoint spanning trees.

Maker-Breaker Games on Random Geometric Graphs
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Maker-Breaker Games
Conclusion

O safe
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Maker-Breaker Games
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Maker-Breaker Games
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Maker-Breaker Games

O safe rmax
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Maker-Breaker Games
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Cc
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@ Hamilton Game

o
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Maker-Breaker Games

Theorem (BDFMS 2013+)
Whp, the RGG process G(n, r) satisfies

pn(Maker wins Hamilton game) = pn(6(G(n, r)) > 4).
In particular, if

anr> =Inn+5Ininn—2In6 + x,

then

1 if X, — +o0,
lim P(Maker wins) =<{ e ¢ " ifx,— xcR,
n—oo o

0 if X, — —o0.

Maker-Breaker Games
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Structure of C

Maker-Breaker Games

c

Before the Game Begins:

Pick a spanning tree T of 'max with maximum degree < 5
@ Such atree T exists because Nmax iS @ geometric graph

Every good cell ¢ € max

@ Atmost T = O(1) vertices are marked. They will be used
to (a) connect with vertices in bad cells, and (b) create
matchings between cells adjacent in 7.

@ The remaining vertices in ¢ are unmarked. These will
become the bulk of the Hamilton cycle. We make a soup of
flexible blob cycles.

Maker-Breaker Games
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Structure of

During the Game, Maker plays lots of mini-games:

@ Create a path through each obstruction and each safe
cluster, ending in marked vertices in the same cell

© Claim two edges between cells adjacent in 7

© Create soup of flexible blob cycles in the unmarked
vertices

Q Claim half the edges from each marked to vertex to the set
of unmarked vertices.

After the Game, Maker stitches together the Hamilton Cycle

Maker-Breaker Games
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Maker-Breaker G S
Conclusion

Let kK > s. An s-blob cycle on k vertices is the union of
@ Ak-cycleon vyq,..., v
@ A complete graph on vy,..., Vs

Maker-Breaker Games
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Let kK > s. An s-blob cycle on k vertices is the union of
@ Ak-cycleon vyq,..., v
@ A complete graph on vy,..., Vs
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Let kK > s. An s-blob cycle on k vertices is the union of
@ Ak-cycleon vyq,..., v
@ A complete graph on vy,..., Vs
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Maker-Breaker Games
Conclusion

Let kK > s. An s-blob cycle on k vertices is the union of
@ Ak-cycleon vyq,..., v
@ A complete graph on vy,..., Vs

Maker-Breaker Games
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Structure of the RGG

Maker-Breaker Games
Conclusion

Mark T = O(1) vertices for connecting to nearby cells,
obstructions and safe vertices. Make blob cycle soup in the
rest.

safe

Maker-Breaker Games
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Maker-Breaker Games
Conclusion

Mark T = O(1) vertices for connecting to nearby cells,
obstructions and safe vertices. Make blob cycle soup in the
rest.

safe
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Structure of the RGG

Maker-Breaker Games
Conclusion

Claim half the edges from each vertex to lower level

T

|

|

|

-- _B -

: safe
|

|

|

Maker-Breaker Games
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Maker-Breaker Games
Conclusion

Maker-Breaker Games

safe

The mini-games
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Structure of the RGG

Maker-Breaker Games
Conclusion

safe

The blob absorption

Maker-Breaker Games
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Maker-Breaker Games
Conclusion

safe

Final Step:
Absorb unused points
(not shown)

Maker-Breaker Games
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@ Perfect Matching Game

o
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Maker-Breaker Games

Theorem (BDFMS 2013+)
Whp, the random geometric graph process satisfies, for n even:

pn(Maker wins p. m. game) = pp(6(G) > 2 and de > 3)
where d¢(G) = min,,cg(g) IN({u, v})|- In particular, if

anr> =Inn+Inlnn+ x,

then

1 if X, — 400,
n&rpo ]}D(Maker Wins) = e—((1+7r2/8)efx+\/;(1+7r)e*x/2) if Xn— X ER,
neven 0 if Xn — —OQ.

Maker-Breaker Games
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Introduction
f the RGG

Game

Minimum Degree
Condition

Hitting Radius
(essentially)

Connectivity Game

5(G) > 2

2 Inn+Ininn
n

Perfect Matching
Game

3(G) > 2, and if x;x; €
E(G) then [N({x;, x;})| >
3

> Inn+Ininn
mhn

Hamilton Cycle Game

Maker-Breaker Games

2 Inn+5Ininn

m™hn



Conclusion

Biased Games

@ What happens when Breaker claims b edges on every
turn, while Maker only claims 1?

@ Our results should extend to constant b, but what about
when b = b(n) = w(1)?
Higher Dimensions

@ What is the critical radius for each of these games for a 3D
(and higher) random geometric graph?

Thank you!



Conclusion

The (a, b) Path Game:
@ Played on K, partitioned into sets
A, B of sizes a, b. A B
@ Maker Goal: create a path between
any two B-vertices that contains all
A-vertices. Katb

The (a, b) Path Game is Maker-win when
e b>6,or;
e ga=3and b > 5, or;
e ac{1,2}and b > 4.

Maker-Breaker Games



Conclusion

The (a, b) Path Game:
@ Played on K, partitioned into sets
A, B of sizes a, b. A o|B
@ Maker Goal: create a path between
any two B-vertices that contains all
A-vertices. Katb

The (a, b) Path Game is Maker-win when
e b>6,or;
e ga=3and b > 5, or;
e ac{1,2}and b > 4.
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Conclusion

s-Blob Cycle Game
@ Played on K,

@ Maker tries to make an s-blob on m
vertices

For s > 4, there is a constant N = N(s) such that the s-Blob
Game is Maker-win on Ky, for m > N(s).

Fun fact: the proof uses Krivelevich’s result on the critical bias
of the Hamilton cycle game on K.

Maker-Breaker Games



Conclusion

s-Blob Cycle Game
@ Played on K,

@ Maker tries to make an s-blob on m
vertices

For s > 4, there is a constant N = N(s) such that the s-Blob
Game is Maker-win on Ky, for m > N(s).

Fun fact: the proof uses Krivelevich’s result on the critical bias
of the Hamilton cycle game on K.
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The (a, b) Matching Game

@ Played on K, partitioned into sets
A, B of sizes a, b.

@ Maker Goal: create a matching that

saturates A Kaib

The (a, b) matching game is Maker-win when

e b>4,or;
e ac{2,3}and b > 3, or;
e a=1and b > 2.

Maker-Breaker Games



Conclusion

The (a, b) Matching Game

@ Played on K, partitioned into sets
A, B of sizes a, b.

@ Maker Goal: create a matching that

saturates A Kaib

The (a, b) matching game is Maker-win when

e b>4,or;
e ac{2,3}and b > 3, or;
e a=1and b > 2.
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