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Maker-Breaker Game on a graph G = (V ,E)

Two player, complete information game
Collection of winning subsets F ⊂ 2E(G)

Breaker and Maker alternately claim edges of G
Maker wins if he claims some subset in F .
Otherwise Breaker wins.
Typically,

F = {F ⊂ E | G[F ] has property P}

where P is an increasing graph property (e.g. has
spanning tree, Hamilton cycle, or perfect matching)
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Maker-Breaker games on graphs and hypergraphs

Two Classic Results
P. Erdős and J. Selfridge, On a Combinatorial Game, 1973.
V. Chvátal and P. Erdős, Biased Positional Games, 1978.

The Book on Combinatorial Games
J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, 2008.

A Recent Break-Through
M. Krivelevich, The Critical Bias for the Hamiltonicity Game
is (1 + o(1))n/ ln n, 2011.
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Maker-Breaker games on Random Graphs

Some additional recent results

M. Stojaković and T. Szabó, Positional Games on Random
Graphs, 2005
D. Hefetz, M. Krivelevich, M. Stojaković, and T. Szabó, A
Sharp Threshold for the Hamilton Cycle Maker-Breaker
game, 2009.
S. Ben-Shimon, M. Krivelevich, and B. Sudakov, Local
Resilience and Hamiltonicity Maker-Breaker Games in
Random Regular Graphs, 2011.
S. Ben-Shimon, A. Ferber, D. Hefetz, and M. Krivelevich,
Hitting Time Results for Maker-Breaker Games, 2011.
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Random Geometric Graph

Random Geometric Graph G(n, rn)

Pick random points
x1, . . . , xn ∈ [0,1]2

Connectivity radius rn

xixj ∈ E ⇐⇒
‖xi − xj‖ ≤ rn

Study expected behavior
as n→∞
An holds whp means
Pr(An) = 1− o(1)
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Connectivity of RGG

Theorem (cf. Penrose, Random Geometric Graphs, 2003)
Let x ∈ R be a constant. If

r2
n =

ln n + ω(1)

πn

then
lim

n→∞
P[G(n, rn) connected ] = 1.

Key idea:

E(deg(v)) = n · area(B(v , rn)) ≈ ln n

and this is enough to guarantee connectivity.

Maker-Breaker Games on Random Geometric Graphs



Introduction
Structure of the RGG

Maker-Breaker Games
Conclusion

Maker-Breaker Games
Random Geometric Graphs

Hitting Radius of an Increasing Property

The hitting radius of increasing graph property P is

ρn(P) = inf{r ≥ 0 : G(n, r) satisfies P}

Example:

The hitting radius for connectivity is

ρn(G is connected) =

√
ln n
πn

.
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Hitting Radii for RGG Minimum Degree

Theorem (cf. Penrose, Random Geometric Graphs, 2003)
Let x ∈ R be a constant.
• Hitting radius for minimum degree 2 is

ρn(δ(G) ≥ 2) =

√
ln n + ln ln n

πn

• Hitting radius for minimum degree 4 is

ρn(δ(G) ≥ 4) =

√
ln n + 5 ln ln n

πn
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Maker-Breaker Hitting Radii for RGG

Theorem (BDFMS 13+)

The hitting radius for the random geometric graph G(n, r) to be
Maker’s win corresponds to a simple minimum degree condition
as follows:

Connectivity game⇐⇒ δ(G(n, r)) ≥ 2

Hamilton Cycle game⇐⇒ δ(G(n, r)) ≥ 4

Perfect Matching game⇐⇒ δ(G(n, r)) = 2 and minimum
edge degree ≥ 3.
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Why are these minimum degree conditions
necessary?

when δ(G) is... then Breaker wins...

1 Connectivity game

3 Hamilton Cycle game

because Breaker goes first!
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Maker-Breaker Hitting Radii for RGG
Game Minimum Degree Hitting Radius

Condition (essentially)

Connectivity
Game

δ(G) ≥ 2 r =

√
ln n + ln ln n

πn

Perfect Matching
Game

δ(G) ≥ 2, and if
xixj ∈ E(G) then
|N({xi , xj})| ≥ 3

r =

√
ln n + ln ln n

πn

Hamilton Cycle
Game

δ(G) ≥ 4 r =

√
ln n + 5 ln ln n

πn
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The Problem: vertices with very low degree

If we had δ(G) = ω(1), then our games would be easy
Maker-win. Must deal with vertices of constant degree.

We dissect the square [0,1] into very small cells
(squares).
The good news: most points have lots of neighbors in
nearby dense cells.
The not-so-bad news: the rest are in clusters of
well-separated sparse cells.

The dense cells provide the backbone of our strategy. We use
them to handle the sprinkling of sparse cells.
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Dissection D of unit square [0,1]2 into cells

q

r

Given

r2 =
ln n + Θ(ln ln n)

π n
.

Let η > 0 be a small constant.
Choose q = q(n) such that

q = ηr

This ensures that you need

≈ 1
η2 <∞

q × q squares to cover B(v , r).

Maker-Breaker Games on Random Geometric Graphs



Introduction
Structure of the RGG

Maker-Breaker Games
Conclusion

Dissection of [0, 1]2 into Tiny Cells
Structural Lemmas
Obstructions

The Structure of Γ

Fix a large constant T > 0.
A cell c is good if
|V ∩ c| ≥ T . Otherwise, c is
bad.

Define graph Γ using good cells of
dissection D.

V (Γ) = all good cells
E(Γ) = {cc′ : dist(c, c′) ≤ r}

q

r

Gives rise to connected components Γmax and other smaller
components Γ2, Γ3, . . .
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Cells of Γ are Good or Bad
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Vertices of G are Safe, Risky or Dangerous

Components are Γmax and the smaller Γ2, Γ3, . . .

Categorize each v ∈ V as follows:

v is safe: has ≥ T neighbors in a good cell c of Γmax

v is risky: has ≥ T neighbors in a good cell c of Γi , for
i ≥ 2
v is dangerous: otherwise

Vertices in good cells are safe or risky.

Vertices in bad cells can be safe, risky or dangerous.
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The Giant and the Obstructions
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The Giant and the Obstructions

Partition G into the unique Giant and a collection of two types
of Obstructions.

The Giant
Γ+

max = Γmax and its nearby safe points

The Obstructions
Γ+

i = Γi and its nearby risky points
Dangerous Cluster: a maximal clique of dangerous points
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Global Structure of RGG G(n, r)

The Dissection Lemma

The largest component Γ+
max is giant.

Γmax contains ≥ 0.99 · |D| cells whp.

The Obstructions are small and very far apart.

Whp, for obstructions Oi 6= Oj

• diam(Oi) < r/100
• dist(Oi ,Oj) > r · 1010

Obstructions = small components and dangerous clusters
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Γmax contains ≥ 0.99 · |D| cells

Lemma (The Giant)

Γmax contains ≥ 0.99 · |D| cells whp.

Recall: cell c has side length q = ηr

Set K >
1
η2 > 0.

Pick any B = K × K block of cells.

Area(B) =
K 2

η2 B(v , r)

K

B(v, r)
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Γmax contains ≥ 0.99 · |D| cells

Recall: cell c has side length q = ηr

Set K >
1
η2 > 0.

Pick any B = K × K block of cells.

0.99% rows/columns have no
bad cells, because
E(|V ∩ c|) = Θ(log n)� T .
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Γmax contains ≥ 0.99 · |D| cells

Recall: cell c has side length q = ηr

Set K >
1
η2 > 0.

Pick any B = K × K block of cells.

0.99% rows/columns have no
bad cells, because
E(|V ∩ c|) = Θ(log n)� T .
Creates largest component in B
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Γmax contains ≥ 0.99 · |D| cells

Recall: cell c has side length q = ηr

Set K >
1
η2 > 0.

Pick any B = K × K block of cells.

0.99% rows/columns have no
bad cells, because
E(|V ∩ c|) = Θ(log n)� T .
Creates largest component in B
Take overlapping blocks to get
Γmax �
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diam(Γ+
i ) < r/100 when i ≥ 2

Lemma

Whp, diam(Γ+
i ) < r/100 for i ≥ 2.

No good cells in surrounding
half-disks of radius r
If diam(Γ+

i ) ≥ r/100 then there
are too many bad cells in a small
area �

Similar proofs that other obstructions are small & that pairs of
obstructions are well-separated
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Crucial & Important Vertices for an Obstruction

Assign vertices to help with obstruction O

v

c
Γmax

O

Point v ∈ V is crucial for O if
v is safe, and
O ⊂ B(v ; r), and

Recall: v safe ⇒ ∃c ∈ Γmax with
|B(v ; r) ∩ c ∩ V | ≥ T

The T vertices in c are important for
v and for O.
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Obstructions have Crucial Vertices

The Obstruction Lemma
Consider G(n, r) where

πr2 = ln n + (2k − 3) ln ln n + O(1),

with k ≥ 2 fixed. Whp the following holds for all obstructions O.
Let |O| = s

• If 2 ≤ s ≤ T then O has ≥ k + s − 2 crucial vertices;
• If s ≥ T , then O has ≥ k crucial vertices.

Note: Obstructions far apart⇒ crucial vertices for Oi 6= Oj are
distinct.
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Obstructions have Crucial Vertices

|O| ≤ T
Must be a finite number
of vertices in outer ring
Forces existence of
vertices in middle ring

These vertices
adjacent to O
Not part of O ⇒ safe
or risky
Must be adjacent to
good cells in Γmax
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Summary: Structure of RGGs

There is a giant component Γmax
of dense cells
Obstructions are small and far
from one another
Obstructions have enough
crucial vertices to help connect
them to Γmax
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Terminology Reminders

Minimum Degree δ(G) = minv∈V deg(v)

With High Probability (whp)
Event A = An holds whp if limn→∞ Pr(An) = 1.

Hitting Radius
The hitting radius of increasing graph property P is

ρn(P) = inf{r ≥ 0 : G(n, r) satisfies P}

If r < ρn then G(n, r) DOES NOT have property P whp.
If r ≥ ρn then G(n, r) DOES have property P whp.
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Hitting Radius for the Connectivity Game

Theorem (BDFMS 2013+)

Whp, the RGG process G(n, r) satisfies

ρn(Maker wins connectivity game) = ρn(δ(G(n, r)) ≥ 2).

In particular, if
πnr2 = ln n + ln ln n + xn

then

lim
n→∞

P(Maker wins) =


1 if xn → +∞,

e−(e
−x+
√
πe−x ) if xn → x ∈ R,

0 if xn → −∞.
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Hitting Radius for the Connectivity Game

Breaker wins when δ(G) ≤ 1
Breaker makes an isolated vertex on the very first move

When δ(G) ≥ 2

We use the Shannon Switching Game result

Theorem (A. Lehman, 1964)
Tthe connectivity game is Maker-win if and only if G admits two
disjoint spanning trees.
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Two Disjoint Spanning Trees in G(n, r)

Γmax

c

c′

safeO
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Hitting Radius for the Hamilton Game

Theorem (BDFMS 2013+)

Whp, the RGG process G(n, r) satisfies

ρn(Maker wins Hamilton game) = ρn(δ(G(n, r)) ≥ 4).

In particular, if

πnr2 = ln n + 5 ln ln n − 2 ln 6 + xn

then

lim
n→∞

P(Maker wins) =


1 if xn → +∞,

e−e−x
if xn → x ∈ R,

0 if xn → −∞.
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Maker’s Hamilton Strategy Overview

Before the Game Begins:

Pick a spanning tree T of Γmax with maximum degree ≤ 5
Such a tree T exists because Γmax is a geometric graph

Every good cell c ∈ Γmax

At most T = O(1) vertices are marked. They will be used
to (a) connect with vertices in bad cells, and (b) create
matchings between cells adjacent in T .
The remaining vertices in c are unmarked. These will
become the bulk of the Hamilton cycle. We make a soup of
flexible blob cycles.
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Maker’s Hamilton Strategy Overview

During the Game, Maker plays lots of mini-games:

1 Create a path through each obstruction and each safe
cluster, ending in marked vertices in the same cell

2 Claim two edges between cells adjacent in T
3 Create soup of flexible blob cycles in the unmarked

vertices
4 Claim half the edges from each marked to vertex to the set

of unmarked vertices.

After the Game, Maker stitches together the Hamilton Cycle
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Blob Cycles

Let k ≥ s. An s-blob cycle on k vertices is the union of
A k -cycle on v1, . . . , vk

A complete graph on v1, . . . , vs
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Let k ≥ s. An s-blob cycle on k vertices is the union of
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A complete graph on v1, . . . , vs
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Maker’s Hamilton Strategy for each Good Cell c

Mark T = O(1) vertices for connecting to nearby cells,
obstructions and safe vertices. Make blob cycle soup in the
rest.

Claim half the edges from each vertex to lower level

O
safe

O
safe

O
safe

The mini-gamesThe mini-gamesThe blob absorptionFinal Step:
Absorb unused points

(not shown)
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Hitting Radius for Perfect Matching Game

Theorem (BDFMS 2013+)
Whp, the random geometric graph process satisfies, for n even:

ρn(Maker wins p. m. game) = ρn(δ(G) ≥ 2 and δe ≥ 3)

where δe(G) = minuv∈E(G) |N({u, v})|. In particular, if

πnr2 = ln n + ln ln n + xn

then

lim
n→∞,
n even

P(Maker wins) =


1 if xn → +∞,

e−((1+π
2/8)e−x+

√
π(1+π)e−x/2) if xn → x ∈ R,

0 if xn → −∞.
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Game Minimum Degree Hitting Radius
Condition (essentially)

Connectivity Game δ(G) ≥ 2 r2 =
ln n + ln ln n

πn

Perfect Matching
Game

δ(G) ≥ 2, and if xi xj ∈
E(G) then |N({xi , xj})| ≥
3

r2 =
ln n + ln ln n

πn

Hamilton Cycle Game δ(G) ≥ 4 r2 =
ln n + 5 ln ln n

πn
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Future Directions

Biased Games

What happens when Breaker claims b edges on every
turn, while Maker only claims 1?
Our results should extend to constant b, but what about
when b = b(n) = ω(1)?

Higher Dimensions

What is the critical radius for each of these games for a 3D
(and higher) random geometric graph?

Thank you!
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Mini-game: the (a,b) Path Game

The (a,b) Path Game:
Played on Ka+b partitioned into sets
A,B of sizes a,b.
Maker Goal: create a path between
any two B-vertices that contains all
A-vertices. Ka+b

A B

Lemma
The (a,b) Path Game is Maker-win when
• b ≥ 6, or;
• a = 3 and b ≥ 5, or;
• a ∈ {1,2} and b ≥ 4.
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Mini-game: Blob Cycle Game

s-Blob Cycle Game
Played on Km

Maker tries to make an s-blob on m
vertices

Km

Lemma
For s ≥ 4, there is a constant N = N(s) such that the s-Blob
Game is Maker-win on Km for m ≥ N(s).

Fun fact: the proof uses Krivelevich’s result on the critical bias
of the Hamilton cycle game on Kn.

Maker-Breaker Games on Random Geometric Graphs



Introduction
Structure of the RGG

Maker-Breaker Games
Conclusion

Summary

Mini-game: Blob Cycle Game

s-Blob Cycle Game
Played on Km
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Mini-game: the (a,b) Matching Game

The (a,b) Matching Game

Played on Ka+b partitioned into sets
A,B of sizes a,b.
Maker Goal: create a matching that
saturates A Ka+b

A B

Lemma
The (a,b) matching game is Maker-win when

• b ≥ 4, or;
• a ∈ {2,3} and b ≥ 3, or;
• a = 1 and b ≥ 2.
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The (a,b) Matching Game
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A B
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