Maker-Breaker Games on Random Geometric Graphs

Andrew Beveridge joint work with Andrzej Dudek, Alan Frieze, Tobias Müller, Miloš Stojaković

Department of Mathematics, Statistics and Computer Science Macalester College

Probability and Graphs Workshop Eurandom 8 January 2014

Outline

Introduction

- Maker-Breaker Games
- Random Geometric Graphs

2 Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions
- 3 Maker-Breaker Games
 - Connectivity Game
 - Hamilton Game
 - Perfect Matching Game

Conclusion

Summary

<mark>Maker-Breaker Games</mark> Random Geometric Graphs

- Maker-Breaker Games
- Random Geometric Graphs

Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions

3 Maker-Breaker Games

- Connectivity Game
- Hamilton Game
- Perfect Matching Game

Conclusion

Summary

Maker-Breaker Games Random Geometric Graphs

Maker-Breaker Game on a graph G = (V, E)

- Two player, complete information game
- Collection of winning subsets $\mathcal{F} \subset 2^{E(G)}$
- Breaker and Maker alternately claim edges of G
- Maker wins if he claims some subset in \mathcal{F} . Otherwise Breaker wins.

• Typically,

 $\mathcal{F} = \{ F \subset E \mid G[F] \text{ has property } \mathcal{P} \}$

where \mathcal{P} is an **increasing graph property** (e.g. has spanning tree, Hamilton cycle, or perfect matching)

<mark>Maker-Breaker Games</mark> Random Geometric Graphs

Maker-Breaker games on graphs and hypergraphs

Two Classic Results

- P. Erdős and J. Selfridge, On a Combinatorial Game, 1973.
- V. Chvátal and P. Erdős, *Biased Positional Games*, 1978.

The Book on Combinatorial Games

- J. Beck, Combinatorial Games: Tic-Tac-Toe Theory, 2008.
- A Recent Break-Through
 - M. Krivelevich, *The Critical Bias for the Hamiltonicity Game* $is (1 + o(1))n/\ln n$, 2011.

Maker-Breaker Games Random Geometric Graphs

Maker-Breaker games on Random Graphs

Some additional recent results

- M. Stojaković and T. Szabó, *Positional Games on Random Graphs*, 2005
- D. Hefetz, M. Krivelevich, M. Stojaković, and T. Szabó, A Sharp Threshold for the Hamilton Cycle Maker-Breaker game, 2009.
- S. Ben-Shimon, M. Krivelevich, and B. Sudakov, *Local Resilience and Hamiltonicity Maker-Breaker Games in Random Regular Graphs*, 2011.
- S. Ben-Shimon, A. Ferber, D. Hefetz, and M. Krivelevich, *Hitting Time Results for Maker-Breaker Games*, 2011.

Vaker-Breaker Games Random Geometric Graphs

- Maker-Breaker Games
- Random Geometric Graphs
- Structure of the RGG
 - Dissection of [0, 1]² into Tiny Cells
 - Structural Lemmas
 - Obstructions
- 3 Maker-Breaker Games
 - Connectivity Game
 - Hamilton Game
 - Perfect Matching Game

Conclusion

Summary

Vaker-Breaker Games Random Geometric Graphs

Random Geometric Graph

Random Geometric Graph $G(n, r_n)$

- Pick random points $x_1, \ldots, x_n \in [0, 1]^2$
- Connectivity radius r_n

•
$$x_i x_j \in E \iff$$

 $||x_i - x_j|| \le r_n$

- Study expected behavior as $n \to \infty$
- A_n holds *whp* means $Pr(A_n) = 1 o(1)$

Maker-Breaker Games Random Geometric Graphs

Connectivity of RGG

Theorem (cf. Penrose, Random Geometric Graphs, 2003)

Let $x \in \mathbb{R}$ be a constant. If

$$r_n^2 = \frac{\ln n + \omega(1)}{\pi n}$$

then

$$\lim_{n\to\infty} \mathbb{P}[G(n, r_n) \text{ connected }] = 1.$$

Key idea:

$$E(\deg(v)) = n \cdot \operatorname{area}(B(v, r_n)) \approx \ln n$$

and this is enough to guarantee connectivity.

Maker-Breaker Games Random Geometric Graphs

Hitting Radius of an Increasing Property

The *hitting radius* of increasing graph property \mathcal{P} is $\rho_n(\mathcal{P}) = \inf\{r \ge 0 : G(n, r) \text{ satisfies } \mathcal{P}\}$

Example:

The hitting radius for connectivity is

$$\rho_n(G \text{ is connected}) = \sqrt{\frac{\ln n}{\pi n}}.$$

Maker-Breaker Games Random Geometric Graphs

Hitting Radii for RGG Minimum Degree

Theorem (cf. Penrose, Random Geometric Graphs, 2003)

Let $x \in \mathbb{R}$ be a constant.

• Hitting radius for minimum degree 2 is

$$\rho_n(\delta(G) \ge 2) = \sqrt{\frac{\ln n + \ln \ln n}{\pi n}}$$

• Hitting radius for minimum degree 4 is

$$\rho_n(\delta(G) \ge 4) = \sqrt{\frac{\ln n + 5 \ln \ln n}{\pi n}}$$

/laker-Breaker Games Random Geometric Graphs

Maker-Breaker Hitting Radii for RGG

Theorem (BDFMS 13+)

The hitting radius for the random geometric graph G(n, r) to be Maker's win corresponds to a simple minimum degree condition as follows:

- Connectivity game $\iff \delta(G(n, r)) \ge 2$
- Hamilton Cycle game $\iff \delta(G(n, r)) \ge 4$
- Perfect Matching game ⇔ δ(G(n, r)) = 2 and minimum edge degree ≥ 3.

Maker-Breaker Games Random Geometric Graphs

Why are these minimum degree conditions necessary?

when $\delta(G)$ is	then Breaker wins	
1	Connectivity game	•
3	Hamilton Cycle game	

because Breaker goes first!

Maker-Breaker Games Random Geometric Graphs

Maker-Breaker Hitting Radii for RGG

Game	Minimum Degree Condition	Hitting Radius (essentially)
Connectivity Game	$\delta({m G}) \geq$ 2	$r = \sqrt{\frac{\ln n + \ln \ln n}{\pi n}}$
Perfect Matching Game	$\delta(G) \geq 2$, and if $x_i x_j \in E(G)$ then $ N(\{x_i, x_j\}) \geq 3$	$r = \sqrt{\frac{\ln n + \ln \ln n}{\pi n}}$
Hamilton Cycle Game	$\delta(G) \geq 4$	$r = \sqrt{\frac{\ln n + 5 \ln \ln n}{\pi n}}$
Maker Breaker Gamee on Bandam Geometric Graphs		

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

- Maker-Breaker Games
- Random Geometric Graphs
- Structure of the RGG
 - Dissection of [0, 1]² into Tiny Cells
 - Structural Lemmas
 - Obstructions

3 Maker-Breaker Games

- Connectivity Game
- Hamilton Game
- Perfect Matching Game

Conclusion

Summary

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

The Problem: vertices with very low degree

If we had $\delta(G) = \omega(1)$, then our games would be easy Maker-win. Must deal with vertices of constant degree.

- We **dissect** the square [0, 1] into **very small cells** (squares).
- The good news: most points have lots of neighbors in nearby dense cells.
- The not-so-bad news: the rest are in clusters of well-separated sparse cells.

The dense cells provide the backbone of our strategy. We use them to handle the sprinkling of sparse cells.

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

Dissection \mathcal{D} of unit square $[0, 1]^2$ into cells

Given

$$r^2 = \frac{\ln n + \Theta(\ln \ln n)}{\pi n}.$$

Let $\eta > 0$ be a small constant. Choose q = q(n) such that

 $q = \eta r$

This ensures that you need

 $q \times q$ squares to cover B(v, r).

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

The Structure of Γ

- Fix a large constant T > 0.
- A cell *c* is good if
 |V ∩ c| ≥ T. Otherwise, *c* is bad.

Define graph Γ using good cells of dissection $\mathcal{D}.$

- V(Γ) = all good cells
- *E*(Γ) = {*cc*' : dist(*c*, *c*') ≤ *r*}

Gives rise to connected components Γ_{max} and other smaller components Γ_2,Γ_3,\ldots

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

The Structure of **F**

- Fix a large constant T > 0.
- A cell *c* is good if
 |V ∩ c| ≥ T. Otherwise, *c* is bad.

Define graph Γ using good cells of dissection $\mathcal{D}.$

- V(Γ) = all good cells
- E(Γ) = {cc' : dist(c, c') ≤ r}

Gives rise to connected components Γ_{max} and other smaller components Γ_2,Γ_3,\ldots

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Obstructions

Cells of Γ are Good or Bad

Maker-Breaker Games on Random Geometric Graphs

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

Vertices of *G* are Safe, Risky or Dangerous

Components are Γ_{max} and the smaller Γ_2,Γ_3,\ldots

Categorize each $v \in V$ as follows:

- v is **safe**: has $\geq T$ neighbors in a good cell c of Γ_{max}
- *v* is **risky**: has ≥ *T* neighbors in a good cell *c* of Γ_i, for *i* ≥ 2
- v is dangerous: otherwise

Vertices in good cells are safe or risky.

Vertices in bad cells can be safe, risky or dangerous.

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Obstructions

The Giant and the Obstructions

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

The Giant and the Obstructions

Partition *G* into the unique **Giant** and a collection of two types of **Obstructions**.

The Giant

• $\Gamma_{max}^+ = \Gamma_{max}$ and its nearby safe points

The Obstructions

- $\Gamma_i^+ = \Gamma_i$ and its nearby risky points
- Dangerous Cluster: a maximal clique of dangerous points

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

- Maker-Breaker Games
- Random Geometric Graphs
- Structure of the RGG
 - Dissection of [0, 1]² into Tiny Cells
 - Structural Lemmas
 - Obstructions
- Maker-Breaker Games
 Connectivity Game
 Hamilton Game
 - Perfect Matching Game

Conclusion

Summary

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

Global Structure of RGG G(n, r)

The Dissection Lemma

The largest component Γ_{max}^+ is giant.

 Γ_{max} contains $\geq 0.99 \cdot |\mathcal{D}|$ cells whp.

The Obstructions are small and very far apart.

Whp, for obstructions $\mathcal{O}_i \neq \mathcal{O}_j$

- diam(*O_i*) < *r*/100
- dist $(O_i, O_j) > r \cdot 10^{10}$

Obstructions = small components and dangerous clusters

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

$\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells}$

Lemma (The Giant)

 $\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells } \textit{whp.}$

Recall: cell *c* has side length $q = \eta r$

Set
$$K > \frac{1}{\eta^2} > 0$$
.
Pick any $\mathcal{B} = K \times K$ block of cells.

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

$\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells}$

Lemma (The Giant)

 $\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells } \textit{whp.}$

Recall: cell *c* has side length $q = \eta r$

Set
$$K > \frac{1}{\eta^2} > 0$$
.
Pick any $\mathcal{B} = K \times K$ block of cells.
Area $(\mathcal{B}) = \frac{K^2}{\eta^2} B(v, r)$

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

$\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells}$

Recall: cell *c* has side length $q = \eta r$

Set
$$K > \frac{1}{\eta^2} > 0$$
.
Pick any $\mathcal{B} = K \times K$ block of cells.

• 0.99% rows/columns have no bad cells, because $E(|V \cap c|) = \Theta(\log n) \gg T.$

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

$\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells}$

Recall: cell *c* has side length $q = \eta r$

Set
$$K > \frac{1}{\eta^2} > 0$$
.
Pick any $\mathcal{B} = K \times K$ block of cells.

• 0.99% rows/columns have no bad cells, because $E(|V \cap c|) = \Theta(\log n) \gg T.$

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

$\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells}$

Recall: cell *c* has side length $q = \eta r$

Set
$$K > \frac{1}{\eta^2} > 0$$
.

Pick any $\mathcal{B} = K \times K$ block of cells.

- 0.99% rows/columns have no bad cells, because $E(|V \cap c|) = \Theta(\log n) \gg T.$
- Creates largest component in B

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

$\Gamma_{max} \text{ contains} \geq 0.99 \cdot |\mathcal{D}| \text{ cells}$

Recall: cell *c* has side length $q = \eta r$

Set
$$K > \frac{1}{\eta^2} > 0$$
.

Pick any $\mathcal{B} = K \times K$ block of cells.

- 0.99% rows/columns have no bad cells, because $E(|V \cap c|) = \Theta(\log n) \gg T.$
- Creates largest component in B
- Take overlapping blocks to get Γ_{max}

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

diam(Γ_i^+) < r/100 when $i \ge 2$

Lemma

Whp, diam $(\Gamma_i^+) < r/100$ for $i \ge 2$.

- No good cells in surrounding half-disks of radius r
- If diam(Γ⁺_i) ≥ r/100 then there are too many bad cells in a small area

Similar proofs that other obstructions are small & that pairs of obstructions are well-separated

Dissection of [0, 1]² into Tiny Cells Structural Lemmas **Dbstructions**

- Maker-Breaker Games
- Random Geometric Graphs

Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions
- 3 Maker-Breaker Games
 - Connectivity Game
 - Hamilton Game
 - Perfect Matching Game

Conclusion

Summary

Dissection of [0, 1]² into Tiny Cells Structural Lemmas **Dbstructions**

Crucial & Important Vertices for an Obstruction

Assign vertices to help with obstruction $\ensuremath{\mathcal{O}}$

Point $v \in V$ is **crucial** for \mathcal{O} if

• v is **safe**, and

•
$$\mathcal{O} \subset B(v; r)$$
, and

Recall: $v \text{ safe } \Rightarrow \exists c \in \Gamma_{\max} \text{ with } |B(v; r) \cap c \cap V| \geq T$

The *T* vertices in *c* are **important** for v and for O.

Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

Obstructions have Crucial Vertices

The Obstruction Lemma

Consider G(n, r) where

$$\pi r^2 = \ln n + (2k - 3) \ln \ln n + O(1),$$

with $k \ge 2$ fixed. *Whp* the following holds for all obstructions \mathcal{O} . Let $|\mathcal{O}| = s$

- If $2 \le s \le T$ then \mathcal{O} has $\ge k + s 2$ crucial vertices;
- If $s \ge T$, then \mathcal{O} has $\ge k$ crucial vertices.

Note: Obstructions far apart \Rightarrow crucial vertices for $\mathcal{O}_i \neq \mathcal{O}_j$ are distinct.

Dissection of [0, 1]² into Tiny Cells Structural Lemmas **Dbstructions**

Obstructions have Crucial Vertices

- $|\mathcal{O}| \leq T$
- Must be a finite number of vertices in outer ring
- Forces existence of vertices in middle ring
 - These vertices adjacent to O
 - Not part of *O* ⇒ safe or risky
 - Must be adjacent to good cells in Γ_{max}
Dissection of [0, 1]² into Tiny Cells Structural Lemmas Dbstructions

Summary: Structure of RGGs

- There is a giant component Γ_{max} of dense cells
- Obstructions are small and far from one another
- Obstructions have enough crucial vertices to help connect them to Γ_{max}

Connectivity Game Hamilton Game Perfect Matching Game

- Maker-Breaker Games
- Random Geometric Graphs

Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions
- 3 Maker-Breaker Games
 - Connectivity Game
 - Hamilton Game
 - Perfect Matching Game

Conclusion

Summary

Connectivity Game Hamilton Game Perfect Matching Game

Terminology Reminders

Minimum Degree $\delta(G) = \min_{\nu \in V} \deg(\nu)$

With High Probability (*whp*) Event $A = A_n$ holds *whp* if $\lim_{n\to\infty} \Pr(A_n) = 1$.

Hitting Radius

The hitting radius of increasing graph property \mathcal{P} is

 $\rho_n(\mathcal{P}) = \inf\{r \ge 0 : G(n, r) \text{ satisfies } \mathcal{P}\}$

• If $r < \rho_n$ then G(n, r) DOES NOT have property \mathcal{P} whp.

• If $r \ge \rho_n$ then G(n, r) DOES have property \mathcal{P} whp.

Connectivity Game Hamilton Game Perfect Matching Game

Hitting Radius for the Connectivity Game

Theorem (BDFMS 2013+)

Whp, the RGG process G(n, r) satisfies

 $\rho_n(\text{Maker wins connectivity game}) = \rho_n(\delta(G(n, r)) \ge 2).$

In particular, if

$$\pi nr^2 = \ln n + \ln \ln n + x_n$$

then

$$\lim_{n\to\infty} \mathbb{P}(\text{Maker wins}) = \begin{cases} 1 & \text{if } x_n \to +\infty, \\ e^{-(e^{-x} + \sqrt{\pi e^{-x}})} & \text{if } x_n \to x \in \mathbb{R}, \\ 0 & \text{if } x_n \to -\infty. \end{cases}$$

Connectivity Game Hamilton Game Perfect Matching Game

Hitting Radius for the Connectivity Game

Breaker wins when $\delta(G) \leq 1$

Breaker makes an isolated vertex on the very first move

When $\delta(G) \geq 2$

• We use the Shannon Switching Game result

Theorem (A. Lehman, 1964)

The connectivity game is Maker-win if and only if *G* admits two disjoint spanning trees.

Connectivity Game Hamilton Game Perfect Matching Game

Connectivity Game Hamilton Game Perfect Matching Game

c'

С

Connectivity Game Hamilton Game Perfect Matching Game

c'

С

Connectivity Game Hamilton Game Perfect Matching Game

Connectivity Game Hamilton Game Perfect Matching Game

Connectivity Game Hamilton Game Perfect Matching Game

- Maker-Breaker Games
- Random Geometric Graphs

Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions
- 3 Maker-Breaker Games
 - Connectivity Game
 - Hamilton Game
 - Perfect Matching Game

Conclusion

Summary

Connectivity Game Hamilton Game Perfect Matching Game

Hitting Radius for the Hamilton Game

Theorem (BDFMS 2013+)

Whp, the RGG process G(n, r) satisfies

 ρ_n (Maker wins Hamilton game) = $\rho_n(\delta(G(n, r)) \ge 4)$.

In particular, if

$$\pi nr^2 = \ln n + 5 \ln \ln n - 2 \ln 6 + x_n$$

then

$$\lim_{n\to\infty} \mathbb{P}(\text{Maker wins}) = \begin{cases} 1 & \text{if } x_n \to +\infty, \\ e^{-e^{-x}} & \text{if } x_n \to x \in \mathbb{R}, \\ 0 & \text{if } x_n \to -\infty. \end{cases}$$

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy Overview

Before the Game Begins:

Pick a spanning tree ${\cal T}$ of Γ_{max} with maximum degree ≤ 5

- Such a tree \mathcal{T} exists because Γ_{max} is a geometric graph
- Every good cell $c \in \Gamma_{max}$
 - At most T = O(1) vertices are **marked**. They will be used to (a) connect with vertices in bad cells, and (b) create matchings between cells adjacent in T.
 - The remaining vertices in *c* are **unmarked**. These will become the bulk of the Hamilton cycle. We make a soup of flexible **blob cycles**.

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy Overview

During the Game, Maker plays lots of mini-games:

- Create a path through each obstruction and each safe cluster, ending in marked vertices in the same cell
- Olaim two edges between cells adjacent in \mathcal{T}
- Oreate soup of flexible blob cycles in the unmarked vertices
- Olaim half the edges from each marked to vertex to the set of unmarked vertices.

After the Game, Maker stitches together the Hamilton Cycle

Connectivity Game Hamilton Game Perfect Matching Game

Blob Cycles

- A *k*-cycle on *v*₁,..., *v*_{*k*}
- A complete graph on *v*₁,..., *v*_s

Connectivity Game Hamilton Game Perfect Matching Game

Blob Cycles

- A *k*-cycle on *v*₁,..., *v*_{*k*}
- A complete graph on *v*₁,..., *v*_s

Connectivity Game Hamilton Game Perfect Matching Game

Blob Cycles

- A *k*-cycle on *v*₁,..., *v*_k
- A complete graph on *v*₁,..., *v*_s

Connectivity Game Hamilton Game Perfect Matching Game

Blob Cycles

- A *k*-cycle on *v*₁,..., *v*_k
- A complete graph on *v*₁,..., *v*_s

Connectivity Game Hamilton Game Perfect Matching Game

Blob Cycles

- A *k*-cycle on *v*₁,..., *v*_k
- A complete graph on *v*₁,..., *v*_s

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy for each Good Cell c

Mark T = O(1) vertices for connecting to nearby cells, obstructions and safe vertices. Make blob cycle soup in the rest.

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy for each Good Cell c

Mark T = O(1) vertices for connecting to nearby cells, obstructions and safe vertices. Make blob cycle soup in the rest.

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy for each Good Cell c

Claim half the edges from each vertex to lower level

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy for each Good Cell c

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy for each Good Cell c

Connectivity Game Hamilton Game Perfect Matching Game

Maker's Hamilton Strategy for each Good Cell c

Connectivity Game Hamilton Game Perfect Matching Game

- Maker-Breaker Games
- Random Geometric Graphs

Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions
- 3 Maker-Breaker Games
 - Connectivity Game
 - Hamilton Game
 - Perfect Matching Game
 - Conclusion
 - Summary

Connectivity Game Hamilton Game Perfect Matching Game

Hitting Radius for Perfect Matching Game

Theorem (BDFMS 2013+)

Whp, the random geometric graph process satisfies, for *n* even:

 ρ_n (Maker wins p. m. game) = $\rho_n(\delta(G) \ge 2 \text{ and } \delta_e \ge 3)$

where $\delta_{e}(G) = \min_{uv \in E(G)} |N(\{u, v\})|$. In particular, if

 $\pi nr^2 = \ln n + \ln \ln n + x_n$

then

$$\lim_{n\to\infty,\atop{n\,\text{even}}} \mathbb{P}(\text{Maker wins}) = \begin{cases} 1 & \text{if } x_n \to +\infty, \\ e^{-((1+\pi^2/8)e^{-x} + \sqrt{\pi}(1+\pi)e^{-x/2})} & \text{if } x_n \to x \in \mathbb{R}, \\ 0 & \text{if } x_n \to -\infty. \end{cases}$$

- Maker-Breaker Games
- Random Geometric Graphs

Structure of the RGG

- Dissection of [0, 1]² into Tiny Cells
- Structural Lemmas
- Obstructions

3 Maker-Breaker Games

- Connectivity Game
- Hamilton Game
- Perfect Matching Game

Conclusion

Summary

Summary

Game	Minimum Degree Condition	Hitting Radius (essentially)
Connectivity Game	$\delta(G) \geq 2$	$r^2 = \frac{\ln n + \ln \ln n}{\pi n}$
Perfect Matching Game	$\delta(G) \geq 2$, and if $x_i x_j \in E(G)$ then $ N(\{x_i, x_j\}) \geq 3$	$r^2 = \frac{\ln n + \ln \ln n}{\pi n}$
Hamilton Cycle Game	$\delta(G) \geq 4$	$r^2 = \frac{\ln n + 5\ln\ln n}{\pi n}$

Summary

Future Directions

Biased Games

- What happens when Breaker claims *b* edges on every turn, while Maker only claims 1?
- Our results should extend to constant *b*, but what about when $b = b(n) = \omega(1)$?

Higher Dimensions

 What is the critical radius for each of these games for a 3D (and higher) random geometric graph?

Thank you!

Mini-game: the (a, b) Path Game

The (*a*, *b*) Path Game:

- Played on K_{a+b} partitioned into sets A, B of sizes a, b.
- Maker Goal: create a path between any two *B*-vertices that contains all *A*-vertices.

Lemma

The (a, b) Path Game is Maker-win when

- *b* ≥ 6, or;
- *a* = 3 and *b* ≥ 5, or;
- $a \in \{1, 2\}$ and $b \ge 4$.

Mini-game: the (a, b) Path Game

The (*a*, *b*) Path Game:

- Played on K_{a+b} partitioned into sets A, B of sizes a, b.
- Maker Goal: create a path between any two *B*-vertices that contains all *A*-vertices.

Lemma

The (a, b) Path Game is Maker-win when

- *b* ≥ 6, or;
- *a* = 3 and *b* ≥ 5, or;
- $a \in \{1, 2\}$ and $b \ge 4$.

Summary

Mini-game: Blob Cycle Game

- s-Blob Cycle Game
 - Played on K_m
 - Maker tries to make an s-blob on m vertices

Lemma

For $s \ge 4$, there is a constant N = N(s) such that the *s*-Blob Game is Maker-win on K_m for $m \ge N(s)$.

Fun fact: the proof uses Krivelevich's result on the critical bias of the Hamilton cycle game on K_n .

Summary

Mini-game: Blob Cycle Game

- s-Blob Cycle Game
 - Played on K_m
 - Maker tries to make an *s*-blob on *m* vertices

Lemma

For $s \ge 4$, there is a constant N = N(s) such that the *s*-Blob Game is Maker-win on K_m for $m \ge N(s)$.

Fun fact: the proof uses Krivelevich's result on the critical bias of the Hamilton cycle game on K_n .

Summary

Mini-game: the (a, b) Matching Game

The (a, b) Matching Game

- Played on K_{a+b} partitioned into sets A, B of sizes a, b.
- Maker Goal: create a matching that saturates A

Lemma

The (a, b) matching game is Maker-win when

- *b* ≥ 4, or;
- $a \in \{2, 3\}$ and $b \ge 3$, or;
- *a* = 1 and *b* ≥ 2.

Summary

Mini-game: the (a, b) Matching Game

The (a, b) Matching Game

- Played on K_{a+b} partitioned into sets A, B of sizes a, b.
- Maker Goal: create a matching that saturates A

Lemma

The (a, b) matching game is Maker-win when

- *b* ≥ 4, or;
- $a \in \{2, 3\}$ and $b \ge 3$, or;
- *a* = 1 and *b* ≥ 2.