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Contact Graph

An infinite or finite graph G where each node represents a healthy
or infected agent. Usually healing depends of each agent and
infection propagates through the edges.

Epidemics Model

I SIR (susceptible-infected-removed): a node become infected
at rate λ× function of infected neighbors, stay infected for an
exp. distributed with ratio 1, number of steps and after can
not be infected again.
M.Newman:Spread of of epidemic disease on networks (2002)

I SIS (susceptible-infected-susceptible): when one node heals it
becomes susceptible to be re-infected.



Early work on infinite graphs

The setting was the contact process (SIS):
Given an infinite G , define the continuous time Markov process on
{0, 1}V (G),
where 0 denotes the vertex is healthy and 1 denotes the vertex is
infected.
If A is the set of infected vertices,
• if v ∈ A, A→ A \ {v} with rate = 1
• if v 6∈ A, A→ A ∪ {v} with rate = λ×# infected neighbors.

Define an epidemic if the process keep for ever a large component
that is infected.

Harris-74: Uses the infinite grid Zk .
If k ≥ 2⇒ a.a.s. epidemic for λ ≥ 1

2k−1
If k = 1⇒ a.a.s. epidemic for λ ≥ 1.18



Early work on SIS for infinite graphs

Liggett-99: infinite k-regular graphs

There exists epidemic thresholds λ1 < λ2 s.t. if the infection rate
is λ, then

I if λ > λ2 ⇒ with prob. > 0 there is epidemic,

I if λ < λ1 ⇒ a.a.s. extinction.

Let λc be the threshold for epidemic.
For the grid Zk , if k ≥ 2 λ1 = λ2 = λc ∼ 1

2k (for large k).
If k = 1⇒ 1.53 ≤ λc ≤ 2. Experimentally λc = 1.65,

Open problem: Find analytically the value of λc for the case k = 1.



Some further work on SIS model

Over 150 papers on the contact model and some variations for
different finite and infinite contact graphs
For finite graphs G (|V (G )| = n), an infection becomes an
epidemic if the time it takes to die out is supper-polynomial in n

I Preferent Attachment model Berger,Borg,Chayes,Saberi
(2005)

I Configuration model Ganesh,Massoulie, Towsley (2005)

I Bollobas-Chung Small World graphs Durrett, Jung (2007)

I Change healing/infection rate dynamically
Borg,Chayes,Ganesh,Saberi (2010)

Nice survey: Durrett: Some features of the spread of epidemics
and information on a random graph,PNAS, 2010



A new graph model for SIS infections
D., Pérez, Wormald

I The infinite Z1. Consider each integer as a bin.
I Distributed infinite points (agents) inside of of the bins

according to a randomized or adversarial procedure.
I An infected point can infect another agent in a bin a distance

d with rate λd−α, where λ, α are given constants > 0. Points
in same bin are consider to be at d = 1

I Every infected point can heal with rate 1.

Given any distribution of points in the integers, start with an
infected point and find thresholds of λ and α for extinction and
epidemic

d = 1
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Some results: Epidemic

Theorem
1.- For any distribution of points on the integers bins in Z1, there
is a.a.s. an epidemic for the described process, for the following
conditions on α, λ:
1.a- for 0 ≤ α ≤ 2 and any λ ≥ 0,
1.b- for a sufficiently large λ and any α ≥ 0.

Theorem
The above result generalizes to
k-dimensional graphs:
spread points in the integer vertices
of Zk , one infected point heals with
rate 1, and a healthy point infects
with rate λ/dα.
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Some results: Extinction

Define {mj}n0 as m0 = 10 and mj = m0 · (1.1)j .
For each bin v ∈ Z1 say the bin is of type mj if mj−1 < |v | ≤ mj .

2.- Let α ≥ 7 be a given constant. Then, for any deterministic or
probabilistic distribution of points into the integer bins in Z1 such
that any two bins u, v ∈ Z of types mj and ml (mj < ml) it must
be that d(u, v) ≥ mj !. Then,
Theorem ∃λc such that a.a.s. there will be extinction, for λ < λ∗.

d ≥ mj!

mj Z1

· · ·
ml



Idea of the proof

Construct a worst case structures under the defined constrains: the
sausages.

mi-buffer

i− 1 sausage

i-sausage

i− 2-sausage
mi-bin

Prove that for α > 2 there is a sufficiently small value of λ s.t. if
we start from an infected point, a.a.s. the infection dies out.



Evolutionary graph theory

Moran (1958), Lieberman, Hauert, Nowak (2005)

Evolutionary graph theory gives a way to study
how the topology of the interactions between the
population affects the evolution.

Variation of the finite contact graph, SIS model, where the vertices
represent single agents and edges the interactions among agents.
Infection and healing are produced by other agents.

Two types of vertices: mutants and the non-mutants.

The fitness r of an agent denotes its reproductive rate, and will
determine how often an offspring will take over adjacent vertices.



Evolutionary graph theory

Moran (1958), Lieberman, Hauert, Nowak (2005)

The dynamics of selection is studied by the Moran process:

• Select randomly an individual with probability proportional to its
fitness,
• clone an offspring,
• replace a random selected neighbor by the new clone.

What are the probability a single mutant takes over the entire
population?

How long does it take?



Moran’s process

Lieberman, Hauert, Nowak (2005)
Given a graph G , with n vertices, where
mutants have fitness r
non-mutants have fitness 1

At the beginning of the process all vertices are non-mutant.
Select randomly one vertex to mutate.
• Iterate:
At any time t > 0, assume we have k
mutant and (n − k) non-mutant vertices
• choose u with probability r

kr+(n−1) if u is

mutant and 1
kr+(n−1) othrwise, and create

a clone
• choose uniformly at random a v ∈ N (u),
and replace v with the clone of u
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Moran Process

This random process defines discrete, transient Markov chain, on
states {0, 1, . . . , n − 1, n} with two absorbing states: n fixation (all
mutants) and 0 extinction (no mutants).

0 nn−121

Let G be a contact graph and initially choose randomly a
v ∈ V (G ) to mutate.
The fixation probability fG (r) of G is the probability that a mutant
with takes over the whole graph G .
The extinction probability of G is 1− fG (r).

Given G and r , compute fG (r).



Moran Process

Theorem[Lieberman et al., 2005]
Given a symmetric or regular contact graphs G , with |V (G )| = n,

if r ≥ 1 then ρ= fG (r) = 1−1/r
1−1/rn ∼ 1− 1

r .

G is said to be an amplifier if
fG (r) > ρ.

G is said to be an suppressor if
fG (r) < ρ.



Absorption time for undirected graphs

D., Goldberg, Mertzios, Richerby, Serna, Spirakis (2012)

Given a G and r , let τ be a r.v. counting the absorption time.
Theorem
• if r < 1 E [τ ] ≤ 1

1−r n3

• if r > 1 E [τ ] ≤ r
r−1n4

• if r = 1 E [τ ] ≤ n6

Corollary
There is an FPRAS for computing the fixation probability, for any
r ≥ 1.
There is an FPRAS for computing the extintion probability, for any
r ≥ 0.
Simulate N times the Moran process for the above upper bounds

(where N = O(n
2

ε2
) if r ≥ 1 and N = O( (r+n)2

ε2
) if r < 1).
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Absorption time for undirected graphs

D., Goldberg, Richerby, Serna (2013)
Given a digraph G and r , let τ be a r.v. counting the absorption
time of the Moran process.

Theorem
If G is strongly connected and ∆-regular with V (G ) = n,

E [τ ] ≤ n2∆,

and the upper bound us sharp.

Notice this bound is smaller than the general one for the
undirected case.

On the other hand, and differently from the undirected case, there
is an infinite family of strongly connected graphs with exponential
absorption time.



Shakarian, Ross, Johnson: A review of evolutionary graph theory
with applications to game theory (2012)

Thank you for your attention
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