Random directed graphs are robustly Hamiltonian

Dan Hefetz, University of Birmingham

Probability and Graphs, Eindhoven, 2014

Joint work with Angelika Steger Benny Sudakov

・ロト ・ 同ト ・ ヨト ・ ヨト

2 Main ideas of the proofs

- The upper bound
- The lower bound for dense digraphs
- The lower bound for sparser digraphs

Hamilton cycles in undirected graphs

Definition:

A Hamilton cycle of a graph G is a spanning connected 2-regular subgraph of G.

Theorem (Dirac 1952):

Let G be a graph on $n \ge 3$ vertices. If $\delta(G) \ge n/2$, then G is Hamiltonian. Easily seen to be best possible.

・ロン ・四 と ・ ヨ と ・ ヨ と

Hamilton cycles in undirected graphs

Definition:

A Hamilton cycle of a graph G is a spanning connected 2-regular subgraph of G.

Theorem (Dirac 1952):

Let G be a graph on $n \ge 3$ vertices. If $\delta(G) \ge n/2$, then G is Hamiltonian. Easily seen to be best possible.

Hamilton cycles in undirected graphs

Definition:

A Hamilton cycle of a graph G is a spanning connected 2-regular subgraph of G.

Theorem (Dirac 1952):

Let G be a graph on $n \ge 3$ vertices. If $\delta(G) \ge n/2$, then G is Hamiltonian. Easily seen to be best possible.

Hamilton cycles in undirected graphs

Definition:

A Hamilton cycle of a graph G is a spanning connected 2-regular subgraph of G.

Theorem (Dirac 1952):

Let G be a graph on $n \ge 3$ vertices. If $\delta(G) \ge n/2$, then G is Hamiltonian. Easily seen to be best possible.

(日) (종) (종) (종) (종)

Local resilience

Definition:

Let G be a graph and let \mathcal{P} be a monotone increasing graph property. The local resilience of G with respect to \mathcal{P} is

$$r_{\ell}(G,\mathcal{P}) := \min_{\substack{H\subseteq G \ G\setminus H \notin \mathcal{P}}} \max_{u \in V(G)} \left\{ rac{\deg_H(u)}{\deg_G(u)}
ight\} \,.$$

An asymptotic version of Dirac's Theorem

The local resilience of K_n with respect to Hamiltonicity tends to 1/2 as *n* tends to infinity.

・ロト ・回ト ・ヨト ・ヨト

臣

Local resilience

Definition:

Let G be a graph and let \mathcal{P} be a monotone increasing graph property. The local resilience of G with respect to \mathcal{P} is

$$r_{\ell}(G, \mathcal{P}) := \min_{\substack{H \subseteq G \\ G \setminus H \notin \mathcal{P}}} \max_{u \in V(G)} \left\{ \frac{\deg_{H}(u)}{\deg_{G}(u)} \right\}$$

An asymptotic version of Dirac's Theorem

The local resilience of K_n with respect to Hamiltonicity tends to 1/2 as *n* tends to infinity.

Local resilience

Definition:

Let G be a graph and let \mathcal{P} be a monotone increasing graph property. The local resilience of G with respect to \mathcal{P} is

$$r_{\ell}(G, \mathcal{P}) := \min_{\substack{H \subseteq G \\ G \setminus H \notin \mathcal{P}}} \max_{u \in V(G)} \left\{ \frac{\deg_{H}(u)}{\deg_{G}(u)} \right\}$$

An asymptotic version of Dirac's Theorem

The local resilience of K_n with respect to Hamiltonicity tends to 1/2 as *n* tends to infinity.

・ロト ・回ト ・ヨト ・ヨト

Robust Hamiltonicity of undirected random graphs

Theorem (Erdős and Rényi 1959):

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) = 0$.

Theorem (Komlós and Szemerédi 1983 and Bollobás 1984): If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) > 0$.

Theorem (Lee and Sudakov 2012):

If $p \gg \log n/n$, then a.a.s. $r_{\ell}(G(n,p),\mathcal{H}) = 1/2 + o(1)$.

Robust Hamiltonicity of undirected random graphs

Theorem (Erdős and Rényi 1959):

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) = 0$.

Theorem (Komlós and Szemerédi 1983 and Bollobás 1984): If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) \ge 0$.

Theorem (Lee and Sudakov 2012):

If $p \gg \log n/n$, then a.a.s. $r_{\ell}(G(n,p),\mathcal{H}) = 1/2 + o(1)$.

Robust Hamiltonicity of undirected random graphs

Theorem (Erdős and Rényi 1959):

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) = 0$.

Theorem (Komlós and Szemerédi 1983 and Bollobás 1984):

If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) > 0$.

Theorem (Lee and Sudakov 2012):

If $p \gg \log n/n$, then a.a.s. $r_{\ell}(G(n,p),\mathcal{H}) = 1/2 + o(1)$.

Robust Hamiltonicity of undirected random graphs

Theorem (Erdős and Rényi 1959):

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) = 0$.

Theorem (Komlós and Szemerédi 1983 and Bollobás 1984):

If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) > 0$.

Theorem (Lee and Sudakov 2012):

If $p \gg \log n/n$, then a.a.s. $r_{\ell}(G(n, p), \mathcal{H}) = 1/2 + o(1)$.

Hamilton cycles in directed graphs

Theorem (Ghouila-Houri 1960):

Let D be a strongly connected digraph on n vertices. If $\delta^+(D) + \delta^-(D) \ge n$, then D is Hamiltonian.

Corollary:

Let D be a digraph on n vertices. If $\delta^+(D) \ge n/2$ and $\delta^-(D) \ge n/2$, then D is Hamiltonian. Easily seen to be best possible.

An asymptotic version of the corollary

The local resilience of the complete directed graph on n vertices with respect to Hamiltonicity tends to 1/2 as n tends to infinity.

Hamilton cycles in directed graphs

Theorem (Ghouila-Houri 1960):

Let D be a strongly connected digraph on n vertices. If $\delta^+(D) + \delta^-(D) \ge n$, then D is Hamiltonian.

Corollary:

Let D be a digraph on n vertices. If $\delta^+(D) \ge n/2$ and $\delta^-(D) \ge n/2$, then D is Hamiltonian. Easily seen to be best possible.

An asymptotic version of the corollary

The local resilience of the complete directed graph on *n* vertices with respect to Hamiltonicity tends to 1/2 as *n* tends to infinity.

Hamilton cycles in directed graphs

Theorem (Ghouila-Houri 1960):

Let D be a strongly connected digraph on n vertices. If $\delta^+(D) + \delta^-(D) \ge n$, then D is Hamiltonian.

Corollary:

Let *D* be a digraph on *n* vertices. If $\delta^+(D) \ge n/2$ and $\delta^-(D) \ge n/2$, then *D* is Hamiltonian. Easily seen to be best possible.

An asymptotic version of the corollary

The local resilience of the complete directed graph on n vertices with respect to Hamiltonicity tends to 1/2 as n tends to infinity.

Hamilton cycles in directed graphs

Theorem (Ghouila-Houri 1960):

Let D be a strongly connected digraph on n vertices. If $\delta^+(D) + \delta^-(D) \ge n$, then D is Hamiltonian.

Corollary:

Let *D* be a digraph on *n* vertices. If $\delta^+(D) \ge n/2$ and $\delta^-(D) \ge n/2$, then *D* is Hamiltonian. Easily seen to be best possible.

An asymptotic version of the corollary

The local resilience of the complete directed graph on n vertices with respect to Hamiltonicity tends to 1/2 as n tends to infinity.

Hamilton cycles in directed graphs

Theorem (Ghouila-Houri 1960):

Let D be a strongly connected digraph on n vertices. If $\delta^+(D) + \delta^-(D) \ge n$, then D is Hamiltonian.

Corollary:

Let *D* be a digraph on *n* vertices. If $\delta^+(D) \ge n/2$ and $\delta^-(D) \ge n/2$, then *D* is Hamiltonian. Easily seen to be best possible.

An asymptotic version of the corollary

The local resilience of the complete directed graph on n vertices with respect to Hamiltonicity tends to 1/2 as n tends to infinity.

イロン イ団ン イヨン イヨン 三日

Robust Hamiltonicity of directed random graphs

Observation:

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) = 0$.

Theorem (McDiarmid 1980 and Frieze 1988): If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) > 0$.

Theorem (H, Steger and Sudakov 2014+):

If $p \gg \log n/\sqrt{n}$, then a.a.s. $r_\ell(D(n,p),\mathcal{H}) = 1/2 + o(1)$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Robust Hamiltonicity of directed random graphs

Observation:

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) = 0$.

Theorem (McDiarmid 1980 and Frieze 1988): If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) > 0$

Theorem (H, Steger and Sudakov 2014+).

If $p \gg \log n/\sqrt{n}$, then a.a.s. $r_\ell(D(n,p),\mathcal{H}) = 1/2 + o(1)$.

Robust Hamiltonicity of directed random graphs

Observation:

If $p \leq (1 - \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) = 0$.

Theorem (McDiarmid 1980 and Frieze 1988):

If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) > 0$.

Theorem (H, Steger and Sudakov 2014+)

If $p \gg \log n/\sqrt{n}$, then a.a.s. $r_\ell(D(n,p),\mathcal{H}) = 1/2 + o(1)$

Robust Hamiltonicity of directed random graphs

Observation:

If
$$p \leq (1 - \varepsilon) \log n/n$$
, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) = 0$.

Theorem (McDiarmid 1980 and Frieze 1988):

If $p \ge (1 + \varepsilon) \log n/n$, then a.a.s. $r_{\ell}(D(n, p), \mathcal{H}) > 0$.

Theorem (H, Steger and Sudakov 2014+):

If $p \gg \log n/\sqrt{n}$, then a.a.s. $r_{\ell}(D(n,p),\mathcal{H}) = 1/2 + o(1)$.

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most $(1/2 + \alpha)deg_D^+(u)$ and at most $(1/2 + \alpha)deg_D^-(u)$ from every $u \in [n]$.

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{np}}$

・ロト ・回ト ・ヨト ・ヨト

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most (1/2 + α)deg⁺_D(u) and at most (1/2 + α)deg⁻_D(u) from every u ∈ [n].

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{np}}$

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・

3

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most (1/2 + α)deg⁺_D(u) and at most (1/2 + α)deg⁻_D(u) from every u ∈ [n].

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{nn}}$

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

3

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most $(1/2 + \alpha) deg_D^+(u)$ and at most $(1/2 + \alpha) deg_D^-(u)$ from every $u \in [n]$.

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{np}}$

・ロン ・回 と ・ ヨ と ・ ヨ と

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most $(1/2 + \alpha) deg_D^+(u)$ and at most $(1/2 + \alpha) deg_D^-(u)$ from every $u \in [n]$.

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{np}}$

・ロン ・回 と ・ ヨ と ・ ヨ と

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most $(1/2 + \alpha)deg_D^+(u)$ and at most $(1/2 + \alpha)deg_D^-(u)$ from every $u \in [n]$.

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{np}}$

・ロシ ・ 日 ・ ・ 日 ・ ・ 日 ・

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

Proof of the upper bound

Sketch

- Split [n] into two sets of equal size V_1 and V_2 .
- Expose all arcs of D(n, p) with one endpoint in V_1 and the other in V_2 .
- Delete all arcs directed from V_1 to V_2 .
- a.a.s. we deleted at most $(1/2 + \alpha)deg_D^+(u)$ and at most $(1/2 + \alpha)deg_D^-(u)$ from every $u \in [n]$.

Remark:

This proof works for $p \ge c_1 \log n/n$ and $\alpha \ge c_2 \sqrt{\frac{\log n}{np}}$.

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist.

Remark:

Having so many triangles requires $p=\Omega(n^{-1/2})$

200

The upper bound The lower bound for dense digraphs The lower bound for sparser digraphs

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$.

Remark:

Having so many triangles requires $p=\Omega(n^{-1/2})$

200

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist

Remark:

Having so many triangles requires $p=\Omega(n^{-1/2})$

) 2 (~

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C₁.

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist.

Remark:

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist.

Remark:

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist.

Remark:

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist.

Remark:
The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n], E) be obtained from D(n, p) by deleting at most $(1/2 - \alpha)deg_D^+(u)$ and at most $(1/2 - \alpha)deg_D^-(u)$ from every $u \in [n]$.

Stage 1: Build an almost spanning cycle C_1 .

Stage 2: Absorb every remaining vertex into C_1 .

Stage 2:

For every $u \in [n] \setminus C_1$, replace an arc $(x, y) \in E(C_1)$ with two arcs $(x, u), (u, y) \in E$. Clearly we have to ensure that such arcs exist.

Remark:

Having so many triangles requires $p = \Omega(n^{-1/2})$.

Proof sketch for constant p cont'd

Main substages of Stage 1:

Stage 1.0: Preparation.

- Stage 1.1: Build a short directed path P_1 which includes all problematic vertices.
- Stage 1.2: Extend P_1 into an almost spanning path P_2 such that every $u \in [n] \setminus P_2$ has many arcs $(x, y) \in E(P_2)$ for which $(x, u), (u, y) \in E$.

Stage 1.3: Close P_2 into a cycle C_1 .

Proof sketch for constant *p* cont'd

Main substages of Stage 1:

Stage 1.0: Preparation.

Stage 1.1: Build a short directed path P_1 which includes all problematic vertices.

Stage 1.2: Extend P_1 into an almost spanning path P_2 such that every $u \in [n] \setminus P_2$ has many arcs $(x, y) \in E(P_2)$ for which $(x, u), (u, y) \in E$.

Stage 1.3: Close P₂ into a cycle C₁.

Proof sketch for constant *p* cont'd

Main substages of Stage 1:

Stage 1.0: Preparation.

- Stage 1.1: Build a short directed path P_1 which includes all problematic vertices.
- Stage 1.2: Extend P_1 into an almost spanning path P_2 such that every $u \in [n] \setminus P_2$ has many arcs $(x, y) \in E(P_2)$ for which $(x, u), (u, y) \in E$.

Stage 1.3: Close P_2 into a cycle C_1 .

Proof sketch for constant p cont'd

Main substages of Stage 1:

Stage 1.0: Preparation.

- Stage 1.1: Build a short directed path P_1 which includes all problematic vertices.
- Stage 1.2: Extend P_1 into an almost spanning path P_2 such that every $u \in [n] \setminus P_2$ has many arcs $(x, y) \in E(P_2)$ for which $(x, u), (u, y) \in E$.

Stage 1.3: Close P_2 into a cycle C_1 .

・ロン ・四 と ・ ヨ と ・ ヨ と

Proof sketch for constant p cont'd

Main substages of Stage 1:

Stage 1.0: Preparation.

- Stage 1.1: Build a short directed path P_1 which includes all problematic vertices.
- Stage 1.2: Extend P_1 into an almost spanning path P_2 such that every $u \in [n] \setminus P_2$ has many arcs $(x, y) \in E(P_2)$ for which $(x, u), (u, y) \in E$.

Stage 1.3: Close P_2 into a cycle C_1 .

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Proof sketch for constant p cont'd

Main substages of Stage 1:

Stage 1.0: Preparation.

- Stage 1.1: Build a short directed path P_1 which includes all problematic vertices.
- Stage 1.2: Extend P_1 into an almost spanning path P_2 such that every $u \in [n] \setminus P_2$ has many arcs $(x, y) \in E(P_2)$ for which $(x, u), (u, y) \in E$.

Stage 1.3: Close P_2 into a cycle C_1 .

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let $\{V_0, V_1, \ldots, V_k\}$ be the resulting ε -regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg_R^+(v_i) \ge (1+\beta)k/2$ and $deg_R^-(v_i) \ge (1+\beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length $r \ge (1 \beta)k$.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

・ロン ・四 と ・ ヨ と ・ ヨ と

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let
 {V₀, V₁,..., V_k} be the resulting ε-regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg^+_R(v_i) \ge (1 + \beta)k/2$ and $deg^-_R(v_i) \ge (1 + \beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

・ロン ・回 と ・ ヨン ・ ヨン

臣

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D, let
 - $\{V_0, V_1, \ldots, V_k\}$ be the resulting ε -regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg^+_R(v_i) \ge (1 + \beta)k/2$ and $deg^-_R(v_i) \ge (1 + \beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let
 {V₀, V₁,..., V_k} be the resulting ε-regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg^+_R(v_i) \ge (1+\beta)k/2$ and $deg^-_R(v_i) \ge (1+\beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

・ロン ・回 と ・ ヨン ・ ヨン

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let {V₀, V₁,..., V_k} be the resulting ε-regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg_R^+(v_i) \ge (1+\beta)k/2$ and $deg_R^-(v_i) \ge (1+\beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let
 {V₀, V₁,..., V_k} be the resulting ε-regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg_R^+(v_i) \ge (1+\beta)k/2$ and $deg_R^-(v_i) \ge (1+\beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let {V₀, V₁,..., V_k} be the resulting ε-regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg_R^+(v_i) \ge (1+\beta)k/2$ and $deg_R^-(v_i) \ge (1+\beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.

• Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

Proof sketch for constant p cont'd

Stage 1.0: Preparation

- Apply the Directed Regularity Lemma to D; let {V₀, V₁,..., V_k} be the resulting ε-regular partition.
- Let R = R(D, δ) be the resulting directed regularity graph: for every 1 ≤ i ≠ j ≤ k the arc (v_i, v_j) is in E(R) iff (V_i, V_j) is ε-regular with directed density ≥ δ.
- Prove that $deg_R^+(v_i) \ge (1+\beta)k/2$ and $deg_R^-(v_i) \ge (1+\beta)k/2$ for all but at most βk vertices of R.
- Deduce by the corollary of Ghouila-Houri's Theorem that R admits a directed cycle of length r ≥ (1 − β)k.
- Hence V_1, \ldots, V_r, V_1 is a "directed cycle" of clusters in D.

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}.
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P_1 .

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex $v \in [n]$ is problematic if $|deg^+_{D(n,p)}(v, V_i) \ell p| \ge \varepsilon \ell p$ or $|deg^-_{D(n,p)}(v, V_i) - \ell p| \ge \varepsilon \ell p$ for some $1 \le i \le r$.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P₁.

・ロト ・回ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound ⇒ ∃ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}
- Continue to w ∈ V_{j1-1} and y ∈ N⁺_D(w, V_{j1}) ∩ N⁻_D(v, V_{j1}), then to v and finally to a typical z ∈ V_{j2}.
- Repeat until all problematic vertices are in P₁.

・ロト ・回ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P₁.

・ロト ・回ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex $v \in [n]$ is problematic if $|deg^+_{D(n,p)}(v, V_i) \ell p| \ge \varepsilon \ell p$ or $|deg^-_{D(n,p)}(v, V_i) - \ell p| \ge \varepsilon \ell p$ for some $1 \le i \le r$.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist 1 ≤ j₁, j₂ ≤ r such that v has at least ℓp/3 in-neighbours in V_{j₁} and at least ℓp/3 out-neighbours in V_{j₂}.
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}.
- Continue to w ∈ V_{ji-1} and y ∈ N⁺_D(w, V_{ji}) ∩ N⁻_D(v, V_{ji}), then to v and finally to a typical z ∈ V_{ji}.
- Repeat until all problematic vertices are in P₁.

・ロト ・回ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}.
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P₁.

・ロト ・回ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}.
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P₁.

() < </p>

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}.
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P₁.

(日) (四) (三) (三)

臣

Proof sketch for constant p cont'd

Stage 1.1: Absorbing problematic vertices

- A vertex v ∈ [n] is problematic if |deg⁺_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp or |deg⁻_{D(n,p)}(v, V_i) − ℓp| ≥ εℓp for some 1 ≤ i ≤ r.
- Chernoff + Union bound $\Longrightarrow \exists$ few problematic vertices.
- Let v be a problematic vertex; there exist $1 \le j_1, j_2 \le r$ such that v has at least $\ell p/3$ in-neighbours in V_{j_1} and at least $\ell p/3$ out-neighbours in V_{j_2} .
- Starting at some good vertex v₁ ∈ V₁, traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{j1-2}.
- Continue to $w \in V_{j_1-1}$ and $y \in N_D^+(w, V_{j_1}) \cap N_D^-(v, V_{j_1})$, then to v and finally to a typical $z \in V_{j_2}$.
- Repeat until all problematic vertices are in P₁.

(日) (四) (三) (三)

э

Proof sketch for constant p cont'd

Stage 1.2: Extending P_1 to an almost spanning P_2

As long as P_2 is not long enough, traverse the cycle of clusters, at each step choosing a typical vertex uniformly at random.

Lemma:

At the end of Stage 1.2, for every $v \in [n] \setminus V(P_2)$ there are many arcs $(x, y) \in E(P_2)$ such that $(x, v), (v, y) \in E(D)$.

Proof sketch for constant p cont'd

Stage 1.2: Extending P_1 to an almost spanning P_2

As long as P_2 is not long enough, traverse the cycle of clusters, at each step choosing a typical vertex uniformly at random.

_emma:

At the end of Stage 1.2, for every $v \in [n] \setminus V(P_2)$ there are many arcs $(x, y) \in E(P_2)$ such that $(x, v), (v, y) \in E(D)$.

(日) (종) (종) (종) (종)

Proof sketch for constant *p* cont'd

Stage 1.2: Extending P_1 to an almost spanning P_2

As long as P_2 is not long enough, traverse the cycle of clusters, at each step choosing a typical vertex uniformly at random.

Lemma:

At the end of Stage 1.2, for every $v \in [n] \setminus V(P_2)$ there are many arcs $(x, y) \in E(P_2)$ such that $(x, v), (v, y) \in E(D)$.

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts dominates a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts dominates a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

・ロト ・同ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts dominates a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

・ロン ・回 と ・ ヨン ・ ヨン

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts **dominates** a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

・ロト ・同ト ・ヨト ・ヨト

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts **dominates** a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

・ロン ・四 と ・ ヨ と ・ ヨ と

э

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts dominates a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

・ロン ・四 と ・ ヨ と ・ ヨ と

э

Proof sketch for constant p cont'd

Proof of the lemma:

- Since all problematic vertices are in P₂, for every v ∈ [n] \ V(P₂) there are many pairwise far pairs (V_i, V_{i+1}) such that v has many in-neighbours in V_i and many out-neighbours in V_{i+1}.
- Every time we add an arc $(x, y) \in V_i \times V_{i+1}$ to P_2 , the probability that $x \in N_D^-(v, V_i)$ and $y \in N_D^+(v, V_{i+1})$ is more or less $\frac{|N_D^-(v, V_i \setminus P_2)| \cdot |N_D^+(v, V_{i+1} \setminus P_2)|}{|V_i \setminus P_2| \cdot |V_{i+1} \setminus P_2|}.$
- For far away pairs these attempts are independent.
- The number of successful attempts dominates a binomial distribution.
- Chernoff + Union bound completes the proof of the lemma.

3

Proof sketch for constant p cont'd

Stage 1.3: Closing P_2 to a cycle C_1

- Traverse the cycle of clusters, using only typical vertices, until reaching $x \in V_{r-2}$.
- Since v_1 is good, it has many in-neighbours in V_r .
- Continue to $y \in V_{r-1}$ and $z \in N_D^+(y, V_r) \cap N_D^-(v_1, V_r)$.

Proof sketch for constant p cont'd

Stage 1.3: Closing P_2 to a cycle C_1

- Traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{r−2}.
- Since v_1 is good, it has many in-neighbours in V_r .
- Continue to $y \in V_{r-1}$ and $z \in N_D^+(y, V_r) \cap N_D^-(v_1, V_r)$.
Proof sketch for constant *p* cont'd

Stage 1.3: Closing P_2 to a cycle C_1

- Traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{r-2}.
- Since v_1 is good, it has many in-neighbours in V_r .
- Continue to $y \in V_{r-1}$ and $z \in N_D^+(y, V_r) \cap N_D^-(v_1, V_r)$.

・ロット (雪) (目) (日)

Proof sketch for constant *p* cont'd

Stage 1.3: Closing P_2 to a cycle C_1

- Traverse the cycle of clusters, using only typical vertices, until reaching x ∈ V_{r-2}.
- Since v_1 is good, it has many in-neighbours in V_r .

• Continue to $y \in V_{r-1}$ and $z \in N_D^+(y, V_r) \cap N_D^-(v_1, V_r)$.

・ロット (雪) (目) (日)

Proof sketch for constant *p* cont'd

Stage 1.3: Closing P_2 to a cycle C_1

- Traverse the cycle of clusters, using only typical vertices, until reaching $x \in V_{r-2}$.
- Since v_1 is good, it has many in-neighbours in V_r .
- Continue to $y \in V_{r-1}$ and $z \in N_D^+(y, V_r) \cap N_D^-(v_1, V_r)$.

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.

Stage 1.2: Essentially the same but more involved technically.

Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved technically.

・ロト ・同ト ・ヨト ・ヨト

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.

Stage 1.2: Essentially the same but more involved technically.

Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved technically.

・ロト ・回ト ・ヨト ・ヨト

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.

Stage 1.2: Essentially the same but more involved technically.

Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved technically.

・ロト ・回ト ・ヨト ・ヨト

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.

Stage 1.2: Essentially the same but more involved technically.

Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved technically.

・ロン ・四 と ・ ヨ と ・ ヨ と

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

- Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.
- Stage 1.2: Essentially the same but more involved technically.
- Stage 1.3: The same

Stage 2: Essentially the same but slightly more involved technically.

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

- Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.
- Stage 1.2: Essentially the same but more involved technically.
- Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved technically.

The lower bound for sparser digraphs

Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

- Stage 1.1: The use of the Sparse Diregularity Lemma gives rise to many problematic vertices of different types; many more than the size of a neighbourhood of a typical vertex.
- Stage 1.2: Essentially the same but more involved technically.

Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved technically.

・ロン ・四 と ・ ヨ と ・ ヨ と

Summary and future work

- We have proved that a.a.s.
 - $1/2 lpha \leq r_\ell(\mathcal{D}(n, p), \mathcal{H}) \leq 1/2 + lpha$ whenever $p \gg \log n/\sqrt{n}$
- The upper bound holds for $p = \Omega(\log n/n)$ and $\alpha = O(\sqrt{\frac{\log n}{np}}).$
- For constant *p*, the lower bound holds with $\alpha = O(\sqrt{\frac{\log n}{np}})$ as well.
- What is the local resilience of sparser digraphs? Is it 1/2 + o(1) for every $p \gg \log n/n$?

Summary and future work

- We have proved that a.a.s. 1/2 - α ≤ r_ℓ(D(n, p), H) ≤ 1/2 + α whenever p ≫ log n/√n.
 The upper bound holds for p = Ω(log n/n) and α = O(√(log n/n)).
- For constant *p*, the lower bound holds with $\alpha = O(\sqrt{\frac{\log n}{np}})$ as well.
- What is the local resilience of sparser digraphs? Is it 1/2 + o(1) for every $p \gg \log n/n$?

・ロン ・四 と ・ ヨ と ・ ヨ と

3

Summary and future work

- We have proved that a.a.s. $1/2 - \alpha \leq r_{\ell}(\mathcal{D}(n, p), \mathcal{H}) \leq 1/2 + \alpha$ whenever $p \gg \log n/\sqrt{n}$.
- The upper bound holds for $p = \Omega(\log n/n)$ and $\alpha = O(\sqrt{\frac{\log n}{np}})$.
- For constant *p*, the lower bound holds with $\alpha = O(\sqrt{\frac{\log n}{np}})$ as well.
- What is the local resilience of sparser digraphs? Is it 1/2 + o(1) for every $p \gg \log n/n$?

・ロン ・四 と ・ ヨ と ・ ヨ と

3

Summary and future work

- We have proved that a.a.s. $1/2 - \alpha \leq r_{\ell}(\mathcal{D}(n, p), \mathcal{H}) \leq 1/2 + \alpha$ whenever $p \gg \log n/\sqrt{n}$.
- The upper bound holds for $p = \Omega(\log n/n)$ and $\alpha = O(\sqrt{\frac{\log n}{np}}).$
- For constant *p*, the lower bound holds with $\alpha = O(\sqrt{\frac{\log n}{np}})$ as well.
- What is the local resilience of sparser digraphs? Is it 1/2 + o(1) for every $p \gg \log n/n$?

Summary and future work

- We have proved that a.a.s. $1/2 - \alpha \le r_{\ell}(\mathcal{D}(n, p), \mathcal{H}) \le 1/2 + \alpha$ whenever $p \gg \log n/\sqrt{n}$.
- The upper bound holds for $p = \Omega(\log n/n)$ and $\alpha = O(\sqrt{\frac{\log n}{np}}).$
- For constant *p*, the lower bound holds with $\alpha = O(\sqrt{\frac{\log n}{np}})$ as well.
- What is the local resilience of sparser digraphs? Is it 1/2 + o(1) for every $p \gg \log n/n$?

Summary and future work

- We have proved that a.a.s. $1/2 - \alpha \le r_{\ell}(\mathcal{D}(n, p), \mathcal{H}) \le 1/2 + \alpha$ whenever $p \gg \log n/\sqrt{n}$.
- The upper bound holds for $p = \Omega(\log n/n)$ and $\alpha = O(\sqrt{\frac{\log n}{np}}).$
- For constant *p*, the lower bound holds with $\alpha = O(\sqrt{\frac{\log n}{np}})$ as well.
- What is the local resilience of sparser digraphs? Is it 1/2 + o(1) for every $p \gg \log n/n$?

Thank you for your attention Questions?

Э