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Hamilton cycles in undirected graphs

Definition:

A Hamilton cycle of a graph G is a spanning connected 2-regular
subgraph of G .

Theorem (Dirac 1952):

Let G be a graph on n ≥ 3 vertices. If δ(G ) ≥ n/2, then G is
Hamiltonian. Easily seen to be best possible.
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Local resilience

Definition:

Let G be a graph and let P be a monotone increasing graph
property. The local resilience of G with respect to P is

r`(G ,P) := min
H⊆G

G\H /∈P

max
u∈V (G)

{
degH(u)

degG (u)

}
.

An asymptotic version of Dirac’s Theorem

The local resilience of Kn with respect to Hamiltonicity tends to
1/2 as n tends to infinity.
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Robust Hamiltonicity of undirected random graphs

Theorem (Erdős and Rényi 1959):

If p ≤ (1− ε) log n/n, then a.a.s. r`(G (n, p),H) = 0.

Theorem (Komlós and Szemerédi 1983 and Bollobás 1984):

If p ≥ (1 + ε) log n/n, then a.a.s. r`(G (n, p),H) > 0.

Theorem (Lee and Sudakov 2012):

If p � log n/n, then a.a.s. r`(G (n, p),H) = 1/2 + o(1).
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Theorem (Komlós and Szemerédi 1983 and Bollobás 1984):

If p ≥ (1 + ε) log n/n, then a.a.s. r`(G (n, p),H) > 0.

Theorem (Lee and Sudakov 2012):

If p � log n/n, then a.a.s. r`(G (n, p),H) = 1/2 + o(1).

Probability and Graphs Random directed graphs are robustly Hamiltonian



Introduction and results
Main ideas of the proofs

Summary

Hamilton cycles in directed graphs

Theorem (Ghouila-Houri 1960):

Let D be a strongly connected digraph on n vertices. If
δ+(D) + δ−(D) ≥ n, then D is Hamiltonian.

Corollary:

Let D be a digraph on n vertices. If δ+(D) ≥ n/2 and
δ−(D) ≥ n/2, then D is Hamiltonian. Easily seen to be best
possible.

An asymptotic version of the corollary

The local resilience of the complete directed graph on n vertices
with respect to Hamiltonicity tends to 1/2 as n tends to infinity.

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Robust Hamiltonicity of directed random graphs

Observation:
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The upper bound
The lower bound for dense digraphs
The lower bound for sparser digraphs

Proof of the upper bound

Sketch

Split [n] into two sets of equal size V1 and V2.

Expose all arcs of D(n, p) with one endpoint in V1 and the
other in V2.

Delete all arcs directed from V1 to V2.

a.a.s. we deleted at most (1/2 + α)deg+
D (u) and at most

(1/2 + α)deg−D (u) from every u ∈ [n].

Remark:

This proof works for p ≥ c1 log n/n and α ≥ c2

√
log n
np .

Probability and Graphs Random directed graphs are robustly Hamiltonian
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The upper bound
The lower bound for dense digraphs
The lower bound for sparser digraphs

The lower bound - proof sketch for constant p

Main stages of the proof:

Let D = ([n],E ) be obtained from D(n, p) by deleting at most
(1/2− α)deg+

D (u) and at most (1/2− α)deg−D (u) from every
u ∈ [n].

Stage 1: Build an almost spanning cycle C1.

Stage 2: Absorb every remaining vertex into C1.

Stage 2:

For every u ∈ [n] \ C1, replace an arc (x , y) ∈ E (C1) with two arcs
(x , u), (u, y) ∈ E .
Clearly we have to ensure that such arcs exist.

Remark:

Having so many triangles requires p = Ω(n−1/2).

Probability and Graphs Random directed graphs are robustly Hamiltonian
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The upper bound
The lower bound for dense digraphs
The lower bound for sparser digraphs

Proof sketch for constant p cont’d

Main substages of Stage 1:

Stage 1.0: Preparation.

Stage 1.1: Build a short directed path P1 which includes all
problematic vertices.

Stage 1.2: Extend P1 into an almost spanning path P2 such
that every u ∈ [n] \ P2 has many arcs (x , y) ∈ E (P2)
for which (x , u), (u, y) ∈ E .

Stage 1.3: Close P2 into a cycle C1.

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Proof sketch for constant p cont’d

Stage 1.0: Preparation

Apply the Directed Regularity Lemma to D; let
{V0,V1, . . . ,Vk} be the resulting ε-regular partition.
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Stage 1.1: Absorbing problematic vertices

A vertex v ∈ [n] is problematic if |deg+
D(n,p)(v ,Vi )− `p| ≥ ε`p

or |deg−D(n,p)(v ,Vi )− `p| ≥ ε`p for some 1 ≤ i ≤ r .

Chernoff + Union bound =⇒ ∃ few problematic vertices.

Let v be a problematic vertex; there exist 1 ≤ j1, j2 ≤ r such
that v has at least `p/3 in-neighbours in Vj1 and at least `p/3
out-neighbours in Vj2 .

Starting at some good vertex v1 ∈ V1, traverse the cycle of
clusters, using only typical vertices, until reaching x ∈ Vj1−2.

Continue to w ∈ Vj1−1 and y ∈ N+
D (w ,Vj1) ∩ N−D (v ,Vj1),

then to v and finally to a typical z ∈ Vj2 .

Repeat until all problematic vertices are in P1.

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Stage 1.2: Extending P1 to an almost spanning P2

As long as P2 is not long enough, traverse the cycle of clusters, at
each step choosing a typical vertex uniformly at random.

Lemma:

At the end of Stage 1.2, for every v ∈ [n] \ V (P2) there are many
arcs (x , y) ∈ E (P2) such that (x , v), (v , y) ∈ E (D).

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Proof of the lemma:

Since all problematic vertices are in P2, for every
v ∈ [n] \ V (P2) there are many pairwise far pairs (Vi ,Vi+1)
such that v has many in-neighbours in Vi and many
out-neighbours in Vi+1.

Every time we add an arc (x , y) ∈ Vi × Vi+1 to P2, the
probability that x ∈ N−D (v ,Vi ) and y ∈ N+

D (v ,Vi+1) is more

or less
|N−D (v ,Vi\P2)|·|N+

D (v ,Vi+1\P2)|
|Vi\P2|·|Vi+1\P2| .

For far away pairs these attempts are independent.

The number of successful attempts dominates a binomial
distribution.

Chernoff + Union bound completes the proof of the lemma.

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Stage 1.3: Closing P2 to a cycle C1

Traverse the cycle of clusters, using only typical vertices, until
reaching x ∈ Vr−2.

Since v1 is good, it has many in-neighbours in Vr .

Continue to y ∈ Vr−1 and z ∈ N+
D (y ,Vr ) ∩ N−D (v1,Vr ).

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Additional difficulties for p = o(1)

Stage 1.0: Apply the Sparse Diregularity Lemma.

Stage 1.1: The use of the Sparse Diregularity Lemma gives rise
to many problematic vertices of different types; many
more than the size of a neighbourhood of a typical
vertex.

Stage 1.2: Essentially the same but more involved technically.

Stage 1.3: The same.

Stage 2: Essentially the same but slightly more involved
technically.
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Summary and future work

We have proved that a.a.s.
1/2− α ≤ r`(D(n, p),H) ≤ 1/2 + α whenever p � log n/

√
n.

The upper bound holds for p = Ω(log n/n) and

α = O(
√

log n
np ).

For constant p, the lower bound holds with α = O(
√

log n
np ) as

well.

What is the local resilience of sparser digraphs? Is it
1/2 + o(1) for every p � log n/n?

Probability and Graphs Random directed graphs are robustly Hamiltonian
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Thank you for your attention

Questions?

Probability and Graphs Random directed graphs are robustly Hamiltonian
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