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Paul Erdős Alfréd Rényi

Paul Erdős and A. Rényi, On the evolution of random graphs
Magyar Tud. Akad. Mat. Kut. Int. Kozl. 5 (1960) 17-61.
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■ Uniform model En,N : the set of all graphs with n
vertices and N edges, equipped with uniform distribution.

■ Binomial model G(n, p): assign each pair of vertices as
an edge with probability p independently. (proposed by
Gilbert, is also known as Erdős-Rényi model.)

Two models are more or less “equivalent” via p ≈ 2N
n(n−1).

Rich literature on the phase transition of these two models:
Erdős, Rényi, Bollobás, Spencer, Janson, Knuth,
 Luczak, Ruciński, Pittel, Sudakov, Krivelevich,
Wormald, ...
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Erdős-Rényi 1960s:

■ p ∼ c/n for 0 < c < 1: The largest connected
component of Gn,p is a tree and has about
1
α(log n− 5

2 log log n) vertices, where α = c− 1− log c.
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Erdős-Rényi 1960s:

■ p ∼ c/n for 0 < c < 1: The largest connected
component of Gn,p is a tree and has about
1
α(log n− 5

2 log log n) vertices, where α = c− 1− log c.

■ p ∼ 1/n+ ǫ/n4/3, the critical window, double jump.

■ p ∼ c/n for c > 1: Except for one “giant” component,
all the other components are relatively small. The giant
component has approximately f(c)n vertices, where

f(c) = 1− 1

c

∞
∑

k=1

kk−1

k!
(ce−c)k.
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General question on phase transition: Given a random
graph model, how does the distribution of connected
components evolve as the number of edges increase?
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General question on phase transition: Given a random
graph model, how does the distribution of connected
components evolve as the number of edges increase?

This is a hard problem in general. The answer depends on
the model.
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Chung-Lu model G(w1, w2, . . . , wn):

- w1, w2, . . . , wn: vertices weight/expected degrees
- pij = wiwj/

∑n
i=1wi: the probability of the pair (i, j)

being created as an edge, independently.
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Chung-Lu model G(w1, w2, . . . , wn):

- w1, w2, . . . , wn: vertices weight/expected degrees
- pij = wiwj/

∑n
i=1wi: the probability of the pair (i, j)

being created as an edge, independently.

Chung and Lu (2004)
If the average degree is strictly greater than 1, then almost
surely the giant component in a graph G in G(w1, . . . , wn)

has volume (λ0 +O(
√
n log3.5 n

vol(G) ))vol(G), where λ0 is the

unique positive root of the following equation:

n
∑

i=1

wie
−wiλ = (1− λ)

n
∑

i=1

wi.
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Percolation problem: Given a host graph G, find the the
threshold pc(G) so that the random subgraph Gp has a giant
component if p > pc and no giant component if p < pc.
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Percolation problem: Given a host graph G, find the the
threshold pc(G) so that the random subgraph Gp has a giant
component if p > pc and no giant component if p < pc.

■ Kesten [1980]: pc(Z
2) = 1

2 .

■ Kesten [1990]: pc(Z
d) ∼ 1

2d as d → ∞.
■ Alon, Benjamini, Stacey [2004]: For random

d-regular graph, pc =
1

d−1 + o(1).
■ Bollobás, Borgs, Chayes, and Riordan [2008]: For

desnse graph G, pc ≈ 1
µ , where µ is the largest

eigenvalue of the adjacency matrix.
■ Chung, Lu, Horn [2009]: pc ≈ 1

µ , for sparse graphs
under some spectral conditions.
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H = (V,E) is an r-uniform hypergraph (r-graph, for short).

■ V : the set of vertices
■ E: the set of edges, each edge has carnality r.
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H = (V,E) is an r-uniform hypergraph (r-graph, for short).

■ V : the set of vertices
■ E: the set of edges, each edge has carnality r.

A 3-uniform loose cycle A 3-uniform tight cycle
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■ Vertex to Vertex

■ Pair to Pair
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Given an r-graph H = (V,E), for 1 ≤ s ≤ r − 1, define an
auxiliary graph Gs:

■ vertex set
(

V
s

)

, an s-set is called a stop.
■ a pair (S, T ) forms an edge in Gs if S ∪ T ⊆ F ∈ E.

(There are different variations of Gs.)
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Given an r-graph H = (V,E), for 1 ≤ s ≤ r − 1, define an
auxiliary graph Gs:

■ vertex set
(

V
s

)

, an s-set is called a stop.
■ a pair (S, T ) forms an edge in Gs if S ∪ T ⊆ F ∈ E.

(There are different variations of Gs.)

The components of Gs are the called the s-th-order
components. An s-th-order component is giant if its size is
Θ(ns).

Main question: how does the distribution of s-th order
components evolve as the number of edges in random
hypergraph increases?
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■ Uniform model Hr
n,N : the set of all r-uniform

hypergraphs with n vertices and N edges, equipped with
uniform distribution.
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■ Uniform model Hr
n,N : the set of all r-uniform

hypergraphs with n vertices and N edges, equipped with
uniform distribution.

■ Binomial model Hr(n, p): assign each r-set of vertices
as an edge with probability p independently.

Two models are more or less “equivalent” via N =
(

n
r

)

p.
Here we use the binomial model.
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s = 1 (vertex-to-vertex connection)

■ Schmidt-Pruzan and Shamir [1985]
■ Karoński and  Luczak [2002]
■ Coja-Oghlan, Moore, and Sanwalani [2007]
■ Kang, Behrisch and Coja-Oghlan[2010]
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s = 1 (vertex-to-vertex connection)

■ Schmidt-Pruzan and Shamir [1985]
■ Karoński and  Luczak [2002]
■ Coja-Oghlan, Moore, and Sanwalani [2007]
■ Kang, Behrisch and Coja-Oghlan[2010]

s ≥ 2

■ This talk.
■ Also independently by Cooley-Kang-Person [2013+].
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Theorem I [Lu-Peng 2013+] For any 1 ≤ s ≤ r − 1, set
p = c

( n

r−s)
and m =

(

r
s

)

− 1. Then the following statements

hold for the s-th order components in Hr(n, p).

■ If mc < 1− ǫ, then almost surely all s-th-order
connected components have size O(lnn).

■ If mc > 1 + ǫ, then almost surely there is a unique giant
s-th-order connected component of size
(f(c) + o(1))

(

n
s

)

, where f(c) is the unique positive root

of 1− x = ec[(1−x)m−1] and

f(c) = 1−
∞
∑

k=0

(mk + 1)k−1ck

k!e(km+1)c
.
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Theorem II [Lu-Peng 2013+] For any 1 ≤ s ≤ r − 1, set
p = c

( n

r−s)
and m =

(

r
s

)

− 1. For any k ≥ 0, almost surely the

number of s-th-order components in Hr(n, p) of exactly
k-edges is (ak + o(1))

(

n
s

)

, where

ak =
(mk + 1)k−1ck

k!e(km+1)c
.

The majority of the small components are (r, s)-trees.
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For any 1 ≤ s ≤ r − 1, an (r, s)-tree Tk is an s-th-order
component of k edges with maximum number of vertices.



(r, s)-trees

High Order Phase Transition in Random Hypergraphs Linyuan Lu (University of South Carolina) – 16 / 22
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new vertices to Tk, selecting a stop S ⊂ F ∈ E(Tk),
then adding an new edge S ∪ Ek+1.

a (3, 2)-tree a (4, 2)-tree
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For any 1 ≤ s ≤ r − 1, an (r, s)-tree Tk is an s-th-order
component of k edges with maximum number of vertices.

Recursive definition:

■ T0 is a single stop S0.
■ Tk+1 can be obtained by first adding a set Ek+1 of r − s

new vertices to Tk, selecting a stop S ⊂ F ∈ E(Tk),
then adding an new edge S ∪ Ek+1.

a (3, 2)-tree a (4, 2)-tree

Canonical partition: S0 ∪ E1 ∪ E2 ∪ · · · ∪ Ek

(Here E1, . . . , Ek are indistinguishable.)
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Prüfer code [1918]: There is a bijection from the trees on
n vertices to [n]n−2.



Counting (r, s)-trees

High Order Phase Transition in Random Hypergraphs Linyuan Lu (University of South Carolina) – 17 / 22

A (2, 1)-tree is just a tree rooted at vertex 1.

Cayley’s formula [1889]: The number of trees on n
vertices is nn−2.

Prüfer code [1918]: There is a bijection from the trees on
n vertices to [n]n−2.

Theorem [Lu-Peng 2013+]: For any 1 ≤ s ≤ r − 1, the
number of (r, s)-trees with a fixed canonical partition
S0 ∪ E1 ∪ E2 ∪ · · · ∪ Ek is

(

k

(

r

s

)

− k + 1

)k−1

.
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A (2, 1)-tree is just a tree rooted at vertex 1.

Cayley’s formula [1889]: The number of trees on n
vertices is nn−2.

Prüfer code [1918]: There is a bijection from the trees on
n vertices to [n]n−2.

Theorem [Lu-Peng 2013+]: For any 1 ≤ s ≤ r − 1, the
number of (r, s)-trees with a fixed canonical partition
S0 ∪ E1 ∪ E2 ∪ · · · ∪ Ek is

(

k

(

r

s

)

− k + 1

)k−1

.

Remark: This theorem generalizes Cayley’s formula.
We also found the generalized Prüfer codes for (r, s)-trees.
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We couple the branching process with a special
Galton-Watson process called “m-fold Poisson process” T po

m,c:

■ Start with one live node (the root).
■ For each round, select a live node u if there is one.
■ Roll a Poisson dice to produce an non-negative integer k

with probability e−cck/k!.
■ Add mk children nodes to u, mark them live, and mark

u dead.
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We couple the branching process with a special
Galton-Watson process called “m-fold Poisson process” T po

m,c:

■ Start with one live node (the root).
■ For each round, select a live node u if there is one.
■ Roll a Poisson dice to produce an non-negative integer k

with probability e−cck/k!.
■ Add mk children nodes to u, mark them live, and mark

u dead.

Easy fact:

■ If mc < 1, then the process terminates after finite steps.
■ If mc > 1, then with probability 1− x, the process will

survive forever. Here x is the solution of

x = ec(x
m−1).



Obstacles

High Order Phase Transition in Random Hypergraphs Linyuan Lu (University of South Carolina) – 19 / 22

If mc < 1, coupling is easy.



Obstacles

High Order Phase Transition in Random Hypergraphs Linyuan Lu (University of South Carolina) – 19 / 22

If mc < 1, coupling is easy.

If mc > 1, there are two major obstacles:

■ A new edge revealed brings in less than m new stops.
■ A r-set containing a live stop may have been used before.



Obstacles

High Order Phase Transition in Random Hypergraphs Linyuan Lu (University of South Carolina) – 19 / 22

If mc < 1, coupling is easy.

If mc > 1, there are two major obstacles:

■ A new edge revealed brings in less than m new stops.
■ A r-set containing a live stop may have been used before.

Krivelevich-Sudakov [2012]: The Depth-First-Search
(DFS) finds a path of length Θ(n) in G(n, p) when np > 1.



Obstacles

High Order Phase Transition in Random Hypergraphs Linyuan Lu (University of South Carolina) – 19 / 22

If mc < 1, coupling is easy.

If mc > 1, there are two major obstacles:

■ A new edge revealed brings in less than m new stops.
■ A r-set containing a live stop may have been used before.

Krivelevich-Sudakov [2012]: The Depth-First-Search
(DFS) finds a path of length Θ(n) in G(n, p) when np > 1.

DFS helps. but we use different analysis.
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Our approaches

■ We also use DFS.
■ We book-keep dead stops, live stops, available edges,

and potentially bad t-sets for each live stops.
■ If the number of potentially bad t-sets and used edges

exceeding ǫ
(

n
r−s

)

at any live stop, we restart the process.

With all efforts, we are able to find a path of length
Ω( ns

logCsn). Then we use sprinkling to show the giant
component exists and is unique.
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There are different ways to define two s-sets are adjacent.
For example, we define G(s):

■ vertex set
(

V
s

)

.

■ a pair (S, T ) forms an edge in G(s) if S ∪ T ⊆ F ∈ E
and |S ∪ T | as large as possible.
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unless r = 2s. It is interesting that the threshold happens
when the average degree in G(s) much smaller than 1.
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There are different ways to define two s-sets are adjacent.
For example, we define G(s):

■ vertex set
(

V
s

)

.

■ a pair (S, T ) forms an edge in G(s) if S ∪ T ⊆ F ∈ E
and |S ∪ T | as large as possible.

The connected components in G(s) are the same as in Gs

unless r = 2s. It is interesting that the threshold happens
when the average degree in G(s) much smaller than 1.
For r = 2s, the components in G(s) is similar to G(n, p) and
has an easier proof.
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For 1 ≤ s ≤ r
2 , we define the Laplacian eigenvalues of G(s)

as the s-th-order Laplacian eigenvalues of the hypergraph H.

■ These eigenvalues can effectively control the mixing rate
of high-ordered random walks, the generalized
distances/diameters, and the edge expansions.

■ The Laplacian eigenvalues of Hr(n, p) follows the
Semi-circle Law.

■ There are several directions on generalizing spectral
graph theory to hypergraphs.
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For 1 ≤ s ≤ r
2 , we define the Laplacian eigenvalues of G(s)

as the s-th-order Laplacian eigenvalues of the hypergraph H.

■ These eigenvalues can effectively control the mixing rate
of high-ordered random walks, the generalized
distances/diameters, and the edge expansions.

■ The Laplacian eigenvalues of Hr(n, p) follows the
Semi-circle Law.

■ There are several directions on generalizing spectral
graph theory to hypergraphs.

Thank you.
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