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The acquaintance time
Definition

@ Place one agent on each vertex.
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The acquaintance time
Definition

@ Place one agent on each vertex.

@ Every pair of agents sharing an edge is declared to be
acquainted, and remains so throughout the process.
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The acquaintance time
Definition

@ Place one agent on each vertex.

@ Every pair of agents sharing an edge is declared to be
acquainted, and remains so throughout the process.

@ In each round, we chose some matching M (any matching,
perhaps it is a single edge). For each edge of M, we swap
the agents occupying its endpoints.
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The acquaintance time
Definition

@ Place one agent on each vertex.

@ Every pair of agents sharing an edge is declared to be
acquainted, and remains so throughout the process.

@ In each round, we chose some matching M (any matching,
perhaps it is a single edge). For each edge of M, we swap
the agents occupying its endpoints.

@ The acquaintance time, AC(G), is the minimum number of
rounds required for all agents to become acquainted with
one another.
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The acquaintance time
Definition

@ Place one agent on each vertex.

@ Every pair of agents sharing an edge is declared to be
acquainted, and remains so throughout the process.

@ In each round, we chose some matching M (any matching,
perhaps it is a single edge). For each edge of M, we swap
the agents occupying its endpoints.

@ The acquaintance time, AC(G), is the minimum number of
rounds required for all agents to become acquainted with
one another.

Clearly,
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The acquaintance time

How large can this be for n-vertex connected graph?

Theorem (Benjamini, Shinkar, Tsur, 2014+)

2
AG(E) =0 (Iog n/loglog n>
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The acquaintance time

How large can this be for n-vertex connected graph?

Theorem (Benjamini, Shinkar, Tsur, 2014+)

2
AG(E) =0 (Iog n/loglog n>

Theorem (Kinnersley Mitsche, Pralat, 2013)
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The acquaintance time

How large can this be for n-vertex connected graph?

Theorem (Benjamini, Shinkar, Tsur, 2014+)

2
AG(E) =0 (Iog n/loglog n>

Theorem (Kinnersley Mitsche, Pralat, 2013)
2
AC(G) = o< n >

log n

Theorem (Angel, Shinkar, 2014+)
AC(G) = O (n3/2)

(This result is tight.)
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The acquaintance time

Random graphs G(n, p)

Conjecture (Benjamini, Shinkar, Tsur, 2014+)
For p = p(n) > (log n+ w)/n we have a.a.s.

AC(G) = O <polylzg(n))

They conjectured this despite the fact that no non-trivial upper
bound was known.

Trivial upper bound: O(n), provided that w — loglogn — oo
(since AC(G) = O(n) for any graph with Hamiltonian path).

Trivial lower bound: Q(n?/m) = Q(1/p).
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The acquaintance time

Random graphs G(n, p)

Theorem (Kinnersley Mitsche, Pralat, 2013)
For p = p(n) > (log n+ loglog n+ w)/n we have a.a.s.

AC(G) =0 ('(’g”>
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The acquaintance time

Random graphs G(n, p)

Theorem (Kinnersley Mitsche, Pralat, 2013)
For p = p(n) > (log n+ loglog n+ w)/n we have a.a.s.

AC(G) =0 ('(’g”>

Is it tight?

AC(G): each agent has a helicopter and can, on each round,
move to any vertex she wants. Clearly,

AC(G) > AC(G)

AC(G) also represents the minimum number of copies of a
graph G needed to cover all edges of a complete graph of the
same order.
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The acquaintance time

Random graphs G(n, p)

Theorem (Kinnersley Mitsche, Pralat, 2013)

For p = p(n) > (logn+ loglog n+ w)/n we have a.a.s.

AC(G) = O <'°§”>

Theorem (Kinnersley Mitsche, Pralat, 2013)

Lete > 0. Forp=p(n) > n~'/?2*¢ and p < 1 — ¢ we have a.a.s.

AC(G) = ©(AC(G)) = © <'°g”>
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The acquaintance time

Random graphs G(n, p)

Theorem (Kinnersley Mitsche, Pralat, 2013)
For p = p(n) > (log n+ loglog n+ w)/n we have a.a.s.

AC(G) = O ('(’g”>

Theorem (Kinnersley Mitsche, Pralat, 2013)

Lete > 0. Forp=p(n) > n~"/2t¢ and p < 1 — ¢ we have a.a.s.

AC(G) = ©(AC(G)) = © ("’g”)

The behaviours of AC(G) and AC(G) for sparse random graphs
remain undetermined!
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The acquaintance time

Random graphs G(n, p)

Theorem (Kinnersley Mitsche, Pralat, 2013)
For p = p(n) > (logn+ loglog n+ w)/n we have a.a.s.

AC(G) = O <'°§”>

Theorem (Kinnersley Mitsche, Pralat, 2013)

Lete > 0. Forp=p(n) > n~'/2*¢ and p < 1 — ¢ we have a.a.s.

AC(G) = ©(AC(G)) = © <'°g”>

Check what is going on below the threshold for Hamiltonian
path and when p — 1?
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The acquaintance time

Random geometric graphs G(n, r)

Theorem ( , Pralat, 2014+)
If wnr? —log n — oo, then a.a.s.

AC(G) = ©(r?).

(Recall that if wnr® — log n — —oc, then G is a.a.s.
disconnected and so the acquaintance time is not defined.)
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The acquaintance time

Percolated random geometric graphs G(n, r, p)

Theorem ( , Pralat, 2014+)

Lete > 0. If pnr? > n'/2*< then a.a.s.

AC(G) = ©(r2p'logn).

(In fact, an upper bound works whenever pnr? > K log n for
some large constant K.)
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The acquaintance time

Percolated random geometric graphs G(n, r, p)

Theorem ( , Pralat, 2014+)
Lete > 0. If pnr?2 > n'/2t< then a.a.s.

AC(G) = ©(r2p'logn).

(In fact, an upper bound works whenever pnr? > K log n for
some large constant K.)

The behaviour for sparser graphs remains undetermined.
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e Total acquisition in random graphs
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Total acquisition in random graphs
Definition

@ Initially, each vertex has weight 1.
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Total acquisition in random graphs
Definition

@ Initially, each vertex has weight 1.

@ In each step, we are allowed to move weight from a vertex
u to a neighbouring vertex v, provided that before the
move the weight on v is at least the weight on v.
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Total acquisition in random graphs
Definition

@ Initially, each vertex has weight 1.

@ In each step, we are allowed to move weight from a vertex
u to a neighbouring vertex v, provided that before the
move the weight on v is at least the weight on v.

@ The total acquisition number a;(G) is the minimum possible
size of the final set of vertices with positive weight.
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Total acquisition in random graphs
Definition

@ Initially, each vertex has weight 1.

@ In each step, we are allowed to move weight from a vertex
u to a neighbouring vertex v, provided that before the
move the weight on v is at least the weight on v.

@ The total acquisition number a;(G) is the minimum possible
size of the final set of vertices with positive weight.

Clearly, a;(G) < ~(G).
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Total acquisition in random graphs
Definition

@ Initially, each vertex has weight 1.

@ In each step, we are allowed to move weight from a vertex
u to a neighbouring vertex v, provided that before the
move the weight on v is at least the weight on wv.

@ The total acquisition number a;(G) is the minimum possible
size of the final set of vertices with positive weight.

Clearly, a;(G) < v(G).

Also, a;(G) > a;(H) if Gis a subgraph of H (on the same vertex
set).
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Total acquisition in random graphs
Definition

@ Initially, each vertex has weight 1.

@ In each step, we are allowed to move weight from a vertex
u to a neighbouring vertex v, provided that before the
move the weight on v is at least the weight on wv.

@ The total acquisition number a;( G) is the minimum possible
size of the final set of vertices with positive weight.

Clearly, a;(G) < v(G).

Also, a;(G) > a;(H) if Gis a subgraph of H (on the same vertex
set).

So ai(G(n, p1)) < a(G(n, pz)), provided pi > ps.
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) = 1.
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) = 1.

@ If G # Cs, then min{ay(G), a:(G)} = 1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) = 1.

@ If G # Cs, then min{ay(G), a:(G)} = 1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n* (Krivelevich, 2010, Embedding spanning trees in
random graphs).
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) = 1.

@ If G # Cs, then min{a;(G), at(é)} =1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n* (Krivelevich, 2010, Embedding spanning trees in
random graphs).

@ d = Clog? n/loglog n (Bal, Bennett, Dudek, Pralat, ~ 40
days ago).
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n,p)) = 1.

@ If G # Cs, then min{a;(G), at(G)} =1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n® (Krivelevich, 2010, Embedding spanning trees in
random graphs).

@ d = Clogn (Bal, Bennett, Dudek, Pralat, ~ 25 days ago).
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n,p)) = 1.

@ If G # Cs, then min{a;(G), at(é)} =1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = (Krivelevich, 2010, Embedding spanning trees in
random graphs).

0 d= @; log n (Bal, Bennett, Dudek, Pralat, ~ 5 days ago).
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) = 1.

@ If G # Cs, then min{ay(G), a:(G)} = 1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n* (Krivelevich, 2010, Embedding spanning trees in
random graphs).

@ d= IL;; log n (Bal, Bennett, Dudek, Pralat, ~ 5 days ago).

Note that @ ~ 1.44 so it is above the connectivity threshold.
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) =

@ If G # Cs, then min{a;(G), at(G)} =1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n* (Krivelevich, 2010, Embedding spanning trees in
random graphs).

e d= |1o§§ log n (Bal, Bennett, Dudek, Pralat, ~ 5 days ago).

Sharp! For d = {55 (G(n, p)) > neto(t)
(Bal, Bennett, Dudek, Pralat, R 25 days ago).
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n,p)) = 1.

@ If G # Cs, then min{a;(G), at(é)} =1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = (Krivelevich, 2010, Embedding spanning trees in
random graphs).

e d= @; log n (Bal, Bennett, Dudek, Pralat, ~ 5 days ago).

Sharp! For d = =5 log n, a.a.s. a;(G(n, p)) > neto()
log2

(Bal, Bennett, Dudek, Pralat, ~ 25 days ago).

Investigate f(c) = log,, a:(G(n, clog n/n)).
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) =

@ If G # Cs, then min{ay(G), a:(G)} = 1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n* (Krivelevich, 2010, Embedding spanning trees in
random graphs).

e d= |1o§§ log n (Bal, Bennett, Dudek, Pralat, ~ 5 days ago).

Sharp! For d = (G(n, p)) > netot)

IogZ
(Bal, Bennett, Dudek, Pralat, R 25 days ago).
. , , 1
Investigate what is going on when d = Eg(z) log n.
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Total acquisition in random graphs

Random graphs G(n, p)

Question (LeSaulnier, Prince, Wenger, West, Worah, 2013):
Find the smallest d = p(n — 1) such that a.a.s. a;(G(n, p)) =

e If G # Cs, then min{a;(G), a:(G)} = 1 (LeSaulnier, Prince,
Wenger, West, Worah, 2013). So p = 1/2 works!

@ d = n* (Krivelevich, 2010, Embedding spanning trees in
random graphs).

e d= &g; log n (Bal, Bennett, Dudek, Pralat, ~ 5 days ago).

Sharp! For d = 53 (G(n, p)) > neto(t)
(Bal, Bennett, Dudek Pralat ~ 25 days ago).

What about other models, for example, random geometric
graphs?
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Cops and Robbers on Boolean lattice
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Q Cops and Robbers on Boolean lattice

Pratat A few random open problems



Cops and Robbers on Boolean lattice
Definition

@ The robber starts at ‘level’ 0, vertex (0,0,...,0).
@ Cops start at ‘level’ n, vertex (n,n,...,n).
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Cops and Robbers on Boolean lattice
Definition

@ The robber starts at ‘level’ 0, vertex (0,0,...,0).
@ Cops start at ‘level’ n, vertex (n, n, ..., n).
@ At each step, the robber goes up and cops go down.
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Cops and Robbers on Boolean lattice
Definition

@ The robber starts at ‘level’ 0, vertex (0,0, ...,0).
@ Cops start at ‘level’ n, vertex (n, n, ..., n).
@ At each step, the robber goes up and cops go down.

@ c(n) is the minimum number of cops needed to catch the
robber.
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Cops and Robbers on Boolean lattice
Definition

@ The robber starts at ‘level’ 0, vertex (0,0,...,0).
@ Cops start at ‘level’ n, vertex (n,n, ..., n).
@ At each step, the robber goes up and cops go down.

@ c(n) is the minimum number of cops needed to catch the
robber.

Greedy strategy for the robber gives:

c(n) > 2™ =2"2 provided n=2m
2 1
c(n) > 2m< nTj1 > = ©(2"2/\/n), provided n = 2m + 1
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Cops and Robbers on Boolean lattice
Definition

@ The robber starts at ‘level’ 0, vertex (0,0, ...,0).
@ Cops start at ‘level’ n, vertex (n,n, ..., n).
@ At each step, the robber goes up and cops go down.

@ c(n) is the minimum number of cops needed to catch the
robber.

Greedy strategy for the robber gives:

c(n) > 2™ =2"2 provided n=2m
2 1
c(n) > 2""( nTj1 ) = ©(2"2/+/n), provided n = 2m + 1

Is there any upper bound?

Pratat A few random open problems



Cops and Robbers on Boolean lattice
Definition

Greedy strategy for the robber gives:

c(n) > 2™ =2"2 provided n=2m
2 1
c(n) > 2m< anZL1 ) = ©(2"2/\/n), provided n = 2m + 1

Is there any upper bound?

For the upper bound, cops can flip random bits (independently)
to get an upper bound that is larger by a factor of nlog n.
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Cops and Robbers on Boolean lattice
Definition

Greedy strategy for the robber gives:

c(n) > 2M=2"2 provided n=2m
2 1
c(n) > 2_m< nT—:_1 > = ©(2"2//n), provided n = 2m + 1

Is there any upper bound?

For the upper bound, cops can flip random bits (independently)
to get an upper bound that is larger by a factor of nlog n.

Where is the right value?
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Lazy Cops and Robbers
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e Lazy Cops and Robbers
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Lazy Cops and Robbers
Classic game

: dense graphs (Bonato, Pralat, Wang, 2009)

: zig-zag (Luczak, Pralat, 2010)
: sparse graphs (Bollobas, Kun, Leader, 2013)
G(n, p): Meyniel’s conjecture (Pralat, Wormald, 2014+)

random d-regular graphs: Meyniel’s conjecture (Pralat,
Wormald, 2014++)

@ G(n,r): (Beveridge, Dudek, Frieze, Muller, 2012) and
(Alon, Pralat, 2014+)

@ G(n,r,p): (Alon, Pralat, 2014+)

° )

° ): very dense graphs (Pralat, 2010)
e G(n,p)

0 )

°

°
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Lazy Cops and Robbers

Other variants for G(n, p)

@ Fast robber (Alon, Mehrabian, 2014+)
@ Playing on edges (Dudek, Gordinowicz, Pralat, 2014+)

@ Cops have limited fuel or time (Fomin, Golovach, Pralat,
2012)

@ Cops can shoot from distance (Bonato, Chiniforooshan,
Pralat, 2010)

° ...
@ Lazy Cops (Bal, Bonato, Kinnersley, and Pralat, 2014+)
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Lazy Cops and Robbers

Hypercube

cu(Qn) = O (2587
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Lazy Cops and Robbers
Hypercube

cu(Qn) = O (2587

(Offner and Ojakian, 2014+) ¢, (Qn) = Q (2\/5/20>
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Lazy Cops and Robbers
Hypercube

cu(Qn) = O (2587

(Offner and Ojakian, 2014+) ¢, (Qn) = Q (2\/5/20>

(Bal, Bonato, Kinnersley, and Pralat, 2014+) For any € > 0,
cu(Qn) = 2 (75
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Lazy Cops and Robbers
Hypercube

cu(Qn) = O (2587

(Offner and Ojakian, 2014+) ¢, (Qn) = Q (2\/5/20>

(Bal, Bonato, Kinnersley, and Pralat, 2014+) For any € > 0,
cu(Qn) = 2 (75

Where is the right value?
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Lazy Cops and Robbers

G(n, p)—Big picture
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Lazy Cops and Robbers

G(n, p)—More details

The ratio between upper and lower bounds:
a)x:1 :1+0(1).
b) <x<1:0(1).
¢) 75 < x < | for some j > 2 : ©(log n).
) X

d) x = } for some/>2 O(log® n).
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Lazy Cops and Robbers

G(n, p)—More details

The ratio between upper and lower bounds:
a)x—1 s 1+ 0(1).
b) I <x<1:0(1).
c) j+11 < x < { forsome j > 2: ©(log ).
d) x =1 for somej > 2: 0(log® n).
e) nothing is done for x = 0 (sparse graphs)
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Lazy Cops and Robbers

G(n, p)—More details

The ratio between upper and lower bounds:
a)x=1:1+0(1).

b) 3 <x<1:0(1).

¢) 73 < x < | for some j > 2 : ©(log n).

d) x = 1 for some j > 2 : ©(log® ).

e) nothing is done for x = 0 (sparse graphs)
Improve the ratio?
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