Finding Needles in Exponential Haystacks

Joel Spencer

Eurandom January 6, 2014

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Erdős Magic:

If a random object has a positive probability of being good than a good object MUST exist

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Modern Erdős Magic:

If a randomized algorithm has a positive probability of producing a good object than a good object MUST exist

Working with Paul Erdős was like taking a walk in the hills. Every time when I thought that we had achieved our goal and deserved a rest, Paul pointed to the top of another hill and off we would go. – Fan Chung

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

PART I

The Lovász Local Lemma

k-SAT

Boolean x_1, \ldots, x_n . y_s is x_s or $\overline{x_s}$

Clause $C = y_{i_1} \vee \ldots \vee y_{i_k}$

k-SAT instance: $\wedge_{\alpha \in I} C_{\alpha}$

 C_{α}, C_{β} overlap if common y_j .

Assume: Each C_{α} overlaps $\leq d C_{\beta}$

Assume: $ed2^{-k} \leq 1$

LLL: Then satisfiable.

Fix d, k (e.g.: k = 5, d = 10) but let $n \rightarrow \infty$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Where is the satisfying assignment?

Original Proof: Can't Find it

MOSER: I can find it!

Moser's FIX-IT Algorithm

FIX-IT I Randomly assign $x_i \leftarrow \{t, f\}$

FIX-IT!

Moser's FIX-IT Algorithm

FIX-IT I Randomly assign $x_i \leftarrow \{t, f\}$

FIX-IT II WHILE some clause $C_{\alpha} \leftarrow f$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

FIX-IT!

Moser's FIX-IT Algorithm

FIX-IT I Randomly assign $x_j \leftarrow \{t, f\}$

FIX-IT II WHILE some clause $C_{\alpha} \leftarrow f$

FIX-IT IIIa Select *one* bad clause C_{α}

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

FIX-IT!

Moser's FIX-IT Algorithm

FIX-IT I Randomly assign $x_j \leftarrow \{t, f\}$

FIX-IT II WHILE some clause $C_{\alpha} \leftarrow f$

FIX-IT IIIa Select one bad clause C_{α}

FIX-IT IIIb Randomly Reassign $x_j \leftarrow \{t, f\}$ for all x_j in C_{α}

The LOG

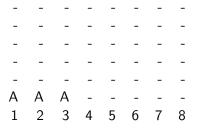
LOG - Clauses reassigned in order FIX-IT IIIb applies

TLOG =length of LOG. (= ∞ if no stop)

Modern Erdős Magic: $E[\mathit{TLOG}] < \infty$ implies satisfiable and a good 1 algorithm

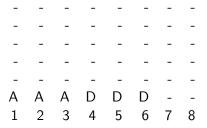
Example: Variables 12345678. Clauses *A* : 123, *B* : 234, *C* : 345, *D* : 456, *E* : 567, *F* : 678. *LOG* = *ADCFECBF*

s = *ADCFECBF*: ADCFECBF



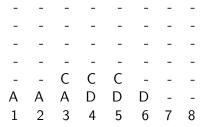
◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

s = *ADCFECBF*: ADCFECBF



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

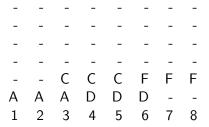
s = *ADCFECBF*: ADCFECBF



・ロト ・聞ト ・ヨト ・ヨト

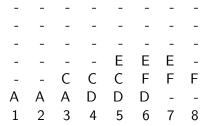
E 990

s = *ADCFECBF*: ADCFECBF



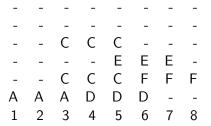
E 990

s = *ADCFECBF*: ADCFECBF



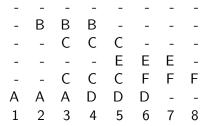
<ロ> <問> <問> < 回> < 回>

s = *ADCFECBF*: ADCFECBF



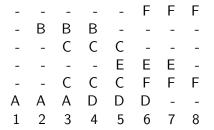
<ロ> <問> <問> < 回> < 回>

s = ADCFECBF: ADCFECBF



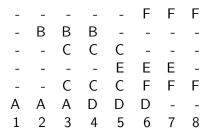
<ロ> <問> <問> < 回> < 回>

s = ADCFECBF: ADCFECBF



<ロ> <問> <問> < 回> < 回>

Let's Play Tetris! s = ADCFECBF



The Pyramid Pyr(s) = ADCFEF is support of last:

Pyramids of prefixes of LOG distinct.

ADCFECBF: A; D; ADC; DF;ADCFE;ADCFEC;ADCFECB;ADCFEF

 $E[TLOG] = \sum_{s} \Pr[s \text{ pyramid of prefix }]$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Preprocess Randomness

Each x_j chooses countably many assignments.

Probability $X_1 \cdots X_t$ is pyramid of prefix is $\leq (2^{-k})^t$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

A, C false with different coinflips!

An Interesting Algebra

X, Y commute if no overlap. Tetris same if and only if equal in algebra ADC = DAC

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

ADC, DAC use same coinflips.

Algebraic Combinatorics

Property KNUTH: $\sum_{s} (2^{-k})^{length(s)} < \infty$ (sum over pyramids *s* in algebra) $E[TLOG] \leq \sum_{s} (2^{-k})^{length(s)}$ Modern Erdős Magic: [KNUTH] implies satisfiability and FIX-IT takes "time" at most sum. Algebraic Combinatorics: When does [KNUTH] hold? Partial Answer: if $ed2^{-k} \leq 1$

A Prescient Adversary

FIX-IT I Randomly assign $x_j \leftarrow \{t, f\}$

FIX-IT II WHILE some clause $C_{\alpha} \leftarrow f$

FIX-IT IIIa Select one bad clause C_{lpha}

FIX-IT IIIb Randomly Reassign $x_j \leftarrow \{t, f\}$ for all x_j in C_{α}

Each x_j selects countably many t, f. Adversary knows coinflips in advance Still can't stop FIX-IT from halting!

PART II

Eliminating **Outliers**

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1+1\} = \{\textit{red}, \textit{blue}\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \, \texttt{disc}(S) = |\chi(S)| = |\texttt{red} - \texttt{blue}| \end{split}$$

Theorem (JS/1985): There exists χ

$$disc(S_i) \le 6\sqrt{n}$$
 for all $1 \le i \le n$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1+1\} = \{\textit{red}, \textit{blue}\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \, \texttt{disc}(S) = |\chi(S)| = |\texttt{red} - \texttt{blue} \end{split}$$

Theorem (JS/1985): There exists χ

$$disc(S_i) \leq 6\sqrt{n}$$
 for all $1 \leq i \leq n$

Conjecture (JS/1986-2009) You can't find χ in polynomial time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Six Standard Deviations Suffice

$$\begin{split} S_1, \dots, S_n &\subseteq \{1, \dots, n\} \\ \chi : \{1, \dots, n\} \to \{-1+1\} = \{\textit{red}, \textit{blue}\} \\ \chi(S) &:= \sum_{j \in S} \chi(j), \, \texttt{disc}(S) = |\chi(S)| = |\texttt{red} - \texttt{blue} \end{split}$$

Theorem (JS/1985): There exists χ

$$disc(S_i) \le 6\sqrt{n}$$
 for all $1 \le i \le n$

Conjecture (JS/1986-2009) You can't find χ in polynomial time.

Theorem (Bansal/2010): Yes I can!

Theorem (Lovett, Meka/2012): We can too!

A Vector Formulation

 $ec{r_i} \in R^n$, $1 \leq i \leq n$, $ec{r_i} ec{}_\infty \leq 1$

Initial $\vec{z} \in [-1,+1]^n$ (e.g.: $\vec{z} = \vec{0}$.)

Theorem: There exists $\vec{x} \in \{-1, +1\}^n$ with

$$|\vec{r_i}\cdot(\vec{x}-\vec{z})|\leq K\sqrt{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

for all $1 \leq i \leq n$.

A Vector Formulation

 $\vec{r_i} \in \mathbb{R}^n$, $1 \le i \le n$, $|\vec{r_i}|_{\infty} \le 1$

Initial $\vec{z} \in [-1,+1]^n$ (e.g.: $\vec{z} = \vec{0}$.)

Theorem: There exists $\vec{x} \in \{-1, +1\}^n$ with

$$|\vec{r_i} \cdot (\vec{x} - \vec{z})| \le K\sqrt{n}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

for all $1 \leq i \leq n$.

 $\vec{z} = \vec{0}$, \vec{x} random. Problem: OUTLIERS!

Phase I

Find $\vec{x} \in [-1, +1]^n$ with all least $\frac{n}{2}$ at ± 1 .

Idea: Start $\vec{x} \leftarrow \vec{z}$. Move \vec{x} in a Controlled Brownian Motion.

(ロ)、(型)、(E)、(E)、 E、 の(の)

Phase I

Find $\vec{x} \in [-1, +1]^n$ with all least $\frac{n}{2}$ at ± 1 .

Idea: Start $\vec{x} \leftarrow \vec{z}$. Move \vec{x} in a Controlled Brownian Motion.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Technical: *i* frozen if $|x_i| \ge 1 - \epsilon$. Each step of distance δ

Phase I

Find $\vec{x} \in [-1, +1]^n$ with all least $\frac{n}{2}$ at ± 1 .

Idea: Start $\vec{x} \leftarrow \vec{z}$. Move \vec{x} in a Controlled Brownian Motion.

Technical: *i* frozen if $|x_i| \ge 1 - \epsilon$. Each step of distance δ

Set
$$L_j = [n^{-1/2} \vec{r_j}] \cdot [\vec{x} - \vec{z}]$$

WANT: ALL $|L_j| \leq K$

Space V of allowable moves $\vec{y} = (y_1, \dots, y_n)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Space V of allowable moves $\vec{y} = (y_1, \dots, y_n)$

i frozen \Rightarrow $y_i = 0$.

Space V of allowable moves $\vec{y} = (y_1, \ldots, y_n)$

i frozen \Rightarrow $y_i = 0$.

 \vec{y} orthogonal to current \vec{x}

Space V of allowable moves $\vec{y} = (y_1, \ldots, y_n)$

i frozen \Rightarrow $y_i = 0$.

 \vec{y} orthogonal to current \vec{x}

KEY: \vec{y} orthogonal to $\vec{r_j}$ for j with top $\frac{n}{4} |L_j|$

The Random Move

$$d = \dim(V) \ge \frac{n}{4} - 1 \sim \frac{n}{4}.$$

Gaussian $\vec{g} = d^{-1/2}[n_1\vec{b_1} + \ldots + n_d\vec{b_d}]$, orthonormal $\vec{b_s}$
Move $\vec{x} \leftarrow \vec{x} + \delta \vec{g}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Analysis

$$|ec{x}|^2 \leftarrow |ec{x}|^2 + \delta^2$$
 so $T \le n\delta^{-2}$

 L_j moves Gaussian, Variance $\leq \delta^2 \frac{1}{d} \leq \delta^2 \frac{4}{n}$

Total Variance \leq 4. Martingale

 $\Pr[|L_j| \ge K] \le 2e^{-K^2/8} \le 0.1$

SUCCESS: Fewer than $\frac{n}{5}j$ with $|L_j| \ge K$.

Positive Probability of SUCCESS

Analysis

$$|ec{x}|^2 \leftarrow |ec{x}|^2 + \delta^2$$
 so $T \le n\delta^{-2}$

 L_j moves Gaussian, Variance $\leq \delta^2 \frac{1}{d} \leq \delta^2 \frac{4}{n}$

Total Variance \leq 4. Martingale

 $\Pr[|L_j| \ge K] \le 2e^{-K^2/8} \le 0.1$

SUCCESS: Fewer than $\frac{n}{5}j$ with $|L_j| \ge K$.

Positive Probability of SUCCESS

SUCCESS implies that $ALL |L_j| \leq K$

Phase s

 $m = 2^{1-s}n$. Start \vec{z} with $\leq m$ coordinates frozen. End \vec{x} with $\leq \frac{m}{2}$ coordinates frozen.

Effectively $|\vec{r_j}| \leq \sqrt{m}$

Would get $K\sqrt{m}$ but still have $n = m2^{s-1}$ vectors.

Actually get: $K\sqrt{m}\sqrt{s} = K\sqrt{n}\sqrt{s}2^{(1-s)/2}$

Converges!

Thank You!

It is six in the morning. The house is asleep. Nice music is playing. I prove and conjecture. – Paul Erdős, in letter to Vera Sós

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで