Chasing the k-colorability threshold

Danny Vilenchik

The Weizmann Institute

k-co

Join work with Amin Coja-Oghlan

Appeared in FOCS 2013

Graph colorability problem

• Worse case: NP-hard and no approximation

What will typically be the chromatic number of the random graph G(n, m)?

What should expect?

 Z_k counting proper k-colorings of G(n, m = dn/2)

Pre-History

- Bollobas (88) Luczak (91) right asymptotic for $m \gg n$
- Shamir & Spencer proved O(1) –concentration $m \ll n^{3/2}$
- Two-point concentration by Alon and Krivelevich in 1997

Achlioptas & Naor [Annals of Mathematics 2005]

For fixed large k, the k-colorability threshold satisfies $d_{k-col} \ge 2k \ln k - 2 \ln k - 2$

Our Result

We determine the exact chromatic number for all but a vanishing (with k) fraction of densities d Physicist predict $2k \ln k - \ln k - 1$ (Cavity Method)

The Second Moment Method

- Achlioptas & Peres 2003 (k-SAT)
- Coja-Oghlan & Panagiotou 2012-13 (k-SAT, NAE k-SAT)
- Coja-Oghlan & Zdeborova 2012: Hypergraph 2-col.
- Dyer, Frieze and Greenhill 2014: Chromatic number of random hypergraphs
- Coja-Oghlan, Efthymiou, Hetterich 2014: Chromatic number of d-regular graphs

The Second Moment Method

- $E[Z_k] > 0$ doesn't imply $Z_k > 0$ whp
- Need to control the variance (second moment)
- Suppose that Z(G) is such that

 $Z > 0 \rightarrow G$ is k-colorable

- Further suppose that $0 < E[Z^2] \le C \cdot E[Z]^2$
- The Paley-Zygmund inequality says that

$$\Pr[Z > 0] > \frac{E[Z]^2}{E[Z^2]} \ge \frac{1}{C}$$

Achlioptas and Friedgut 99: For any fixed $k \ge 3$ there is a sharp threshold sequence $d_{k-col}(n)$

Use Sharp Threhold + PZ to get a lower bound on d_{k-col}

We "just" need to find a random variable Z so that

- $Z > 0 \rightarrow G$ is k-colorable
- $0 < E[Z^2] \le C \cdot E[Z]^2$

Counting Pairs of Colorings

• Goal: Compute $E[Z^2]$ - the expected number of pairs of colorings

 $\Pr[\sigma \text{ and } \tau \text{ are both proper k-col of } G]$

- This quantity depends on the "distance" between σ and τ

– Overlap matrix ρ is a $k \times k$ matrix where

Overlap Matrix Example

 $\rho^* = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$

Overlap Matrix Example

First try – Balanced Colorings

- $Z_{k,bal}$ the number of balanced k-colorings
- $Z_{\rho,bal}$ number of coloring pairs (σ, τ) that obey ρ

$$E[Z_{k,bal}^{2}] = \sum_{balanced \rho} E[Z_{\rho,bal}]$$

Probability of Pairs

 A_{σ} = a random edge is monochromatic under σ

$$Pr[\sigma \text{ and } \tau \text{ are proper k-col}] = (1 - Pr[A_{\sigma} \lor A_{\tau}])^{m} =$$
$$= (1 - Pr[A_{\sigma}] - Pr[A_{\tau}] + Pr[A_{\sigma} \land A_{\tau}])^{m} =$$
$$= \left(1 - \frac{2}{k} + \frac{\|\rho\|^{2}}{k^{2}}\right)^{m}$$

$$\|\rho\|^2 = \sum_{1 \le i,j \le k} (\rho_{i,j})^2$$
 (Frobenius norm)

Balanced k-colorings contd.

$$E[Z_{k,bal}^{2}] = \sum_{\rho} k^{n} \left(\rho_{11} \frac{n}{k}, \rho_{12} \frac{n}{k}, \dots, \rho_{kk} \frac{n}{k} \right) \left(1 - \frac{2}{k} + \frac{\|\rho\|^{2}}{k^{2}} \right)^{m}$$

Our goal is to prove that this is $\leq C(k)(E[Z_{k,bal}])^2$

Let ρ^* be the matrix with all entries equal 1/k

$$f(\rho^*) \approx E[Z_{k,bal}]^2$$

Suffices to show that ρ^* is the maximizer

Back to Achlioptas and Naor

• AN relax by maximizing over singly-stochastic matrices

– This reduces the dimension from k^2 to k

- Their analysis is complicated and non-combinatorial
- They manage to prove that $f(\rho^*)$ is the max up to

$$d_{AN} = 2k \ln k - 2\ln k - 2$$

What goes wrong beyond d_{AN} ?

- Max is at a matrix which is not doubly-stochastic
- So is it just the relaxation?

No ...

$$\rho' = \left(1 - \frac{1}{k}\right)I_k + \frac{1}{k^2}J_k$$

For some $d_{AN} < d < d_{first}$

 $f(\rho') > f(\rho^*)$

Our approach: a new R.V.

• Cluster of σ

$$\mathcal{C}(\sigma) = \{\tau : \forall i \ \rho_{ii}(\tau, \sigma) \ge 0.99\}$$

- We say that σ is good if
 - There is no τ s.t. $\rho_{ii}(\tau, \sigma) \in [0.51, 0.99]$
 - $-|\mathcal{C}(\sigma)| \le E[Z_k]$
- We then consider the r.v. $Z_{k,good}$

Pairs From Different Clusters

 $\rho' = \begin{pmatrix} 0.4 & 0.3 & 0.3 \\ 0.3 & 0.4 & 0.3 \\ 0.3 & 0.3 & 0.4 \end{pmatrix}$

 $f(\rho') > f(\rho)$

$$2^{nd} \text{ moment contd.}$$
$$E[Z_{k,good}^{2}] = \sum_{\rho} E[Z_{\rho,good}]$$

Key Observation: If two good colorings obey ρ then they have the same clusters

$$\sum_{\rho} E[Z_{\rho,good}] = k! \sum_{\sigma} E[C(\sigma) | \sigma \text{ is good}] \Pr[\sigma \text{ is good}] = k! \max_{\sigma} E[C(\sigma) | \sigma \text{ is good}] \sum_{\sigma} \Pr[\sigma \text{ is good}] \le k! (E[Z_k])^2$$

Are there any good colorings?

We show that w.h.p. a random k-coloring σ is good
 We define the notion of core and free variables

Are there good colorings?

- Use expansion to show that every au either
 - Agrees with σ on the core
 - Or, is far away from σ
- We show that $|C(\sigma)|$ satisfies

 $|C(\sigma)| \le 2^{\#1-free \ variables} \le E[Z_k]$

This property is violated above the condensation threshold

Condensation

The functions cannot extend analytically beyond d_{cond}

- Few large clusters dominate the topology
- A typical pair of colorings will NOT be uncorrelated
- ρ^* (matrix with all entries equal 1/k) will not be the max!