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Graph colorability problem 

• Worse case: NP-hard and no approximation 

 

χ 𝐺 = 3 

What will typically be the chromatic number of the 
random graph 𝐺 𝑛,𝑚 ?  



What should expect? 

𝑍𝑘  counting proper k-colorings of 𝐺 𝑛,𝑚 = 𝑑𝑛/2   

𝐸 𝑍𝑘 = Pr 𝜎 𝑖𝑠 𝑘 − 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔  

𝜎

 

          Pr 𝜎 𝑖𝑠 𝑎 𝑘 − 𝑐𝑜𝑙𝑜𝑟𝑖𝑛𝑔 ≈ 1 −
1

𝑘

𝑚
 

Therefore 

𝐸 𝑍𝑘 ≈ 𝑘
𝑛 1 −

1

𝑘

𝑚

 

𝐸 𝑍𝑘 → 0 at 𝑑𝑓𝑖𝑟𝑠𝑡 ≈ 2𝑘 ln 𝑘             χ 𝐺 ≈ 𝑑/(2 ln 𝑑)   

Today: Assume 𝜎 is 
balanced 
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Pre-History 

• Bollobas (88) Luczak (91) - right asymptotic for 𝑚 ≫ 𝑛 

• Shamir & Spencer proved 𝑂 1 −concentration 

𝑚 ≪ 𝑛3/2 

• Two-point concentration by Alon and Krivelevich in 1997 

One point concentration? 



 Achlioptas & Naor 
[Annals of Mathematics 2005] 

For fixed large k, the k-colorability threshold satisfies  
𝑑𝑘−𝑐𝑜𝑙 ≥ 2𝑘 ln 𝑘 − 2 ln 𝑘 − 2   

𝑑𝑘−𝑐𝑜𝑙 ≤ 𝑑𝑓𝑖𝑟𝑠𝑡 = 2𝑘 ln 𝑘 − ln 𝑘  

d 2𝑘 ln 𝑘 − 3 ln 𝑘 

k-col 

2𝑘 ln 𝑘 − ln 𝑘 

not  𝑘-col 

2𝑘 ln 𝑘 − 2 ln 𝑘 

not  (k-1)-col 



Our Result 

k-col 

not  𝑘-col not  (k-1)-col 

d 

2𝑘 ln 𝑘 − 3 ln 𝑘 

2𝑘 ln 𝑘 − ln 𝑘 

2𝑘 ln 𝑘 − 2 ln 𝑘 

2𝑘 ln 𝑘 − ln 𝑘 − 2 ln 2 

k-col 

We determine the exact chromatic number for all but a 
vanishing (with k) fraction of densities d 

Physicist predict 2𝑘 ln 𝑘 − ln 𝑘 − 1 (Cavity Method) 

 



The Second Moment Method 

• Achlioptas & Peres 2003 (k-SAT) 

• Coja-Oghlan & Panagiotou 2012-13 (k-SAT, NAE k-SAT)  

• Coja-Oghlan & Zdeborova 2012: Hypergraph 2-col. 

• Dyer, Frieze and Greenhill 2014: Chromatic number of 
random hypergraphs 

• Coja-Oghlan, Efthymiou, Hetterich 2014: Chromatic 
number of d-regular graphs 

 



The Second Moment Method 

• 𝐸 𝑍𝑘 > 0 doesn’t imply 𝑍𝑘 > 0 whp 

• Need to control the variance (second moment) 

• Suppose that 𝑍 𝐺  is such that 

                  𝑍 > 0 → 𝐺 is k-colorable 

• Further suppose that  0 < 𝐸 𝑍2 ≤ 𝐶 ∙ 𝐸 𝑍 2 

• The Paley-Zygmund inequality says that 

 

Pr 𝑍 > 0 >
𝐸[𝑍]2

𝐸[𝑍2]
≥
1

𝐶
 



Achlioptas and Friedgut 99: For any fixed 𝑘 ≥ 3 there is a 
sharp threshold sequence 𝑑𝑘−𝑐𝑜𝑙(𝑛) 

Use Sharp Threhold + PZ to get a lower bound on 𝑑𝑘−𝑐𝑜𝑙  

We “just” need to find a random variable Z  so that  

• 𝑍 > 0 → 𝐺 is k-colorable  

• 0 < 𝐸 𝑍2 ≤ 𝐶 ∙ 𝐸 𝑍 2 



• Goal: Compute 𝐸 𝑍2  - the expected number of pairs 
of colorings 

Pr [𝜎 and 𝜏 are both proper k-col of 𝐺] 

• This quantity depends on the “distance” between 
𝜎 and 𝜏 

– Overlap matrix 𝜌 is a 𝑘 × 𝑘 matrix where 

 

Counting Pairs of Colorings 



Overlap Matrix Example 
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Overlap Matrix Example 
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
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First try – Balanced Colorings 

• 𝑍𝑘,𝑏𝑎𝑙  - the number of balanced k-colorings 

• 𝑍𝜌,𝑏𝑎𝑙  - number of coloring pairs (𝜎, 𝜏) that obey 𝜌 

 

𝐸 𝑍𝑘,𝑏𝑎𝑙
2 =  𝐸[𝑍𝜌,𝑏𝑎𝑙]

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝜌

 

 

 



Probability of Pairs 

𝐴𝜎 = a random edge is monochromatic under 𝜎 

 

Pr [𝜎 and 𝜏 are proper k-col] = (1 − Pr [𝐴𝜎 ∨ 𝐴𝜏])
𝑚 = 

 = 1 − Pr 𝐴𝜎 − Pr 𝐴𝜏 + Pr [ 𝐴𝜎 ∧ 𝐴𝜏 )
𝑚 = 

     = 1 −
2

𝑘
+
𝜌 2

𝑘2

𝑚

  

 

𝜌 2 =  (𝜌𝑖,𝑗)
2

1≤𝑖,𝑗≤𝑘  (Frobenius norm) 

  

 



Balanced k-colorings contd. 

𝐸 𝑍𝑘,𝑏𝑎𝑙
2 = 𝑘𝑛

𝑛

𝜌11
𝑛

𝑘
, 𝜌12
𝑛

𝑘
,… , 𝜌𝑘𝑘

𝑛

𝑘
1 −
2

𝑘
+
𝜌 2

𝑘2

𝑚

𝜌

 

   

 

Our goal  is to prove that this is  ≤ 𝐶(𝑘)(𝐸 𝑍𝑘,𝑏𝑎𝑙  )2 

𝑓 𝜌  
 

Let 𝜌∗ be the matrix with all entries equal 1/𝑘 

𝑓(𝜌∗)  ≈ 𝐸 𝑍𝑘,𝑏𝑎𝑙
2
 

Suffices to show that  𝜌∗ is the maximizer 



Back to Achlioptas and Naor  

• AN relax by maximizing over singly-stochastic matrices 

– This reduces the dimension from 𝑘2 to 𝑘 

• Their analysis is complicated and non-combinatorial   

• They manage to prove that 𝑓 𝜌∗  is the max up to 

𝑑𝐴𝑁 = 2𝑘 ln 𝑘 − 2ln 𝑘 − 2 



What goes wrong beyond 𝑑𝐴𝑁?  

• Max is at a matrix which is not doubly-stochastic 

• So is it just the relaxation? 

No … 

 

 

For some  𝑑𝐴𝑁< 𝑑 < 𝑑𝑓𝑖𝑟𝑠𝑡 

 

 

𝜌′ = 1 −
1

𝑘
𝐼𝑘 +
1

𝑘2
𝐽𝑘 

𝑓 𝜌′ > 𝑓(𝜌∗) 



Our approach: a new R.V. 

• Cluster of 𝜎  

  𝐶 𝜎 = 𝜏: ∀𝑖 𝜌𝑖𝑖 𝜏, 𝜎 ≥ 0.99  

• We say that 𝜎 is good if 

– There is no 𝜏 s.t. 𝜌𝑖𝑖 𝜏, 𝜎 ∈ [0.51,0.99] 

– |𝐶 𝜎 | ≤ 𝐸[𝑍𝑘] 

• We then consider the r.v. 𝑍𝑘,𝑔𝑜𝑜𝑑  

 



 The New 2nd Moment 

𝐸 𝑍𝑘,𝑔𝑜𝑜𝑑
2 = 𝐸[𝑍𝜌,𝑔𝑜𝑜𝑑]

𝜌

 

Goal: 𝐸 𝑍𝑘,𝑔𝑜𝑜𝑑
2 ≤ 𝐶(𝑘)(𝐸 𝑍𝑘,𝑔𝑜𝑜𝑑  )2 

 
𝝆′ 

All color classes are 
have large (>0.999) 
overlap 

B 
 

Some color has 
overlap ≤ 0.51 

Bad overlap 
matrices - Ignored 

𝜌′ = 1 −
1

𝑘
𝐼𝑘 +
1

𝑘2
𝐽𝑘 



Pairs From Different Clusters 
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2nd moment contd. 

𝐸 𝑍𝑘,𝑔𝑜𝑜𝑑
2 = 𝐸[𝑍𝜌,𝑔𝑜𝑜𝑑]

𝝆

 

Key Observation: If two good colorings obey 𝝆 then they 
have the same clusters 
 

 𝐸 𝑍𝜌,𝑔𝑜𝑜𝑑 = 𝑘!

𝝆

 𝐸 𝐶 𝜎 𝜎 𝑖𝑠 𝑔𝑜𝑜𝑑 Pr 𝜎 𝑖𝑠 𝑔𝑜𝑜𝑑 =

𝜎

 

𝑘!max
𝜎
𝐸 𝐶 𝜎 𝜎 𝑖𝑠 𝑔𝑜𝑜𝑑   Pr [

𝜎

𝜎 𝑖𝑠 𝑔𝑜𝑜𝑑] ≤ 𝑘! 𝐸 𝑍𝑘
2 

 
  



Are there any good colorings? 

• We show that w.h.p. a random k-coloring 𝜎 is good 

– We define the notion of core and free variables 

v 

w 

w is 1-free 

Also core 
variables v belongs to the core 

 



Are there good colorings? 

• Use expansion to show that every 𝜏 either 

– Agrees with 𝜎 on the core  

– Or, is far away from 𝜎 

• We show that |𝐶 𝜎 | satisfies 

𝐶 𝜎 ≤ 2 #1−𝑓𝑟𝑒𝑒 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 ≤ 𝐸[𝑍𝑘] 

  
This property is violated above the 

condensation threshold  



Condensation 

The functions cannot extend analytically beyond 𝑑𝑐𝑜𝑛𝑑 



Condensation Cont. 

  

• Few large clusters dominate the topology  

• A typical pair of colorings will NOT be uncorrelated   

• 𝜌∗ (matrix with all entries equal 1/𝑘) will not be 
the max! 

 

 


