Chasing the k-colorability threshold

Danny Vilenchik
 The Weizmann Institute

Join work with Amin Coja-Oghlan
Appeared in FOCS 2013

Graph colorability problem

$$
\chi(G)=3
$$

- Worse case: NP-hard and no approximation

What will typically be the chromatic number of the random graph $G(n, m)$?

What should expect?

Z_{k} counting proper k-colorings of $G(n, m=d n / 2)$

$$
E\left[Z_{k}\right]=\sum_{\sigma} \operatorname{Pr}[\sigma \text { is } k-\text { coloring }]
$$

$$
\operatorname{Pr}[\sigma \text { is } a-\text { coloring }] \approx\left(1-\frac{1}{k}\right)^{m}
$$

Today: Assume σ is
$E\left[Z_{k}\right] \quad \cdots \quad$ balanced
$V_{3} \rightarrow 0$ at $d_{\text {first }} \approx 2 k \ln k \square \chi(G) \approx d /(2 \ln d)$

Pre-History

- Bollobas (88) Luczak (91) - right asymptotic for $m>n$
- Shamir \& Spencer proved $O(1)$-concentration $m \ll n^{3 / 2}$
- Two-point concentration by Alon and Krivelevich in 1997

One point concentration?

Achlioptas \& Naor
 [Annals of Mathematics 2005]

For fixed large k, the k-colorability threshold satisfies

$$
d_{k-c o l} \geq 2 k \ln k-2 \ln k-2
$$

$$
d_{k-c o l} \leq d_{f i r s t}=2 k \ln k-\ln k
$$

Our Result

We determine the exact chromatic number for all but a vanishing (with k) fraction of densities d Physicist predict $2 k \ln k-\ln k-1$ (Cavity Method)

The Second Moment Method

- Achlioptas \& Peres 2003 (k-SAT)
- Coja-Oghlan \& Panagiotou 2012-13 (k-SAT, NAE k-SAT)
- Coja-Oghlan \& Zdeborova 2012: Hypergraph 2-col.
- Dyer, Frieze and Greenhill 2014: Chromatic number of random hypergraphs
- Coja-Oghlan, Efthymiou, Hetterich 2014: Chromatic number of d-regular graphs

The Second Moment Method

- $E\left[Z_{k}\right]>0$ doesn't imply $Z_{k}>0$ whp
- Need to control the variance (second moment)
- Suppose that $Z(G)$ is such that

$$
Z>0 \rightarrow G \text { is k-colorable }
$$

- Further suppose that $0<E\left[Z^{2}\right] \leq C \cdot E[Z]^{2}$
- The Paley-Zygmund inequality says that

$$
\operatorname{Pr}[Z>0]>\frac{E[Z]^{2}}{E\left[Z^{2}\right]} \geq \frac{1}{C}
$$

Achlioptas and Friedgut 99: For any fixed $k \geq 3$ there is a sharp threshold sequence $d_{k-c o l}(n)$

Use Sharp Threhold + PZ to get a lower bound on $d_{k-c o l}$ We "just" need to find a random variable Z so that

- $Z>0 \rightarrow G$ is k-colorable
- $0<E\left[Z^{2}\right] \leq C \cdot E[Z]^{2}$

Counting Pairs of Colorings

- Goal: Compute $E\left[Z^{2}\right]$ - the expected number of pairs of colorings

$$
\operatorname{Pr}[\sigma \text { and } \tau \text { are both proper k-col of } G]
$$

- This quantity depends on the "distance" between σ and τ
- Overlap matrix ρ is a $k \times k$ matrix where

Overlap Matrix Example

$$
\rho^{*}=\left(\begin{array}{lll}
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3 \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right)
$$

Overlap Matrix Example

First try - Balanced Colorings

- $Z_{k, \text { bal }}$ - the number of balanced k-colorings
- $Z_{\rho, b a l}$ - number of coloring pairs (σ, τ) that obey ρ

$$
E\left[Z_{k, b a l}^{2}\right]=\sum_{\text {balanced } \rho} E\left[Z_{\rho, b a l}\right]
$$

Probability of Pairs

$A_{\sigma}=$ a random edge is monochromatic under σ
$\operatorname{Pr}[\sigma$ and τ are proper k-col $]=\left(1-\operatorname{Pr}\left[A_{\sigma} \vee A_{\tau}\right]\right)^{m}=$

$$
\begin{gathered}
=\left(1-\operatorname{Pr}\left[A_{\sigma}\right]-\operatorname{Pr}\left[A_{\tau}\right]+\operatorname{Pr}\left[A_{\sigma} \wedge A_{\tau}\right]\right)^{m}= \\
=\left(1-\frac{2}{k}+\frac{\|\rho\|^{2}}{k^{2}}\right)^{m}
\end{gathered}
$$

$$
\|\rho\|^{2}=\sum_{1 \leq i, j \leq k}\left(\rho_{i, j}\right)^{2} \quad \text { (Frobenius norm) }
$$

Balanced k-colorings contd.

$$
E\left[Z_{k, b a l}^{2}\right]=\sum_{\rho} \underbrace{k^{n}\left(\rho_{11} \frac{n}{k}, \rho_{12} \frac{n}{k}, \ldots, \rho_{k k} \frac{n}{k}\right)\left(1-\frac{2}{k}+\frac{\|\rho\|^{2}}{k^{2}}\right)^{m}}_{f(\rho)}
$$

Our goal is to prove that this is $\leq C(k)\left(E\left[Z_{k, b a l}\right]\right)^{2}$
Let ρ^{*} be the matrix with all entries equal $1 / k$

$$
f\left(\rho^{*}\right) \approx E\left[Z_{k, b a l}\right]^{2}
$$

Suffices to show that ρ^{*} is the maximizer

Back to Achlioptas and Naor

- AN relax by maximizing over singly-stochastic matrices
- This reduces the dimension from k^{2} to k
- Their analysis is complicated and non-combinatorial
- They manage to prove that $f\left(\rho^{*}\right)$ is the max up to

$$
d_{A N}=2 k \ln k-2 \ln k-2
$$

What goes wrong beyond $d_{A N}$?

- Max is at a matrix which is not doubly-stochastic
- So is it just the relaxation?

No ...

$$
\rho^{\prime}=\left(1-\frac{1}{k}\right) I_{k}+\frac{1}{k^{2}} J_{k}
$$

For some $d_{A N}<d<d_{\text {first }}$

$$
f\left(\rho^{\prime}\right)>f\left(\rho^{*}\right)
$$

Our approach: a new R.V.

- Cluster of σ

$$
C(\sigma)=\left\{\tau: \forall i \rho_{i i}(\tau, \sigma) \geq 0.99\right\}
$$

- We say that σ is good if
- There is no τ s.t. $\rho_{i i}(\tau, \sigma) \in[0.51,0.99]$
$-|C(\sigma)| \leq E\left[Z_{k}\right]$
- We then consider the r.v. $Z_{k, \text { good }}$

The New $2^{\text {nd }}$ Moment

Goal: $E\left[Z_{k, \text { good }}{ }^{2}\right] \leq C(k)\left(E\left[Z_{k, \text { good }}\right]\right)^{2}$

$$
E\left[Z_{k, \text { good }}{ }^{2}\right]=\sum_{\rho} E\left[Z_{\rho, \text { good }}\right]
$$

Pairs From Different Clusters

$2^{\text {nd }}$ moment contd.

$$
E\left[Z_{k, \text { good }}{ }^{2}\right]=\sum_{\rho} E\left[Z_{\rho, \text { good }}\right]
$$

Key Observation: If two good colorings obey ρ then they have the same clusters
$\sum_{\rho} E\left[Z_{\rho, \text { good }}\right]=k!\sum_{\sigma} E[C(\sigma) \mid \sigma$ is good $] \operatorname{Pr}[\sigma$ is good $]=$
$k!\max _{\sigma} E[C(\sigma) \mid \sigma$ is good $] \sum_{\sigma} \operatorname{Pr}[\sigma$ is good $] \leq k!\left(E\left[Z_{k}\right]\right)^{2}$

Are there any good colorings?

- We show that w.h.p. a random k-coloring σ is good
- We define the notion of core and free variables
v belongs to the core w is 1-free

Are there good colorings?

- Use expansion to show that every τ either
- Agrees with σ on the core
- Or, is far away from σ
- We show that $|C(\sigma)|$ satisfies

$$
|C(\sigma)| \leq 2^{\# 1-\text { free variables }} \leq E\left[Z_{k}\right]
$$

This property is violated above the condensation threshold

Condensation

The functions cannot extend analytically beyond $d_{\text {cond }}$

Condensation Cont.

- Few large clusters dominate the topology
- A typical pair of colorings will NOT be uncorrelated
- ρ^{*} (matrix with all entries equal $1 / k$) will not be the max!

