The threshold for the Maker-Breaker H -game

Miloš Stojaković

Department of Mathematics and Informatics, University of Novi Sad

Joint work with Rajko Nenadov and Angelika Steger.

Introduction

Introduction

A positional game:

- The board - a finite set X,
- the winning sets $-\mathcal{F} \subseteq 2^{X}$, a collection of subsets of X.
- (X, \mathcal{F}) - the hypergraph of the game.

Introduction

A positional game:

- The board - a finite set X,
- the winning sets $-\mathcal{F} \subseteq 2^{X}$, a collection of subsets of X.
- (X, \mathcal{F}) - the hypergraph of the game.

A Maker-Breaker positional game:

- Played by two players - Maker and Breaker,
- Maker and Breaker alternately claim unclaimed elements of X,
- Maker wins if he claims all elements of some $F \in \mathcal{F}$; otherwise Breaker wins.

Introduction

A positional game:

- The board - a finite set X,
- the winning sets $-\mathcal{F} \subseteq 2^{X}$, a collection of subsets of X.
- (X, \mathcal{F}) - the hypergraph of the game.

A Maker-Breaker positional game:

- Played by two players - Maker and Breaker,
- Maker and Breaker alternately claim unclaimed elements of X,
- Maker wins if he claims all elements of some $F \in \mathcal{F}$; otherwise Breaker wins.

A Maker-Breaker positional game on the complete graph:

- The board is the edge set of the complete graph K_{n},
- the winning sets are usually representatives of a graph-theoretic structure.

Example

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Example

Maker-Breaker triangle game on the edge set of K_{6}.

Games on graphs

- Connectivity game: \mathcal{T} - set of all spanning trees;
- Hamiltonicity game: \mathcal{H} - set of all Hamiltonian cycles;
- H-game: \mathcal{G}_{H} - set of all copies of H, where H is a fixed graph (e.g., triangle game)

Games on graphs

- Connectivity game: \mathcal{T} - set of all spanning trees;
- Hamiltonicity game: \mathcal{H} - set of all Hamiltonian cycles;
- H-game: \mathcal{G}_{H} - set of all copies of H, where H is a fixed graph (e.g., triangle game)

The games are played on the edge set of K_{n}. What happens when n is large?

Games on graphs

- Connectivity game: \mathcal{T} - set of all spanning trees;
- Hamiltonicity game: \mathcal{H} - set of all Hamiltonian cycles;
- H-game: \mathcal{G}_{H} - set of all copies of H, where H is a fixed graph (e.g., triangle game)

The games are played on the edge set of K_{n}. What happens when n is large?
All three games are easy Maker wins!

Games on graphs

- Connectivity game: \mathcal{T} - set of all spanning trees;
- Hamiltonicity game: \mathcal{H} - set of all Hamiltonian cycles;
- H-game: \mathcal{G}_{H} - set of all copies of H, where H is a fixed graph (e.g., triangle game)

The games are played on the edge set of K_{n}. What happens when n is large?
All three games are easy Maker wins!
To help Breaker, we can:

Games on graphs

- Connectivity game: \mathcal{T} - set of all spanning trees;
- Hamiltonicity game: \mathcal{H} - set of all Hamiltonian cycles;
- H-game: \mathcal{G}_{H} - set of all copies of H, where H is a fixed graph (e.g., triangle game)

The games are played on the edge set of K_{n}.
What happens when n is large?
All three games are easy Maker wins!
To help Breaker, we can:

- Let Breaker claim more than one edge in each move - biased game,

Games on graphs

- Connectivity game: \mathcal{T} - set of all spanning trees;
- Hamiltonicity game: \mathcal{H} - set of all Hamiltonian cycles;
- H-game: \mathcal{G}_{H} - set of all copies of H, where H is a fixed graph (e.g., triangle game)

The games are played on the edge set of K_{n}.
What happens when n is large?
All three games are easy Maker wins!
To help Breaker, we can:

- Let Breaker claim more than one edge in each move - biased game,
- Randomly remove some of the edges of the base graph before the game starts - random game.

Biased game

Biased game (1:b) - Maker claims 1, and Breaker claims b edges per move.
Introduced in [Chvátal-Erdős 1978].

Biased game

Biased game (1:b) - Maker claims 1, and Breaker claims b edges per move.
Introduced in [Chvátal-Erdős 1978].
As b is increased, Breaker gains advantage...

Biased game

Biased game (1:b) - Maker claims 1, and Breaker claims b edges per move.
Introduced in [Chvátal-Erdős 1978].
As b is increased, Breaker gains advantage...
For a game \mathcal{F}, the threshold bias $b_{\mathcal{F}}$ is the largest integer such that Maker can win biased $\left(1: b_{\mathcal{F}}\right)$ game.

Biased game

Biased game (1:b) - Maker claims 1, and Breaker claims b edges per move.
Introduced in [Chvátal-Erdős 1978].
As b is increased, Breaker gains advantage...
For a game \mathcal{F}, the threshold bias $b_{\mathcal{F}}$ is the largest integer such that Maker can win biased $\left(1: b_{\mathcal{F}}\right)$ game.

- Connectivity game: $b_{\mathcal{T}}=(1+o(1)) \frac{n}{\log n}$,
[Gebauer-Szabó 2009], [Chvátal-Erdős 1978]

Biased game

Biased game (1:b) - Maker claims 1, and Breaker claims b edges per move.
Introduced in [Chvátal-Erdős 1978].
As b is increased, Breaker gains advantage...
For a game \mathcal{F}, the threshold bias $b_{\mathcal{F}}$ is the largest integer such that Maker can win biased $\left(1: b_{\mathcal{F}}\right)$ game.

- Connectivity game: $b_{\mathcal{T}}=(1+o(1)) \frac{n}{\log n}$,
[Gebauer-Szabó 2009], [Chvátal-Erdős 1978]
- Hamiltonicity game: $b_{\mathcal{H}}=(1+o(1)) \frac{n}{\log n}$, [Krivelevich 2011], [Chvátal-Erdős 1978]

Biased game

Biased game (1:b) - Maker claims 1, and Breaker claims b edges per move.
Introduced in [Chvátal-Erdős 1978].
As b is increased, Breaker gains advantage...
For a game \mathcal{F}, the threshold bias $b_{\mathcal{F}}$ is the largest integer such that Maker can win biased $\left(1: b_{\mathcal{F}}\right)$ game.

- Connectivity game: $b_{\mathcal{T}}=(1+o(1)) \frac{n}{\log n}$,
[Gebauer-Szabó 2009], [Chvátal-Erdős 1978]
- Hamiltonicity game: $b_{\mathcal{H}}=(1+o(1)) \frac{n}{\log n}$, [Krivelevich 2011], [Chvátal-Erdős 1978]
- H-game: $b_{\mathcal{G}_{H}}=\Theta\left(n^{\frac{1}{m_{2}(H)}}\right)$.
[Bednarska-Łuczak, 2000]
\ldots where $m_{2}(H)=\max _{H^{\prime} \subseteq H, v\left(H^{\prime}\right) \geq 3} \frac{e\left(H^{\prime}\right)-1}{v\left(H^{\prime}\right)-2}$.

Biased game

The so-called random intuition [Erdős] in positional games suggests that the outcome of the same positional game

- played by two smart players, and
- played by two "stupid" (random) players, could be the same.

Biased game

The so-called random intuition [Erdős] in positional games suggests that the outcome of the same positional game

- played by two smart players, and
- played by two "stupid" (random) players, could be the same.

Connectivity game: $b_{\mathcal{T}} \sim \frac{n}{\log n}$,
so density of Maker's edges at the end of the $\left(1: b_{\mathcal{T}}\right)$ connectivity game is $\frac{1}{b_{\mathcal{T}}+1} \sim \frac{\log n}{n}$

Biased game

The so-called random intuition [Erdős] in positional games suggests that the outcome of the same positional game

- played by two smart players, and
- played by two "stupid" (random) players, could be the same.

Connectivity game: $b_{\mathcal{T}} \sim \frac{n}{\log n}$,
so density of Maker's edges at the end of the $\left(1: b_{\mathcal{T}}\right)$ connectivity game is $\frac{1}{b_{\mathcal{T}}+1} \sim \frac{\log n}{n}=$ pr. threshold for connectivity in $G(n, p)$.

Biased game

The so-called random intuition [Erdős] in positional games suggests that the outcome of the same positional game

- played by two smart players, and
- played by two "stupid" (random) players,
could be the same.
Connectivity game: $b_{\mathcal{T}} \sim \frac{n}{\log n}$,
so density of Maker's edges at the end of the $\left(1: b_{\mathcal{T}}\right)$ connectivity game is $\frac{1}{b_{\mathcal{T}}+1} \sim \frac{\log n}{n}=$ pr. threshold for connectivity in $G(n, p)$.

Clique game: $b_{\mathcal{G}_{H}} \sim n^{\frac{1}{m_{2}(H)}}$.
But the threshold for appearance of H in $G(n, p)$ is $n^{-\frac{1}{m(H)}}$, ... where $m(G)=\max _{G^{\prime} \subseteq G} \frac{e\left(G^{\prime}\right)}{v\left(G^{\prime}\right)}$.

Random game

Random game

To help Breaker, we randomly remove some of the edges of the base graph before the game starts - each edge is included with probability p, independently.

Random game

To help Breaker, we randomly remove some of the edges of the base graph before the game starts - each edge is included with probability p, independently.
So, the game is actually played on the edge set of a random graph $G(n, p)$.

Random game

To help Breaker, we randomly remove some of the edges of the base graph before the game starts - each edge is included with probability p, independently.
So, the game is actually played on the edge set of a random graph $G(n, p)$.

If game \mathcal{F} is Maker's win when played with bias (1:1) on K_{n}, the threshold probability $p_{\mathcal{F}}$ is the probability at which an almost sure Breaker's win turns into an almost sure Maker's win.

Random game

To help Breaker, we randomly remove some of the edges of the base graph before the game starts - each edge is included with probability p, independently.
So, the game is actually played on the edge set of a random graph $G(n, p)$.

If game \mathcal{F} is Maker's win when played with bias (1:1) on K_{n}, the threshold probability $p_{\mathcal{F}}$ is the probability at which an almost sure Breaker's win turns into an almost sure Maker's win.

- $\operatorname{Pr}[$ Maker wins \mathcal{F} on $G(n, p)] \rightarrow 0$ for $p \ll p_{\mathcal{F}}$,
- $\operatorname{Pr}[$ Maker wins \mathcal{F} on $G(n, p)] \rightarrow 1$ for $p \gg p_{\mathcal{F}}$.

Random game

To help Breaker, we randomly remove some of the edges of the base graph before the game starts - each edge is included with probability p, independently.
So, the game is actually played on the edge set of a random graph $G(n, p)$.

If game \mathcal{F} is Maker's win when played with bias (1:1) on K_{n}, the threshold probability $p_{\mathcal{F}}$ is the probability at which an almost sure Breaker's win turns into an almost sure Maker's win.

- $\operatorname{Pr}[$ Maker wins \mathcal{F} on $G(n, p)] \rightarrow 0$ for $p \ll p_{\mathcal{F}}$,
- $\operatorname{Pr}[$ Maker wins \mathcal{F} on $G(n, p)] \rightarrow 1$ for $p \gg p_{\mathcal{F}}$.

The threshold probability surely exists, as "being Maker's win" is an increasing graph property.

Random game - what is known?

Random game - what is known?

- Connectivity game: $p_{\mathcal{T}}=\frac{\log n}{n}$ (sharp), [St.-Szabó 2005]

Random game - what is known?

- Connectivity game: $p_{\mathcal{T}}=\frac{\log n}{n}$ (sharp),
[St.-Szabó 2005]
Note that $p_{\mathcal{T}}=p_{\text {connectivity }}=b_{\mathcal{T}}^{-1}$.

Random game - what is known?

- Connectivity game: $p_{\mathcal{T}}=\frac{\log n}{n}$ (sharp),
[St.-Szabó 2005]
Note that $p_{\mathcal{T}}=p_{\text {connectivity }}=b_{\mathcal{T}}^{-1}$.
- Hamiltonicity game: $p_{\mathcal{H}}=\frac{\log n}{n}$ (sharp), [Hefetz-Krivelevich-St.-Szabó 2009]

Random game - what is known?

- Connectivity game: $p_{\mathcal{T}}=\frac{\log n}{n}$ (sharp),
[St.-Szabó 2005]
Note that $p_{\mathcal{T}}=p_{\text {connectivity }}=b_{\mathcal{T}}^{-1}$.
- Hamiltonicity game: $p_{\mathcal{H}}=\frac{\log n}{n}$ (sharp), [Hefetz-Krivelevich-St.-Szabó 2009]
We also have $p_{\mathcal{H}}=p_{\text {Hamiltonicity }}=b_{\mathcal{H}}^{-1}$.

Random H -game

Random H-game

As we've seen, $p_{\text {appearance-of- } H}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!

Random H-game

As we've seen, $p_{\text {appearance-of- } H}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

Random H-game

As we've seen, $p_{\text {appearance-of- } H}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

- For the triangle game, $H=K_{3}$, we have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}$. [St.-Szabó 2005]

Random H-game

As we've seen, $p_{\text {appearance-of- } H}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

- For the triangle game, $H=K_{3}$, we have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}$. [St.-Szabó 2005]

We have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}<n^{-\frac{1}{2}}=b_{\mathcal{K}_{3}}^{-1}$.

Random H-game

As we've seen, $p_{\text {appearance-of- } H}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

- For the triangle game, $H=K_{3}$, we have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}$. [St.-Szabó 2005]

$$
\text { We have } p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}<n^{-\frac{1}{2}}=b_{\mathcal{K}_{3}}^{-1}
$$

- For the clique game for $k \geq 4$, we have $p_{\mathcal{K}_{k}}=n^{-\frac{2}{k+1}}$. [Müller-St. 2014+]

Random H-game

As we've seen, $p_{\text {appearance-of- } H}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

- For the triangle game, $H=K_{3}$, we have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}$. [St.-Szabó 2005]

We have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}<n^{-\frac{1}{2}}=b_{\mathcal{K}_{3}}^{-1}$.

- For the clique game for $k \geq 4$, we have $p_{\mathcal{K}_{k}}=n^{-\frac{2}{k+1}}$. [Müller-St. 2014+]

As $m_{2}\left(K_{k}\right)=\frac{k+1}{2}$, here we have $p_{\mathcal{K}_{k}}=b_{\mathcal{K}_{k}}^{-1}$.

Random H-game

As we've seen, $p_{\text {appearance-of-H }}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

- For the triangle game, $H=K_{3}$, we have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}$. [St.-Szabó 2005]

We have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}<n^{-\frac{1}{2}}=b_{\mathcal{K}_{3}}^{-1}$.

- For the clique game for $k \geq 4$, we have $p_{\mathcal{K}_{k}}=n^{-\frac{2}{k+1}}$. [Müller-St. 2014+]

$$
\text { As } m_{2}\left(K_{k}\right)=\frac{k+1}{2} \text {, here we have } p_{\mathcal{K}_{k}}=b_{\mathcal{K}_{k}}^{-1}
$$

- For a tree game, where H is a (fixed) tree, we have $p_{\mathcal{G}_{H}}=n^{-\frac{\ell}{\ell-1}}$, for $\ell=\ell(H)$.

Random H-game

As we've seen, $p_{\text {appearance-of-H }}=n^{-\frac{1}{m(H)}} \neq n^{-\frac{1}{m_{2}(H)}}=b_{\mathcal{G}_{H}}^{-1}$ always!
We want to compare $p_{\mathcal{G}_{H}}$ and $b_{\mathcal{G}_{H}}^{-1}$!

- For the triangle game, $H=K_{3}$, we have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}$. [St.-Szabó 2005]

We have $p_{\mathcal{K}_{3}}=n^{-\frac{5}{9}}<n^{-\frac{1}{2}}=b_{\mathcal{K}_{3}}^{-1}$.

- For the clique game for $k \geq 4$, we have $p_{\mathcal{K}_{k}}=n^{-\frac{2}{k+1}}$. [Müller-St. 2014+]

$$
\text { As } m_{2}\left(K_{k}\right)=\frac{k+1}{2} \text {, here we have } p_{\mathcal{K}_{k}}=b_{\mathcal{K}_{k}}^{-1}
$$

- For a tree game, where H is a (fixed) tree, we have

$$
p_{\mathcal{G}_{H}}=n^{-\frac{\ell}{\ell-1}}, \text { for } \ell=\ell(H)
$$

Again, we have $p_{\mathcal{G}_{H}}=n^{-\frac{\ell}{\ell-1}}<n^{-1}=b_{\mathcal{G}_{H}}^{-1}$.

Random H -game for general H
Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?

Random H -game for general H

Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?
Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that $H^{\prime} \subseteq H$ such that:
$m_{2}\left(H^{\prime}\right)=m_{2}(H)$,
H^{\prime} is strictly 2-balanced, and H^{\prime} is not a tree or a triangle.
Then $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$.

Random H -game for general H

Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?
Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that $H^{\prime} \subseteq H$ such that:
$m_{2}\left(H^{\prime}\right)=m_{2}(H)$,
H^{\prime} is strictly 2-balanced, and H^{\prime} is not a tree or a triangle.
Then $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$.
Discussion:

Random H-game for general H

Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?
Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that $H^{\prime} \subseteq H$ such that:

$$
m_{2}\left(H^{\prime}\right)=m_{2}(H)
$$

H^{\prime} is strictly 2-balanced, and H^{\prime} is not a tree or a triangle.
Then $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$.
Discussion:

- If H is a tree or a triangle, we saw earlier what happens...

Random H-game for general H

Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?
Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that $H^{\prime} \subseteq H$ such that:

$$
m_{2}\left(H^{\prime}\right)=m_{2}(H)
$$

H^{\prime} is strictly 2-balanced, and H^{\prime} is not a tree or a triangle.
Then $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$.
Discussion:

- If H is a tree or a triangle, we saw earlier what happens...
- If $m_{2}(H)>2$, or if H has no triangle, Theorem applies.

Random H -game for general H

Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?
Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that $H^{\prime} \subseteq H$ such that:
$m_{2}\left(H^{\prime}\right)=m_{2}(H)$,
H^{\prime} is strictly 2-balanced, and H^{\prime} is not a tree or a triangle.
Then $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$.
Discussion:

- If H is a tree or a triangle, we saw earlier what happens...
- If $m_{2}(H)>2$, or if H has no triangle, Theorem applies.
- If $m_{2}(H)=2$ and in H we have H^{\prime} with $m_{2}\left(H^{\prime}\right)=2$ and not containing a triangle, Theorem applies.

Random H -game for general H

Question: For which H we have $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$?
Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that $H^{\prime} \subseteq H$ such that:
$m_{2}\left(H^{\prime}\right)=m_{2}(H)$,
H^{\prime} is strictly 2-balanced, and H^{\prime} is not a tree or a triangle.
Then $p_{\mathcal{G}_{H}}=n^{-\frac{1}{m_{2}(H)}}$.
Discussion:

- If H is a tree or a triangle, we saw earlier what happens...
- If $m_{2}(H)>2$, or if H has no triangle, Theorem applies.
- If $m_{2}(H)=2$ and in H we have H^{\prime} with $m_{2}\left(H^{\prime}\right)=2$ and not containing a triangle, Theorem applies.
- Remaining cases: H with $m_{2}(H)=2$, with max. 2-density determined only by triangle subgraphs.

Random H-game, remaining cases

Let H be graph with $m_{2}(H)=2$, with max. 2-density determined only by triangle subgraphs.

Random H-game, remaining cases

Let H be graph with $m_{2}(H)=2$, with max. 2-density determined only by triangle subgraphs.

- The threshold is not below $n^{-\frac{5}{9}}$, as on sparser random graph Maker is a.a.s. not able to make a triangle.

Random H-game, remaining cases

Let H be graph with $m_{2}(H)=2$, with max. 2-density determined only by triangle subgraphs.

- The threshold is not below $n^{-\frac{5}{9}}$, as on sparser random graph Maker is a.a.s. not able to make a triangle.
- The threshold is not above $n^{-\frac{1}{2}}$, as denser random graph is H-Ramsey a.a.s., and hence Maker can claim H (strategy stealing).

Random H-game, remaining cases

Let H be graph with $m_{2}(H)=2$, with max. 2-density determined only by triangle subgraphs.

- The threshold is not below $n^{-\frac{5}{9}}$, as on sparser random graph Maker is a.a.s. not able to make a triangle.
- The threshold is not above $n^{-\frac{1}{2}}$, as denser random graph is H -Ramsey a.a.s., and hence Maker can claim H (strategy stealing).

As it will turn out, the threshold can be placed almost arbitrarily between $n^{-5 / 9}$ and $n^{-1 / 2}$.

Random H-game, remaining cases

Graph H_{P} :

Random H-game, remaining cases

Graph H_{P} :

Theorem. [Nenadov-Steger-St. 2014+]
If H is such that $9 / 5<m_{2}(H)<2$,
then $p_{\mathcal{G}_{H_{P}}}=n^{-\frac{1}{m_{2}(H)}}$.
Note: $m_{2}\left(H_{P}\right)=2$.

A proof - using containers in positional games

A proof - using containers in positional games

How to show that Maker can win in an H-game?

A proof - using containers in positional games

How to show that Maker can win in an H-game?
We use container theorems of [Balogh-Morris-Samotij, 2012] and [Saxton-Thomason, 2012] (sketch of proof):

A proof - using containers in positional games

How to show that Maker can win in an H-game?
We use container theorems of [Balogh-Morris-Samotij, 2012] and [Saxton-Thomason, 2012] (sketch of proof):

There exist containers $C_{1}, C_{2}, \ldots, C_{t} \subseteq E\left(K_{n}\right)$, such that

- $\left|C_{i}\right| \leq(1-\delta)\binom{n}{2}$, for all i,
- t is "not too large",
- every H-free graph $G \subseteq K_{n}$ is contained in some C_{i}.

A proof - using containers in positional games

How to show that Maker can win in an H-game?
We use container theorems of [Balogh-Morris-Samotij, 2012] and [Saxton-Thomason, 2012] (sketch of proof):

There exist containers $C_{1}, C_{2}, \ldots, C_{t} \subseteq E\left(K_{n}\right)$, such that

- $\left|C_{i}\right| \leq(1-\delta)\binom{n}{2}$, for all i,
- t is "not too large",
- every H-free graph $G \subseteq K_{n}$ is contained in some C_{i}.

If Maker loses, then (at the end of the game) his graph is contained in some C_{i}.

A proof - using containers in positional games

How to show that Maker can win in an H-game?
We use container theorems of [Balogh-Morris-Samotij, 2012] and [Saxton-Thomason, 2012] (sketch of proof):
There exist containers $C_{1}, C_{2}, \ldots, C_{t} \subseteq E\left(K_{n}\right)$, such that

- $\left|C_{i}\right| \leq(1-\delta)\binom{n}{2}$, for all i,
- t is "not too large",
- every H-free graph $G \subseteq K_{n}$ is contained in some C_{i}.

If Maker loses, then (at the end of the game) his graph is contained in some C_{i}.

Hence: Maker wins if he claims an element in every container complement $E\left(K_{n}\right) \backslash C_{i}$.

A proof - using containers in positional games

How to show that Maker can win in an H-game?
We use container theorems of [Balogh-Morris-Samotij, 2012] and [Saxton-Thomason, 2012] (sketch of proof):
There exist containers $C_{1}, C_{2}, \ldots, C_{t} \subseteq E\left(K_{n}\right)$, such that

- $\left|C_{i}\right| \leq(1-\delta)\binom{n}{2}$, for all i,
- t is "not too large",
- every H-free graph $G \subseteq K_{n}$ is contained in some C_{i}.

If Maker loses, then (at the end of the game) his graph is contained in some C_{i}.

Hence: Maker wins if he claims an element in every container complement $E\left(K_{n}\right) \backslash C_{i}$.

So, Maker can play as Container-Complement-Breaker! Winning sets are $\left\{E\left(K_{n}\right) \backslash C_{i}\right\}_{i}$, each of size $\geq \delta\binom{n}{2}$, and there is not too many of them \rightarrow win e.g. by Erdős-Selfridge Theorem. \square

Hitting time of winning

Hitting time of winning

For a game \mathcal{F}, we want to describe the moment when the graph becomes "Maker's win" in an Erdős-Rényi random graph process.

Hitting time of winning

For a game \mathcal{F}, we want to describe the moment when the graph becomes "Maker's win" in an Erdős-Rényi random graph process.

- Connectivity game (Maker is the second player): Hitting t. for Maker's win $=$ hitting t . for $\delta(G) \geq 2$, a.a.s. [St.-Szabó 2005]

Hitting time of winning

For a game \mathcal{F}, we want to describe the moment when the graph becomes "Maker's win" in an Erdős-Rényi random graph process.

- Connectivity game (Maker is the second player): Hitting t. for Maker's win $=$ hitting t . for $\delta(G) \geq 2$, a.a.s. [St.-Szabó 2005]
- Hamiltonicity game (Maker is the second player): Hitting t. for Maker's win $=$ hitting t . for $\delta(G) \geq 4$, a.a.s. [Ben-Shimon, Ferber, Hefetz, Krivelevich 2012]

Hitting time of winning

For a game \mathcal{F}, we want to describe the moment when the graph becomes "Maker's win" in an Erdős-Rényi random graph process.

- Connectivity game (Maker is the second player): Hitting t. for Maker's win $=$ hitting t . for $\delta(G) \geq 2$, a.a.s. [St.-Szabó 2005]
- Hamiltonicity game (Maker is the second player): Hitting t. for Maker's win $=$ hitting t . for $\delta(G) \geq 4$, a.a.s. [Ben-Shimon, Ferber, Hefetz, Krivelevich 2012]
- Triangle game:

Hitting time for Maker's win $=$ hitting time for appearance of $K_{5}-e$, a.a.s.
[Müller-St. 2014+]

Open problems

Open problems

- Understand better the reason for Maker's win in the (biased/random) H -game...

Open problems

- Understand better the reason for Maker's win in the (biased/random) H -game...
- ...and describe the hitting time (without mentioning games).

Open problems

- Understand better the reason for Maker's win in the (biased/random) H -game...
- ...and describe the hitting time (without mentioning games).
- Determine $p_{\mathcal{G}_{H}}$ for the remaining graphs H.

Open problems

- Understand better the reason for Maker's win in the (biased/random) H -game...
- ...and describe the hitting time (without mentioning games).
- Determine $p_{\mathcal{G}_{H}}$ for the remaining graphs H.
- Characterize all games \mathcal{F} for which $p_{\mathcal{F}}=b_{\mathcal{F}}^{-1}$!

Open problems

- Understand better the reason for Maker's win in the (biased/random) H -game...
- ...and describe the hitting time (without mentioning games).
- Determine $p_{\mathcal{G}_{H}}$ for the remaining graphs H.
- Characterize all games \mathcal{F} for which $p_{\mathcal{F}}=b_{\mathcal{F}}^{-1}$!
- Combining biased games and random games... For a game \mathcal{F} and bias $b=b(n)$, what is the threshold probability $p_{\mathcal{F}}(b)=p_{\mathcal{F}}(b, n)$ for "Maker's win" in (1:b) game?

Open problems

- Understand better the reason for Maker's win in the (biased/random) H -game...
- ...and describe the hitting time (without mentioning games).
- Determine $p_{\mathcal{G}_{H}}$ for the remaining graphs H.
- Characterize all games \mathcal{F} for which $p_{\mathcal{F}}=b_{\mathcal{F}}^{-1}$!
- Combining biased games and random games... For a game \mathcal{F} and bias $b=b(n)$, what is the threshold probability $p_{\mathcal{F}}(b)=p_{\mathcal{F}}(b, n)$ for "Maker's win" in (1:b) game?
- Known for the connectivity game and the Hamiltonicity game,

Open problems

- Understand better the reason for Maker's win in the (biased/random) H-game...
- ...and describe the hitting time (without mentioning games).
- Determine $p_{\mathcal{G}_{H}}$ for the remaining graphs H.
- Characterize all games \mathcal{F} for which $p_{\mathcal{F}}=b_{\mathcal{F}}^{-1}$!
- Combining biased games and random games... For a game \mathcal{F} and bias $b=b(n)$, what is the threshold probability $p_{\mathcal{F}}(b)=p_{\mathcal{F}}(b, n)$ for "Maker's win" in (1:b) game?
- Known for the connectivity game and the Hamiltonicity game,
- Not known for the H -game, not even for the clique game, if $1<b<\log n$.

