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Introduction

A positional game:

I The board – a finite set X ,

I the winning sets – F ⊆ 2X , a collection of subsets of X .

I (X ,F) – the hypergraph of the game.

A Maker-Breaker positional game:

I Played by two players - Maker and Breaker,

I Maker and Breaker alternately claim unclaimed elements of
X ,

I Maker wins if he claims all elements of some F ∈ F ;
otherwise Breaker wins.

A Maker-Breaker positional game on the complete graph:

I The board is the edge set of the complete graph Kn,

I the winning sets are usually representatives of a
graph-theoretic structure.
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Example

Maker-Breaker triangle game on the edge set of K6.
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Games on graphs

I Connectivity game: T – set of all spanning trees;

I Hamiltonicity game: H – set of all Hamiltonian cycles;

I H-game: GH – set of all copies of H, where H is a fixed graph
(e.g., triangle game)

The games are played on the edge set of Kn.
What happens when n is large?
All three games are easy Maker wins!

To help Breaker, we can:

I Let Breaker claim more than one edge in each move – biased
game,

I Randomly remove some of the edges of the base graph before
the game starts – random game.
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Biased game
Biased game (1 : b) – Maker claims 1, and Breaker claims b
edges per move.
Introduced in [Chvátal-Erdős 1978].

As b is increased, Breaker gains advantage...

For a game F , the threshold bias bF is the largest integer such
that Maker can win biased (1 : bF ) game.

I Connectivity game: bT = (1 + o(1))
n

log n
,

[Gebauer-Szabó 2009], [Chvátal-Erdős 1978]

I Hamiltonicity game: bH = (1 + o(1))
n

log n
,

[Krivelevich 2011], [Chvátal-Erdős 1978]

I H-game: bGH = Θ
(
n

1
m2(H)

)
.

[Bednarska- Luczak, 2000]

...where m2(H) = maxH′⊆H,v(H′)≥3
e(H′)−1
v(H′)−2 .
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Biased game

The so-called random intuition [Erdős] in positional games
suggests that the outcome of the same positional game

I played by two smart players, and

I played by two “stupid” (random) players,

could be the same.

Connectivity game: bT ∼
n

log n
,

so density of Maker’s edges at the end of the (1 : bT ) connectivity

game is
1

bT + 1
∼ log n

n
= pr. threshold for connectivity in G (n, p).

Clique game: bGH ∼ n
1

m2(H) .

But the threshold for appearance of H in G (n, p) is n
− 1

m(H) ,

...where m(G ) = maxG ′⊆G
e(G ′)
v(G ′) .
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Random game

To help Breaker, we randomly remove some of the edges of the
base graph before the game starts – each edge is included with
probability p, independently.
So, the game is actually played on the edge set of a random
graph G (n, p).

If game F is Maker’s win when played with bias (1 : 1) on Kn, the
threshold probability pF is the probability at which an almost
sure Breaker’s win turns into an almost sure Maker’s win.

I Pr[Maker wins F on G (n, p)]→ 0 for p � pF ,

I Pr[Maker wins F on G (n, p)]→ 1 for p � pF .

The threshold probability surely exists, as “being Maker’s win” is
an increasing graph property.
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Random game – what is known?

I Connectivity game: pT =
log n

n
(sharp),

[St.-Szabó 2005]

Note that pT = pconnectivity = b−1T .

I Hamiltonicity game: pH =
log n

n
(sharp),

[Hefetz-Krivelevich-St.-Szabó 2009]

We also have pH = pHamiltonicity = b−1H .
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Random H-game

As we’ve seen, pappearance-of-H = n
− 1

m(H) 6= n
− 1

m2(H) = b−1GH always!

We want to compare pGH and b−1GH !

I For the triangle game, H = K3, we have pK3 = n−
5
9 .

[St.-Szabó 2005]

We have pK3 = n−
5
9 < n−

1
2 = b−1K3

.

I For the clique game for k ≥ 4, we have pKk
= n−

2
k+1 .

[Müller-St. 2014+]

As m2(Kk) = k+1
2 , here we have pKk

= b−1Kk
.

I For a tree game, where H is a (fixed) tree, we have

pGH = n−
`

`−1 , for ` = `(H).

Again, we have pGH = n−
`

`−1 < n−1 = b−1GH .
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Random H-game for general H
Question: For which H we have pGH = n

− 1
m2(H) ?

Theorem. [Nenadov-Steger-St. 2014+]
Let H be a graph, and suppose that H ′ ⊆ H such that:

m2(H ′) = m2(H),
H ′ is strictly 2-balanced, and
H ′ is not a tree or a triangle.

Then pGH = n
− 1

m2(H) .

Discussion:

I If H is a tree or a triangle, we saw earlier what happens...

I If m2(H) > 2, or if H has no triangle, Theorem applies.

I If m2(H) = 2 and in H we have H ′ with m2(H ′) = 2 and not
containing a triangle, Theorem applies.

I Remaining cases: H with m2(H) = 2, with max. 2-density
determined only by triangle subgraphs.
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Random H-game, remaining cases

Let H be graph with m2(H) = 2, with max. 2-density determined
only by triangle subgraphs.

I The threshold is not below n−
5
9 ,

as on sparser random graph Maker is a.a.s. not able to make a
triangle.

I The threshold is not above n−
1
2 ,

as denser random graph is H-Ramsey a.a.s., and hence Maker
can claim H (strategy stealing).

As it will turn out, the threshold can be placed almost arbitrarily
between n−5/9 and n−1/2.
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Random H-game, remaining cases

Graph HP :

Theorem. [Nenadov-Steger-St. 2014+]
If H is such that 9/5 < m2(H) < 2,

then pGHP = n
− 1

m2(H) .

Note: m2(HP) = 2.
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A proof – using containers in positional games

How to show that Maker can win in an H-game?

We use container theorems of [Balogh-Morris-Samotij, 2012] and
[Saxton-Thomason, 2012] (sketch of proof):

There exist containers C1,C2, ...,Ct ⊆ E (Kn), such that

I |Ci | ≤ (1− δ)
(n
2

)
, for all i ,

I t is “not too large”,

I every H-free graph G ⊆ Kn is contained in some Ci .

If Maker loses, then (at the end of the game) his graph is
contained in some Ci .

Hence: Maker wins if he claims an element in every container
complement E (Kn) \ Ci .

So, Maker can play as Container-Complement-Breaker!
Winning sets are {E (Kn) \ Ci}i , each of size ≥ δ

(n
2

)
, and there is

not too many of them → win e.g. by Erdős-Selfridge Theorem. 2
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Hitting time of winning

For a game F , we want to describe the moment when the graph
becomes “Maker’s win” in an Erdős-Rényi random graph process.

I Connectivity game (Maker is the second player):
Hitting t. for Maker’s win = hitting t. for δ(G ) ≥ 2, a.a.s.
[St.-Szabó 2005]

I Hamiltonicity game (Maker is the second player):
Hitting t. for Maker’s win = hitting t. for δ(G ) ≥ 4, a.a.s.
[Ben-Shimon, Ferber, Hefetz, Krivelevich 2012]

I Triangle game:
Hitting time for Maker’s win = hitting time for appearance of
K5 − e, a.a.s.
[Müller-St. 2014+]
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Open problems

I Understand better the reason for Maker’s win in the
(biased/random) H-game...

I ...and describe the hitting time (without mentioning games).

I Determine pGH for the remaining graphs H.

I Characterize all games F for which pF = b−1F !

I Combining biased games and random games...
For a game F and bias b = b(n), what is the threshold
probability pF (b) = pF (b, n) for “Maker’s win” in (1 : b)
game?

I Known for the connectivity game and the Hamiltonicity game,
I Not known for the H-game, not even for the clique game, if

1 < b < log n.
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