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A model of computational security

Computationally secure:

• User selects X , a string, from a collection of possibilities.

• Inquisitor knows the collection of all objects and can query each in
turn.

• Computationally secure if collection of keys is large.

Probability:

• What if X is picked probabilistically with a distribution known to the
inquisitor?
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Is Shannon Entropy the right measure?

• A word, W , picked from A = {1, . . . ,m}, has Shannon entropy

H = −
∑
i∈A

P(W = i) log P(W = i).

• How should the inquisitor guess W ?

Assume

P(W = 1) ≥ P(W = 2) ≥ . . . ≥ P(W = m)

& guess in order: the i th most likely word on the i th guess,
G : A 7→ N such that G (i) = i and

E (G (W )) =
∑
i∈A

i P(W = i).

J. L. Massey, Proc. IEEE ISIT, 1994.
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What’s the right measure of Guesswork?

A sequence Wk ∈ Ak made of i.i.d. letters. Define Rényi entropy

R1(β) =
1

1− β
log
∑
w∈A

P(W1 = w)β ,

E. Arikan, IEEE Trans. Inf. Theory, 1996.



What’s the right measure of Guesswork?

A sequence Wk ∈ Ak made of i.i.d. letters. Define Rényi entropy

R1(β) =
1

1− β
log
∑
w∈A

P(W1 = w)β ,

Arikan’s Proposition:

lim
k→∞

1

k
log E(G (Wk)

α) = αR1

(
1

1 + α

)
for α > 0.

E. Arikan, IEEE Trans. Inf. Theory, 1996.



What’s the right measure of Guesswork?

E.g. α = 1, for large k

E(G (Wk)) ≈ exp(kR1(1/2))

where

R1(1/2) = log

(∑
w∈A

√
P(W1 = w)

)2

.
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E.g. Bernoulli Source, log base 2.

E. Arikan, IEEE Trans. Inf. Theory, 1996.



Source generalization of Arikan’s Proposition

With the Rényi entropy of Wk being

Rk(β) =
1

1− β
log

∑
w∈Ak

P(Wk = w)β ,

and R(β) = lim
k→∞

1

k
Rk(β), generalizations prove

lim
k→∞

1

k
log E(G (Wk)

α) = αR

(
1

1 + α

)
for α > −1.

D. Malone and W. G. Sullivan, IEEE Trans. Inf. Theory, 2004.
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Large deviations and guesswork distributions

Consider

Λ(α) := lim
k→∞

1

k
log E(G (Wk)

α) = lim
1

k
log E(eα log(G(Wk ))) =

αR

(
1

1 + α

)
for α > −1.

−R(∞) for α ≤ −1.

Suggestive of

dP

(
1

k
log G (Wk) ≈ x

)
� exp(−kΛ∗(x)) dx

where Λ∗X (x) = sup
α∈R

(αx − ΛX (α)).

For large k, some jiggery-pokery gives

P(G (Wk) = n) ≈ 1

n
exp

(
−kΛ∗

(
1

k
log n

))
.

M. Christiansen & K. Duffy, IEEE Trans. Inf. Theory, 2013.
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What’s in a discontinuous derivative?

Λ(α) =

{
αR((1 + α)−1) if α ≥ −1

−R(∞) if α ≤ −1

Define:

γ = lim
α↓−1

d

dα
Λ(α)

= lim
β→∞

(
R(β)− R ′(β)

β2

)
.

If i.i.d., then γ = log |{w : P(W1 = w) = P(G (W1) = 1)}.

If not, then approximately ekγ “most likely words” of length k.
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An aside on most likely words

Lemma: For {Wk} constructed of Markovian letters with A = {0, 1},

γ = lim
α↓−1

Λ′(α) ∈ {0, log(φ), log(2)},

where φ = (1 +
√

5)/2 is the Golden Ratio, and no other values are
possible.



Uniformity, typical set coding etc.
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Multiple users

V ∈ N users, independently picking strings

~Wk =
(
W

(1)
k , . . . ,W

(V )
k

)
∈ AkV .

Statistics of each user’s selection known to an inquisitor who can query
the veracity of (user, string) pair and we wishes to identify U ≤ V of
them.
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Optimal strategy?

G is optimal Wk if and only if

P (G (Wk) ≤ n) ≥ P (S(Wk) ≤ n) for all strategies S and all n ∈ {1, . . . , mk}.



Optimal strategy?

G is optimal Wk if and only if

P (G (Wk) ≤ n) ≥ P (S(Wk) ≤ n) for all strategies S and all n ∈ {1, . . . , mk}.

Lemma

If V = U, the optimal strategies are those that guess from most likely to
least likely.



If U < V , not guaranteed stochastic domination

Example: V = 2, U = 1 and |A| = 3.
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User Item probability
Sem 0.6 0.2 0.2

Johan 0.6 0.2 0.2
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If U < V , not guaranteed stochastic domination

Example: V = 2, U = 1 and |A| = 3.

Move to Johan

User Item probability
Sem ��0.6 0.5 0.5

Johan ��0.6 0.5 0.5

Stick with Sem

User Item probability
Sem ��0.6 ��0.5 1

Johan 0.6 0.2 0.2



There exist asymptotically optimal strategies - Round-robin

For each v ∈ {1, . . . , V } let G (v) denote its optimal strategy and define:

Gopt(U,V , ~Wk) = U-min
(
G (1)(W

(1)
k ), . . . ,G (V )(W

(V )
k )

)
,

where U-min : RV → R gives the Uth smallest component.

Then

Gopt(U,V , ~Wk) ≤ real performance of round-robin ≤ VGopt(U,V , ~Wk)

and, as k →∞, these have the same asymptote.
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Asymptotically optimal strategies satisfy a LDP

Theorem

{k−1 log Gopt(U,V , ~Wk)} satisfies a large deviation principle. Defining

δ(v)(x) =

{
Λ

(v)
G

∗
(x) if x ≤ H(v)

0 otherwise,
and γ(v)(x) =

{
Λ

(v)
G

∗
(x) if x ≥ H(v)

0 otherwise,

the rate function is

IGopt(U,V , x) = max
v1,...,vV

(
Λ

(v1)
G

∗
(x) +

U∑
i=2

δ(vi )(x) +
V∑

i=U+1

γ(vi )(x)

)
,

which may not be convex. The sCGF is

ΛGopt(U,V , α) = lim
k→∞

1

k
log E (exp(α log Gopt(U,V , ~Wk)))

= sup
x∈[0,Vm]

(
αx − IGopt(U,V , x)

)
.



A Merhav & Arikan example, U = 1, V = 2

W
(1)
k , Bernoulli on {0, 1},

P(W
(2)
1 = i) =


0.55 if i = 0

0.1 if i ∈ {1, 2}
0.05 if i ∈ {3, . . . , 7}



All things being equal

Corollary

If users’ statistics are all (asymptotically) the same, then

Λ∗Gopt
(U,V , x) =

{
UΛG

∗(x) if x ≤ H

(V − U + 1)ΛG
∗(x) if x ≥ H

and

ΛGopt(U,V , α) =


UΛG

(α

U

)
if α ≤ 0

(V − U + 1)ΛG

(
α

V − U + 1

)
if α ≥ 0.



Multi-user guesswork growth rates

n = V − U, number of excess strings

E(Gopt(U,V , ~Wk)) ≈ exp

(
kR

(
n + 1

n + 2

))
, where

n + 1

n + 2
∈
{

1

2
,

2

3
,

3

4
, . . .

}
.



Concluding comments

• There’s no ”truly” optimal guessing strategy.

• Performance of asymptotically optimal strategies can be analysed.

• From an attacker’s point of view, there’s a law of diminishing
returns in excess number of users.

• Shannon Entropy provides a universal lower bound on the guesswork
growth rate of multi-user systems.

• If you had an Adobe password, change it everywhere.
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