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Community Detection

—> Identification of groups of similar objects within overall population
— Closely related objectives: clustering and embedding

Profile space




Application 1: contact recommendation

in online social networks
I

Supporting data: e.g. OSN’s friendship graph

- recommend members of user’s implicit community



Application 2: content recommendation

to users of Netflix-like system
-*

Supporting data: user-content ratings matrix

_
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Use content communities to support recommendation
“users who liked this also liked...”
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The Stochastic Block Model

‘Hollqnd-qukez-Leinhdrd’r’83‘
-

1 n “nodes” partitioned into K categories
1 Category 0: a, n nodes _—

-1 Edge between nodes u,v present \ \ >

with probability b; )50 S/N

s:“signal strength” / \\

- Observation: adjacency matrix A S—

|
[]
O
=

+ Noise matrix

~/



The Labeled Stochastic Block Model

o
0 Edges (u-v) labeled by L , € L (finite set)

- Drawn from distribution Ho(w)o ()

1 Netflix case: labels 1-5 stars




The SBM with general types
- [Aldous’81; Lovdsz’12]

o User type o(u) i.i.d. ~P in general set (e.g. uniform on [0,1])
0 Edge (u-v) present w.p. bs(1)g () S/N for “kernel” b

e.g.
bx,y — F(X_ y) i

-1 +1
o Edges (u-v) labeled by L, € L (finite set)

0 Drawn from distribution ;)5 (1)

1 Technical assumptions: compact type set and continuity of
symmetric functions b and u



Qutline

o1 Performance of Spectral Methods
® “rich signal” case



Spectral Clustering
—

11 From Matrix A extract R normalized eigenvectors X; corresponding
to R largest eigenvalues || = -+ = | Ay ]

1 Form R-dimensional node representatives

Yu = \/ﬁ('xl(u)) i=1..R

-1 Group nodes u according to proximity of spectral representatives y,,



Principal component 2
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Result for “logarithmic” signal strength s

Assume s=()(log(n)) and clusters are distinguishable, i.e.
Vo + ¢' 3t suchthat b, # b,/

—>Then spectrum of A consists of
R eigenvalues A, of order ()(s) (R < K) and
n-R eigenvalues A, of order O(4/s)

Node representatives y,, based on top R eigenvectors X; :

Cluster according to underlying “blocks” except for
negligible fraction of nodes



Proof arguments
=

Control spectral radius of noise matrix

+ perturbation of matrix eigen-elements

N

+ random “noise” matrix

Block matrix
non-zero eigenvalues: O(s)




spectral separation properties
“a la Ramanujan”

s-regular graph Ramanujan if

A:=max(|A, |, M) < 2Vs —1
[Lubotzky-Phillips-Sarnak’88]

[Friedman’08]: random s-regular graph verifies whp

A=2Vs —1+ o(1)

[Feige-Ofek’05]: for Erd8s-Rényi graph G(n,s/n) and
s = Q(logn), then whp A = 0(\/95)

Also: p(A — A) = 0(1/s)



spectral separation properties
“a la Ramanujan”

Corollary: in SBM with s = Q(log n), whp
p(A—A) = 0(\/@ - A’s leading eigen-elements

close to those of A

B - logn
For s = O(1), p(4A — A)NC\/log logn

—>spectral separation is lost



Result for “logarithmic” signal strength s
— Labeled SBM

Random projection method: transform categorical
labels into numerical data

For each label | generate W(l) i.i.d. uniform on [0,1]

Perform Spectral clustering on matrix {A;; W (L;;)}

= Under modified distinguishability condition
Vo #o',3r,0suchthatb_v_(¢)=b_ v_ (¢)

or’ oT o'rt’ o't

Same result holds as in unlabeled scenario



Discrepancy between SBM with small K

and Netflix
-

Eigenvalue distributions

4 outstanding
eigenvalues

SBM with K=4 Netflix (subset)

—>motivates consideration of SBM with general types



SBM with general types
=

o User types o(u) i.i.d. ~P from general set (e.g. uniform on [0, 1])

0 Edge (u-v) present w.p. b5 (v) S/N for “kernel” b

-9 bx,y = F(X_ y)

F(x)

YA VA

-1 +1

o Edges (u-v) labeled by L, € L (finite set)

= Drawn from distribution Ho(w)o(v)

—~>Form matrix {A;;W (L;;)} from random projections W (1) of labels



SBM with general types:
Spectral properties for logarithmic s

Define kernel K (x,y) = 2, W (), (1) and integral
operator Tf (x) = [ K(x,y)f (y)P(dy)
—>spectrum of S_l{AijW(Lij)} ~ spectrum of T

. — n
0 Eigenvalue convergence: s 1Ki( ) 5 A

0 Eigenvector convergence: x;(u) = ¢;(k,)

eigen-function

[ Associated

Type of node u}




SBM with general types:
Spectral properties for logarithmic s

—Flexible model

-power-law spectra (convolution operator + Fourier

analysis)
10*
-better matches to
Netflix data |
10°F Hﬁ*%
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SBM with general types:
estimation for logarithmic s

For fixed R form R-dimensional node representatives

k
1

k=1..R

- Embeds nodes according to pseudo-distance dy that
“captures geometry” of hidden node types o (1)

with embedding accuracy controlled by “residual

energy” €5 = Y - p A" of operator’s spectrum
gY <R k>R “k P P



SBM with general types:

estimation for logarithmic s
-*

Define Distance d*(x,y) = [[K(x,z) — K(y,z)]*P(dz)
» captures model structure
~ Verifies 0 < dp < d

- And [[[d?(x,y) — dg’(x,y)|P(dx)P(dy) =&



F(x)
lllustration with [O0,1] types
_

Prob(label(i,j)=5)?

Use empirical distribution of labels
L(i,k) for k in -neighborhood of i

Embedding allows consistent estimation of label distributions



Consistency result for logarithmic s

Inference of label distribution based on
» R-dimensional embedding

~ Empirical measures on £-neighborhoods

For fraction of 1 — \/&p node pairs, estimation error
verifies

25y Frrer) = 0



Qutline

o1 The weak signal case: sparse observations
® Phase transition on detectability

m A modified spectral method



Weak signal strength: s = O(1)

Correct classification of all but negligible fraction of
nodes impossible (isolated nodes...)

—> Assess performance of clustering & by overlap metric:

ov(6)==> 1o, =6, }-max, (a,)
u=l1

Overlap Overlap
Signal /
strength s E——

So: threshold for So Sc¢  Signal strength s

Giant component



Weak signal strength : s=1

. - . 1
Symmetric two-communities scenario: @y = a_ = >

Conjecture ([Decelle-Krzakala-Moore-Zdeborova 2011]:
(a=b)?
2(a+b)

- Proven by [Mossel-Neeman-Sly 201 2]

For T > 1, positive overlap can be achieved

(by Belief Propagation [DKMZ 201 1]; by “spectral redemption” [KMMNSZ-Zhang
2013])

For T: = < 1, overlap tends to zero for any &

No method proven to achieve positive overlap until Nov’13



Detection by modified spectral method
—

Form matrix B(: B(l)l-j = nb of self-avoiding paths of length [

Ex: for I=4

N BD.. —9
Typical case: for tree-shaped

I-neighborhood of i,
l —
BDy; = Liaqp=n



Main result: spectral structure of B()
for T > 1 & path length [~c log(n),

a+b a-b 2
Let @ = — p = 5 (hence T = % ) eigenvalues of

—

0 Top eigenvalue ~ @(al) , top eigenvector y: |(y, B(l)e)l ~ |y| |B(l)e|
o 2" eigenvalue > ﬁ(ﬁl), 2" eigenvector Z: |<Z,B(l)0)| ~ |z| |B(l)0'|
0 3rd eigenvalue = O(n‘g\/ﬁ) foralle > 0

Spectral separation
“& la Ramanujan”

0 2" eigenvector 7 of BW®W positively correlated with spin vector o

+1ifz,\/n >T

—>Hence positive overlap obtained by estimate (1) =
P P Y (W) {—1ifzu\/ﬁg T

For suitable threshold T



Proof elements 1) matrix expansion
B

1 Expected adjacency matrix
11 Centered simple path adjacency matrix

—>Expansion:



“Smallness” of matrix coefficients

- Trace method: p(M)?* < Trqce(MZR)

+ combinatorics (a la [Firedi-Komlos’81])
Here: count contributions of concatenations of simple paths

- Bounds on spectral radii: whp, for all € > 0

O



Proof elements 2) Quasi-deterministic
rowth of node neighborhoods

]
“ Nb of distance t neighbors: S; (i)
= Sum of spins of distance t neighbors: D, (i)
©
—then whp: Se(D) = at~lS; (D) + 5(at/2)

D.(i) = B0, (@) + O(a®/?)

Proof: Chernoff bounds on binomial random variables

Corollary: For m < [, whp Close to vectors {S,,_1(i)}, {D,y—1 (D)}

O‘(\/ﬁa(m—l)/z)

O‘(\/ﬁa(m—l)/z)



Weak Ramanujan property
N

71 Previous results combined give

Use spectral radius
bounds

Express in terms of e,0 :

Use bounds from quasi-

deterministic growth on




Remaining mysteries about SBM’s (1)

S
Conjectured “phase diagram” for more than 2 blocks /- - -\

(assuming fixed inter-community parameter b) - - -

Detection hard but feasible

Intra-community (how? In polynomial time?)

parameter a

Number of
communities r



Remaining mysteries about SBM’s (2)

Clique detection problem: add a size-K clique to random graph with edge-
probability 12

1 IBE
i.e. a 2-block SBM with unbalanced

block sizes:

72! 72! n-K

>for K = Q (1/n) clique easily detectable (e.g. inspection of node degrees)

—> are there polynomial-time algorithms for smaller yet large K2

(9. K =0 (Yn))

A notoriously hard problem (“planted clique detection” recently proposed as a
new benchmark of algorithmic hardness)



Conclusions and Outlook

“Vanilla” spectral methods efficient for strong (logarithmic) signal
strength
Alternatives needed at low signal strength

Belief propagation conjectured optimal

Spectral approach on path-expanded matrix proven optimal down to
“easy /hard” transition

Computationally efficient methods for “hard” cases?

Detection in SBM = rich playground for analysis of computational
complexity with methods of statistical physics

Does SBM model correctly real-life data?

Speed of convergence, better-than-random label projections,
choice of embedding dimension...
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