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Community Detection 

2 

Profile space 

 Identification of groups of similar objects within overall population 

 Closely related objectives: clustering and embedding 

 



Supporting data: e.g. OSN’s friendship graph 

 

 

 

 

 

 

 

 

 

 

recommend members of user’s implicit community 

Application 1: contact recommendation 

in online social networks 



Supporting data: user-content ratings matrix 

 

 

 

 

 

 

 

 

Use content communities to support recommendation  

“users who liked this also liked…” 

Application 2: content recommendation 

to users of Netflix-like system 

User / Movie 𝑓1 𝑓2 … 𝑓𝑚 

𝑢1 ? ** *** 

𝑢2  ? ? 

… 

𝑢𝑛 ***** ** ** 
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The Stochastic Block Model  

[Holland-Laskey-Leinhardt’83] 

 n “nodes” partitioned into K categories 

 Category 𝜎:  𝛼𝜎  𝑛 nodes 

 Edge between nodes u,v present  

with probability 𝑏𝜎 𝑢 𝜎 𝑣  𝑠/𝑛   

s:“signal strength” 

 

 Observation: adjacency matrix A 

 

 

A =         + Noise matrix  

 



The Labeled Stochastic Block Model 

 Edges (u-v) labeled by Luv  L (finite set) 

  Drawn from distribution 𝜇𝜎 𝑢 𝜎(𝑣) 

 

 Netflix case: labels 1-5 stars 

 



The SBM with general types 

[Aldous’81; Lovász’12] 

 User type 𝜎(u) i.i.d. ~𝑃 in general set (e.g. uniform on [0,1]) 

 Edge (u-v) present w.p. 𝑏𝜎 𝑢 𝜎 𝑣  𝑠/𝑛 for “kernel” b 

 e.g. 

 

 

 

 Edges (u-v) labeled by Luv  L (finite set) 

  Drawn from distribution 𝜇𝜎 𝑢 𝜎(𝑣) 

 

  Technical assumptions: compact type set and continuity of 
symmetric functions 𝑏 and 𝜇 
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Spectral Clustering 

 From Matrix A extract R normalized eigenvectors 𝑥𝑖 corresponding 
to R largest eigenvalues 1 ≥ ⋯ ≥ 𝑅  

 

 

 Form R-dimensional node representatives 

𝑦𝑢 = 𝑛(𝑥𝑖(𝑢)) 𝑖=1…𝑅
 

 

 

 Group nodes u according to proximity of spectral representatives 𝑦𝑢 

  

  

 

 



Illustration for R=2 
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Clustering from SVD

SBM with K=4 Netflix dataset 



Result for “logarithmic” signal strength s  

Assume s=(log(n)) and clusters are distinguishable, i. e. 

∀𝜎 ≠ 𝜎′  ∃τ such that  𝑏𝜎τ ≠ 𝑏𝜎′τ 

Then spectrum of A consists of  

 R eigenvalues i of order (s) (R  K) and  

 n-R eigenvalues i of order 𝑂 𝑠  

 

Node representatives 𝑦𝑢 based on top R eigenvectors 𝑥𝑖 : 

Cluster according to underlying “blocks” except for 

negligible fraction of nodes 

 



Proof arguments 

Control spectral radius of noise matrix  

+ perturbation of matrix eigen-elements 

 

 

A =                             + random “noise” matrix 

Block matrix  

non-zero eigenvalues: (s)  



spectral separation properties  

“à la Ramanujan” 

s-regular graph Ramanujan if  

:=max 2 , 𝑛 ≤ 2 𝑠 − 1 

[Lubotzky-Phillips-Sarnak’88] 

 

[Friedman’08]: random s-regular graph verifies whp 

=2 𝑠 − 1 + o(1) 

 

[Feige-Ofek’05]: for Erdős-Rényi graph 𝐺 𝑛, 𝑠/𝑛  and 
𝑠 =  log 𝑛 , then whp  = 𝑂 𝑠  

Also: ρ 𝐴 − 𝐴 = 𝑂 𝑠  

  



spectral separation properties  

“à la Ramanujan” 

Corollary: in SBM with  𝑠 =  log 𝑛 , whp 

ρ 𝐴 − 𝐴 = 𝑂 𝑠   𝐴’s leading eigen-elements 

close to those of 𝐴  

 

 

For 𝑠 =  1 , 𝜌 𝐴 − 𝐴 ~𝐶
log 𝑛

log log 𝑛
 

spectral separation is lost 

 



Result for “logarithmic” signal strength s 

– Labeled SBM 

Random projection method: transform categorical 
labels into numerical data 

For each label l generate W(l) i.i.d. uniform on [0,1] 

Perform Spectral clustering on matrix {𝐴𝑖𝑗𝑊(𝐿𝑖𝑗)} 

 

 Under modified distinguishability condition 

 

 

Same result holds as in unlabeled scenario 
 

      ''such that  ,,' bb 



Discrepancy between SBM with small K 

and Netflix 

Eigenvalue distributions 

SBM with K=4 Netflix (subset) 

motivates consideration of SBM with general types 

4 outstanding 

eigenvalues 



SBM with general types 

 User types (u) i.i.d. ~𝑃 from general set (e.g. uniform on [0,1]) 

 Edge (u-v) present w.p. 𝑏𝜎 𝑢 𝜎 𝑣  𝑠/𝑛 for “kernel” b 

 e.g. 

 

 

 

 

 

 Edges (u-v) labeled by Luv  L (finite set) 

  Drawn from distribution 𝜇𝜎 𝑢 𝜎(𝑣) 

 

Form matrix {𝐴𝑖𝑗𝑊(𝐿𝑖𝑗)} from random projections 𝑊 𝑙  of labels 
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SBM with general types: 

Spectral properties for logarithmic 𝑠 

Define kernel 𝐾(𝑥, 𝑦) ≔  𝑊 𝑙 𝜇𝑥𝑦 𝑙𝑙  and integral 

operator 𝑇𝑓 𝑥 ≔  𝐾 𝑥, 𝑦 𝑓(𝑦)𝑃 𝑑𝑦  

spectrum of  𝑠−1{𝐴𝑖𝑗𝑊(𝐿𝑖𝑗)} ≈ spectrum of 𝑇 

 

 Eigenvalue convergence: 𝑠−1𝑖
𝑛 → 𝑖 

 Eigenvector convergence: 𝑥𝑖(𝑢) → 𝜑𝑖 𝑘𝑢  

 Associated 

eigen-functionn 

Type of node u 



SBM with general types: 

Spectral properties for logarithmic 𝑠 

Flexible model 

-power-law spectra (convolution operator + Fourier 

analysis) 

-better matches to  

Netflix data 

 



SBM with general types: 

estimation for logarithmic 𝑠 

 For fixed R form R-dimensional node representatives 

𝑦𝑢 = 𝑛
𝑘

1
𝑥𝑘(𝑢)

𝑘=1…𝑅

 

 

Embeds nodes according to pseudo-distance 𝑑𝑅 that 

“captures geometry” of hidden node types 𝜎(𝑢) 

with embedding accuracy controlled by “residual 

energy” ε𝑅 ≔  𝑘
2

𝑘>𝑅  of operator’s spectrum 

 



SBM with general types: 

estimation for logarithmic 𝑠 

Define Distance 𝑑2 𝑥, 𝑦 =  𝐾 𝑥, 𝑧 − 𝐾 𝑦, 𝑧 2𝑃 𝑑𝑧   

 captures model structure 

 Verifies 0 ≤ 𝑑𝑅 ≤ 𝑑 

 And  𝑑2 𝑥, 𝑦 − 𝑑𝑅
2 𝑥, 𝑦 𝑃 𝑑𝑥 𝑃 𝑑𝑦 = ε𝑅  

 



Illustration with [0,1] types 

Embedding allows consistent estimation of label distributions 

Prob(label(i,j)=5)? 

Node i 

Node j 

Use empirical distribution of labels 

L(i,k) for k in -neighborhood of j 

F(x) 

x 



Consistency result for logarithmic 𝑠 

Inference of label distribution based on  

 R-dimensional embedding  

 Empirical measures on -neighborhoods 

 

For fraction of 1 − 𝜀𝑅 node pairs, estimation error 

verifies  

lim
𝜀→0

lim
𝜀𝑅→0

Error = 0 

 



Outline 

 The Stochastic Block Model  

 With labels 

 With general types 

 Performance of Spectral Methods  

 “rich signal” case 

 The weak signal case: sparse observations 

 Phase transition on detectability 

 A modified spectral method 



𝑠0: threshold for  

Giant component  

Weak signal strength: s = (1) 

 Correct classification of all but negligible fraction of 

nodes impossible (isolated nodes…) 

 Assess performance of clustering 𝜎  by overlap metric: 
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Signal strength s 

Overlap 

𝑠𝑐 𝑠0 



Symmetric two-communities scenario: 𝛼+ = 𝛼− =
1

2
 

 

 

 

 

 

Conjecture ([Decelle-Krzakala-Moore-Zdeborova 2011]:  

 For 𝜏: =
𝑎−𝑏 2

2 𝑎+𝑏
< 1 , overlap tends to zero for any 𝜎   

Proven by [Mossel-Neeman-Sly 2012] 

 For 𝜏 > 1 , positive overlap can be achieved  

(by Belief Propagation [DKMZ 2011]; by “spectral redemption” [KMMNSZ-Zhang 
2013]) 

 

No method proven to achieve positive overlap until Nov’13 

 

Weak signal strength : s=1 

ab  ab 

bb 



Detection by modified spectral method 

Form matrix 𝐵(𝑙): 𝐵(𝑙)
𝑖𝑗 = nb of self-avoiding paths of length 𝑙 

 

 

 

Ex: for l=4 

 

 

 

 

 

 

 

  

i 
j 

𝐵(𝑙)
𝑖𝑗 = 1  

i j 

𝐵(𝑙)
𝑖𝑗 = 2  

Typical case: for tree-shaped 

l-neighborhood of i, 

𝐵(𝑙)
𝑖𝑗 = 1 𝑑 𝑖,𝑗 =𝑙  

 



Let 𝛼 =
𝑎+𝑏

2
, 𝛽 =

𝑎−𝑏

2
 (hence 𝜏 =

𝛽2

𝛼
 ) eigenvalues of 

 

 

 Top eigenvalue ~  𝛼𝑙  , top eigenvector 𝑦: 𝑦, 𝐵(𝑙)𝑒  ~ 𝑦  𝐵(𝑙)𝑒   

 2nd eigenvalue ≥  𝛽𝑙 ,   2nd eigenvector  𝑧: 𝑧, 𝐵(𝑙)𝜎  ~ 𝑧  𝐵(𝑙)𝜎   

 3rd eigenvalue = 𝑂 𝑛𝜀 𝛼𝑙  for all 𝜀 > 0 

 

 

 2nd eigenvector 𝑧 of 𝐵(𝑙)positively correlated with spin vector 𝜎  

 

Hence positive overlap obtained by estimate 𝜎 𝑢 =  
+1 if 𝑧𝑢 𝑛 > 𝑇

−1 if 𝑧𝑢 𝑛 ≤ 𝑇
 

For suitable threshold 𝑇 

Main result: spectral structure of 𝐵(𝑙) 

for 𝜏 > 1 & path length 𝑙~𝑐 log 𝑛 ,  

Spectral separation  

“à la Ramanujan” 

a/2 b/2 

a/2 b/2 



Proof elements 1) matrix expansion 

 Expected adjacency matrix 

 

 

 

 Centered simple path adjacency matrix 

 

 

 

Expansion: 

 

 

 

   

 

“small” terms 



 Trace method: 𝜌 𝑀 2𝑘 ≤ Trace 𝑀2𝑘  

 

+ combinatorics (à la [Füredi-Komlós’81]) 

Here: count contributions of concatenations of simple paths 

 

 

 

Bounds on spectral radii: whp, for all 𝜀 > 0 

 

 

  

“Smallness” of matrix coefficients 



 Nb of distance t neighbors: 𝑆𝑡 𝑖  

 Sum of spins of distance t neighbors: 𝐷𝑡 𝑖  

 

 

then whp:   𝑆𝑡 𝑖 = 𝛼𝑡−𝑙𝑆𝑙 𝑖 + 𝑂 𝛼𝑡/2  

   𝐷𝑡 𝑖 = 𝛽𝑡−𝑙𝐷𝑙 𝑖 + 𝑂 𝛼𝑡/2  

Proof: Chernoff bounds on binomial random variables 

 

Corollary: For 𝑚 ≤ 𝑙, whp 

 

 

 

 

Proof elements 2) Quasi-deterministic 

growth of node neighborhoods 
i 

+ + + - - 

Close to vectors 𝑆𝑚−1 𝑖 , 𝐷𝑚−1 𝑖   

𝑂 𝑛𝛼(𝑚−1)/2  

𝑂 𝑛𝛼(𝑚−1)/2  



Weak Ramanujan property 

 Previous results combined give  

Use spectral radius 

bounds  

Express in terms  of 𝑒, 𝜎 : 

Use bounds from quasi-

deterministic growth on 



Remaining mysteries about SBM’s (1) 

Conjectured “phase diagram” for more than 2 blocks 

(assuming fixed inter-community parameter b) 

 

Intra-community 

parameter a 

Number of 

communities r 

Detection easy 

(spectral methods  

or BP) 

Detection hard but feasible 

(how? In polynomial time?) 

Detection infeasible 



Remaining mysteries about SBM’s (2) 

Clique detection problem: add a size-K clique to random graph with edge-
probability ½ 

 

i.e. a 2-block SBM with unbalanced  

block sizes: 

 

 

 

for 𝐾 =  𝑛  clique easily detectable (e.g. inspection of node degrees) 

 

are there polynomial-time algorithms for smaller yet large K?  

(e.g. 𝐾 =  𝑛3  ) 

A notoriously hard problem (“planted clique detection” recently proposed as a 
new benchmark of algorithmic hardness) 

K 

n-K ½  

½  

½  



Conclusions and Outlook 

 “Vanilla” spectral methods efficient for strong (logarithmic) signal 

strength 

 Alternatives needed at low signal strength 

 Belief propagation conjectured optimal 

 Spectral approach on path-expanded matrix proven optimal down to 

“easy/hard” transition 

 

 Computationally efficient methods for “hard” cases? 

 Detection in SBM = rich playground for analysis of computational 

complexity with methods of statistical physics 

 Does SBM model correctly real-life data? 

 Speed of convergence,  better-than-random label projections, 

choice of embedding dimension… 
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