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Community detection in networks

Objective: Extract K communities in a network of n nodes from
random observations

Observations
1. A graph (e.g. the stochastic block model)

2. This talk: a more general sampling framework
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1. Community detection in graphs

* Find communities in a graph

* Applications: biology (the role of proteins), social networks
(targeted ads), distributed computing (balanced partitions), ...

* Large graphs: e.g. web: > 1 billion pages



1. Community detection in graphs

* Objective: find conditions on the graph under which
communities can be efficiently detected using low complexity
algorithms
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Stochastic Block (SB) model

 The graph is built by considering each pair of nodes once
— If in the same community: put an edge with probability p
— Else: put an edge with probability g <p
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Stochastic Block (SB) model

N

* Network size: n nodes, n tends to oo

» Sparse interaction: p, g = o(1)
* Dense interaction: p, g = O(1)



2. General Sampling Framework

The interaction of two nodes can be sampled repeatedly

Sample for a given node pair: Bernoulli with mean p if nodes
are in the same cluster, with mean g otherwise

Sample budget: T



Sampling Strategies

* Non-adaptive Random Strategies

— The pair of nodes sampled in round t does not depend on past
observations, and is chosen uniformly at random

— S1: sampling with replacement
— S2: sampling without replacement

* Adaptive Strategies

— The pair of nodes sampled in round t depends on past observations

e Stochastic Block Model: random sampling without
replacement, and T =n(n-1)/2



Performance metrics

Proportion of misclassified nodes under mt;: € (n,7T)

1. Asymptotic detection: an algorithm detects the clusters if it
does better than the algorithm that randomly assigns nodes

to clusters

2. Accurate asymptotic detection: a joint sampling and
clustering algorithm m is asymptotically accurate if

lim E[e™(n,T)] = 0.

n—oo



Objectives of this work

1. ldentify necessary and sufficient conditions on p, g, n, T for
the existence of asymptotically accurate algorithms, and for
both random and adaptive sampling strategies

2. Design asymptotically optimal algorithms for both random
and adaptive sampling strategies



Outline

1. The Stochastic Block Model

2. Fundamental limits: Conditions for asymptotically accurate
detection in the general sampling framework

3. Optimal algorithms for random and adaptive sampling
strategies



1. The Stochastic Block Model



A few results

* Dyer-Frieze 1989: fixed p and g, min bisection in expected
O(n3) time.

e Jerrum-Sorkin 1998: p — ¢ > n~ 87, expected running time
O(n?*¢), further improvement by Condon-Karp.

* McSherry 2001: p — ¢ > Q(1/qlog(n)/n), degree log®(n)

1
6T¢

e Sparse graphs are more difficult



Sparse graphs, 2 communities

b
* SB model: sparse regime p = ¢ 7=
Theorem (I\/Iossel Neeman—SIy 2012)
If a—b< +/2(a+0),then clusters are not detectable.

Conjectured by Decelle-Krzakala-Moore-Zdeborova 2012

Theorem (Massoulie 2013)

If @ —b > +/2(a + b), then there exists an algorithm leading to
clusters that are positively correlated with the true clusters.




Non-rigorous Spectral Analysis

* Average adjacency matrix

1 1
E|A] = i(a +b)117 + 5(@ — buu®

* Noisy observation: A =E[A]+ X
e Spectral density of noise matrix X (Wigner semicircle law)
p(2)

V2(a +b)



Non-rigorous Spectral Analysis

* Spectral density of the modularity matrix: %(a —bluu’ + X

y P(2)

V2(a+b) 2

= —(a—>
“1 2(& )+a—b



Non-rigorous Spectral Analysis

e Spectral density of the observed matrix:

y P(2)

V2(a+b) =1 2

« Communities are detectable if z; > v2(a + b)
* Method: find z; and the corresponding eigen vector «



High-degree nodes

* Lack of rigor: some nodes have high degree, up to log(n)

. log log(n)
* |t perturbs the spectral density!

* The problem vanishes when p, ¢ > 1/n



Rigorous proof (Mossel et al.)

* Analogy with the tree reconstruction problem

* Each node (labeled with its type) gives birth to Poi(a) nodes of
the same type, and Poi(b) of node of different types

Can we recover the type of the root
o —O— by observing the types of nodes at

%‘_0/ large level r?
®

—

* Impossible if a — b < v/2(a + b) (Evans-Kenyon-Peres-
Schulman 2000)



Examples of algorithms

e Maximum Likelihood
— Belief Propagation

— Compressed sensing (convex relaxation)

* Spectral approaches
— Provide a K-rank approximation of the adjacency matrix

+ Trimming + Post-processing



Maximum Likelihood

* Observed adjacency matrix A

e Qutput: a symmetric binary matrix Y, rank 2
— nodes jandj are in the same community iff y;; =1

e Likelihood:

log PIA|Y] = log H p%ii (1 — p)t—%is H H g% (1 — q)t—%s

(4,5)yi5=1 (4,7):yi5=0
p l1—q

logP[A]Y] =log(=) > wij—log(+—) Y  y;+C
q (’i,j):aij:1 1 - p (i,j):aij:O

 Max likelihood: exact solution, Decelle et al. via Belief
Propagation algorithm (no analysis)



Maximum Likelihood

Relaxation: compressed sensing approach, Chen et al.
— First relaxation: ¥i; € |0, 1]
— Second relaxation: nuclear norm of Y (instead of low rank)

Maximize: (convex program)

p l—q
log (=) Z Yij — IOg(f) Z yij — Kv/nlY].
q (i,j):aijzl p (i,j):aij:O

Performance guarantee:

— we get the right solution w.h.p. provided that b4 > Cq
Vp(1—q)
alog(n)  blog(n)

— Example: does not work if p = g
n n
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2. Generic Sampling Framework
Fundamental limits



General Sampling Framework

The interaction of two nodes can be sampled repeatedly

Sample for a given node pair: Bernoulli with mean p if nodes
are in the same cluster, with mean g otherwise

Sample budget: T



Random Sampling

Not detectable
e™"(n, T) =1/2.

Detectable
e™(n,T) < 1/2.

Accurately
detectable

e"(n,T) — 0




Adaptive Sampling
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Fundamental limits

« Random sampling:
2(n —2)
n(n —1)

k1(n, T) =T min{K L(q, p), KL(p, q)}

. 2\] AT (n —12) lmm{% 1) (log p(1 — Q)>2 n <log(min{§, 1_;})>2]

n(n —1) q(1—p)

Theorem Under Random sampling strategy S1 or S2, for any
clustering algorithm i, we have:

E[e™(n, T)] > éexp(—m(n,T)),



Fundamental limits

* Non-adaptive random sampling -- necessary conditions for
asymptotically accurate detection:

% = w(1), %min(KL(q,p), KL(p,q)) = w(1),

* Dense interaction: p,q = ©(1)

T(p—q)°/n=uw(l)

 Sparse interaction: p,q = o(1)

T(p—q)?/(pn) = w(1)



Fundamental limits

* Adaptive sampling:

Theorem For asymptotically accurate detection, we need:

T T
min{p,1 —¢}— =€(1) and —max(KL(q,p), KL(p,q)) =w(1).
n n
] V1
e Example: p = oen q= o5 n
n n
T n

)

— Non-adaptive sampling: — = w(
n

log(n)

T
— Adaptive sampling: — = €)(
n



Fundamental limits

* Adaptive sampling:

Theorem For asymptotically accurate detection, we need:

T T
min{p,1 —¢}— =€(1) and —max(KL(q,p), KL(p,q)) =w(1).
n n
1 blo
e Example: p= aosn q= 57
n n
T n

)

— Non-adaptive sampling: — = w(
n

log(n)

— Adaptive sampling:

= w(

)

log(n)



2. Generic Sampling Framework
Algorithms



Algorithms for non-adaptive sampling

» Spectral algorithms (extension of Coja-Oghlan’s algorithm)

From random samples, build an observation matrix
Trimming (remove nodes with too many interactions)

Spectral decomposition (find the largest eigenvalues and
corresponding eigenvectors)

4. Greedy improvement (for each node compare the number of
interactions with the various clusters)



Performance

Theorem Assume that:
2
— T
p n p n
Then with high probability:

—a)? aT
e (n,T) < 8exp (— (pQOg) ozn ) .

* The algorithm is asymptotically accurate under the necessary
conditions for accurate detection in the case of random
sampling

 The necessary conditions for accurate detection are tight!



Algorithms for adaptive sampling

e Spatial coupling idea: find reference kernels and build the
clusters from these kernels

1. Kernels: select n/log(n) nodes and use T/5 samples to classify
these nodes (using the previous spectral algorithm)

2. Select one of remaining nodes. Sample T/3n pairs between
the selected nodes to each kernel. Classify the node.

3. Repeat 2. until no remaining node or budget



Performance

Theorem Assume that:

(Z;qj% = Q(1), %maX(KL(q,p), KL(p,q)) = w(1).

Then with high probability:

AP0, T) < exp (g (KL@p) + KLp.0) )

* The algorithm is asymptotically accurate under the necessary
conditions for accurate detection in the case of adaptive
sampling

 The necessary conditions for accurate detection are tight!



Random Sampling

|
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Adaptive Sampling

%maX(KL(p, q), KL(g,p)) = w(1)
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SBM: A Numerical Example

* n=4000
0. ' - 0.5 - - -
—O— Adaptive
04 - 0.4 —¥— Random ||
Q 0.3
=
= 02
0.1}| —©— Adaptive
—¥— Random
0 . ! s
1 2 3 4
1 x 10° T x 10°

p =0.01, g=0.005 p =0.1, g=0.05



Detection with limited memory

e Storing the adjacency matrix in RAM could be impossible




Detection with limited memory

e Storing the adjacency matrix in RAM could be impossible

Classify nodes in
an online
streaming way

A — The spectral
method is not
optimal here ...

A memory
scaling linearly
with n is enough!




Summary

* A generic sampling framework extending the SBM

* Necessary conditions for asymptotically accurate detection
valid in all regimes (unknown so far for the SMB)

* Asymptotically optimal joint sampling and clustering
algorithms

* Arbitrary sample budget:

— Quantify the impact of lack of information (some pair of nodes not
observed)

— Required budget for detection in very sparse regimes (circumventing
the phase transition problem)

e Extensions

— Beyond the SBM: different p’s in different clusters; Overlapping
communities; ...

— Limited memory, online classification: No loss of performance ...
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