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Decision making under uncertainty

Let’s consider a decision model that accounts for uncertainty:

(SP) maximize
x∈X

E [h(x, ξ)]

x is a vector of decision variables in Rn

ξ is a vector of uncertain parameters in Rm

h(x, ξ) is a profit function

To find an optimal solution, one must develop a stochastic
model and solve the associated stochastic program
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Difficulties in choosing a distribution model

Developing an accurate stochastic model requires heavy
engineering efforts and might even be impossible

This motivates the use of a distributionally robust
optimization model

(DRO) maximize
x∈X

inf
F∈D

EF[h(x, ξ)] .

where D captures exactly what is known of the distribution
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Distribution information in data-driven optimization

Many methods have been proposed to convert i.i.d. samples
{ξi}M

i=1 into confidence regions for distributions
Hypothesis testing methods: [(Bertsimas et al., 2015)]

S & {ξi}M
i=1 → D := {F | ∃ θ, ψ(F) = θ, Tθ({ξi}) ≤ γ(M)}

Moment based method:
[(Delage and Ye, 2010) , (Wiesemann et al., 2014)]

S & {ξi}M
i=1 → Dmoment :=

F

∣∣∣∣∣∣∣∣
P(ξ ∈ S) = 1
‖E [ξ]− µ̂‖2

Σ̂−1/2 ≤ O
(

log(1/δ)
M

)
E [(ξ − µ̂)(ξ − µ̂)T] �

(
1 + O

(√
log(1/δ)

M

))
Σ̂


Distance/divergence based methods:
[(Ben-Tal et al., 2013), (Mohajerin Esfahani et al. 2015)]

S & {ξi}M
i=1 → D := {F | d(F, F̂) ≤ γ(M)}

4 Delage et al. Value of Distribution Information



Introduction Three Different Measures Some Theoretical Properties Fleet Mix Optimization Conclusion & Future Work

Physical ambiguity in Two Urns experiment

Consider that there are two urns in front of you. The two urns
contain 100 BLUE and RED balls in unknown proportions.

Choose among the following three gambles:
Gamble A: If you draw a BLUE ball from urn #1, then you
win 180$, otherwise you win 20$
Gamble B: If you draw a BLUE ball from urn #1, then you
win 200$, otherwise you win nothing
Gamble C: If you draw a BLUE ball from urn #2, then you
win 100$, otherwise you win nothing

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0
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Physical ambiguity in Two Urns experiment

Consider that there are two urns in front of you. The two urns
contain 100 BLUE and RED balls in unknown proportions.

Choose among the following three gambles:
Gamble A: If you draw a BLUE ball from urn #1, then you
win 180$, otherwise you win 20$
Gamble B: If you draw a BLUE ball from urn #1, then you
win 200$, otherwise you win nothing
Gamble C: If you draw a BLUE ball from urn #2, then you
win 100$, otherwise you win nothing

Distributionally robust optimization model is:

max
x∈{0,1}3, xA+xB+xC=1

min
p∈[0,1]2

(20 + 160p1)xA + (200p1)xB + (100p2)xC
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Value of distribution information

How can one quantify the value of distribution
information ?

In Two Urns experiment, what is the value of knowing the
proportion of balls in either urn #1 or #2?
In data-driven problems, what is the value of
acquiring/processing more data?

This might serve many purposes:
Indicate whether it is worth investing in acquisition of
additional data
Guide the type of data that should be acquired
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Three possible measures

Let O be set of possible information that can be made and D(o)
describe the update rule for the distribution set, such that
D = ∪o∈OD(o).

Worst-case value of information:

WC-VDI(O) = min
o∈O

max
x∈X

min
F∈D(o)

EF[h(x, ξ)] − max
x∈X

min
F∈D

EF[h(x, ξ)]

Best-case value of information

BC-VDI(O) = max
o∈O

max
x∈X

min
F∈D(o)

EF[h(x, ξ)] − max
x∈X

min
F∈D

EF[h(x, ξ)]

Worst-case regret of not using the information

WCR-VDI(O) = max
o∈O

(
max
x∈X

min
F∈D(o)

EF[h(x, ξ)]− min
F∈D(o)

EF[h(x0, ξ)]

)
where x0 ∈ arg maxx∈X minF∈D EF[h(x, ξ)]
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on WC-VDI:

WC-VDI(Urn#1) = min
p1∈[0,1]

max
x∈X

min
p2∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

−max
x∈X

min
p∈[0,1]2

(20 + 160p1)xA + (200p1)xB + (100p2)xC

= min
p1∈[0,1]

max
x∈X

(20 + 160p1)xA + (200p1)xB − 20

= max
x∈X

20xA − 20 = 0
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on WC-VDI:

WC-VDI(Urn#1) = 0

WC-VDI(Urn#2) = min
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

−max
x∈X

min
p∈[0,1]2

(20 + 160p1)xA + (200p1)xB + (100p2)xC

= min
p2∈[0,1]

max
x∈X

20xA + (100p2)xC − 20 = max
x∈X

20xA − 20 = 0
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on WC-VDI:

WC-VDI(Urn#1) = 20− 20 = 0 (i.e. confirm no blue in urn #1.)

WC-VDI(Urn#2) = 20− 20 = 0 (i.e. confirm no blue in urn #2.)

WC-VDI(Urn#2) = min
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

Conclusion: Distribution information has no value!
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on BC-VDI:

BC-VDI(Urn#1) = max
p1∈[0,1]

max
x∈X

min
p2∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

−max
x∈X

min
p∈[0,1]2

(20 + 160p1)xA + (200p1)xB + (100p2)xC

= max
p1∈[0,1]

max
x∈X

(20 + 160p1)xA + (200p1)xB − 20

= max
x∈X

180xA + 200xB − 20 = 180
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on BC-VDI:

BC-VDI(Urn#1) = 180

BC-VDI(Urn#2) = max
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

−max
x∈X

min
p∈[0,1]2

(20 + 160p1)xA + (200p1)xB + (100p2)xC

= max
p2∈[0,1]

max
x∈X

20xA + (100p2)xC − 20

= max
x∈X

20xA + 100xB − 20 = 80
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on BC-VDI:

BC-VDI(Urn#1) = 200− 20 = 180 (i.e. confirm all blue in urn #1.)

BC-VDI(Urn#2) = 100− 20 = 80 (i.e. confirm all blue in urn #2.)

BC-VDI(Urn#2) = max
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

Conclusion: One should count the balls of Urn #1 !
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on BC-VDI:

BC-VDI(Urn#1) = 180− 20 = 160 (i.e. confirm all blue in urn #1.)

BC-VDI(Urn#2) = 100− 20 = 80 (i.e. confirm all blue in urn #2.)

BC-VDI(Urn#2) = max
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

Conclusion: One should count the balls of Urn #1 !
Even when Gamble B is removed as an alternative !
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on WCR-VDI:

WCR-VDI(Urn#1) = max
p1∈[0,1]

max
x∈X

min
p2∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

− min
p2∈[0,1]

(20 + 160p1) · 1 + (200p1) · 0 + (100p2) · 0

= max
p1∈[0,1]

max
x∈X

(20 + 160p1)xA + (200p1)xB − (20 + 160p1)

= max
p1∈[0,1]

max
x∈X

(40p1 − 20)xB = max
x∈X

20xB = 20
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on WCR-VDI:

WCR-VDI(Urn#1) = 20

WCR-VDI(Urn#2) = max
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

− min
p1∈[0,1]

(20 + 160p1) · 1 + (200p1) · 0 + (100p2) · 0

= max
p2∈[0,1]

max
x∈X

(20)xA + (100p2)xB − 20 = max
x∈X

80xB = 80
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Value of distribution information in Two Urns exp.

Gamble A Urn #2
Blue Red

Urn 
#1

Blue 180 180

Red 20 20

Gamble B Urn #2
Blue Red

Urn 
#1

Blue 200 200

Red 0 0

Gamble C Urn #2
Blue Red

Urn 
#1

Blue 100 0

Red 100 0

If we could count the balls of one urn, which one should it be ?

Based on WCR-VDI:

WCR-VDI(Urn#1) = 200− 180 = 20 (i.e. confirm all blue in urn #1.)

WCR-VDI(Urn#2) = 100− 20 = 80 (i.e. confirm all blue in urn #2.)

WCR-VDI(Urn#2) = max
p2∈[0,1]

max
x∈X

min
p1∈[0,1]

(20 + 160p1)xA + (200p1)xB + (100p2)xC

Conclusion: One should count the balls of Urn #2 !
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An ordering of VDI measures

In Two Urns experiment, we noticed that

WC-VDI(Urn#1)︷︸︸︷
0 ≤

WCR-VDI(Urn#1)︷︸︸︷
20 ≤

BC-VDI(Urn#1)︷︸︸︷
180

WC-VDI(Urn#2)︷︸︸︷
0 ≤

WCR-VDI(Urn#2)︷︸︸︷
80 ≤

BC-VDI(Urn#2)︷︸︸︷
80

Lemma

It is generally the case that

WC-VDI(O) ≤WCR-VDI(O) ≤ BC-VDI(O) .
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An ordering of VDI measures

Lemma

It is generally the case that

WC-VDI(O) ≤WCR-VDI(O) ≤ BC-VDI(O) .

Proof:

WC-VDI(O) = min
o1∈O

max
x1

min
F∈D(o1)

EF[h(x1, ξ)]−max
x2∈X

min
F∈D

EF[h(x2, ξ)]

= min
o1∈O

max
x1∈X

min
F∈D(o1)

EF[h(x1, ξ)]−min
o2∈O

min
F∈D(o2)

EF[h(x0, ξ)]

= max
o2∈O

min
o1∈O

max
x1∈X

min
F∈D(o1)

EF[h(x1, ξ)]− min
F∈D(o2)

EF[h(x0, ξ)]

≤ max
o1=o2∈O

max
x1∈X

min
F∈D(o1)

EF[h(x1, ξ)]− min
F∈D(o2)

EF[h(x0, ξ)]

= WCR-VDI(O)
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An ordering of VDI measures

Lemma

It is generally the case that

WC-VDI(O) ≤WCR-VDI(O) ≤ BC-VDI(O) .

Proof:

WCR-VDI(O) = max
o∈O
{max

x1∈X
min

F∈D(o)
EF[h(x1, ξ)]− min

F∈D(o)
EF[h(x0, ξ)]}

≤ max
o1∈O

max
o2∈O

max
x1∈X

min
F∈D(o1)

EF[h(x1, ξ)]− min
F∈D(o2)

EF[h(x0, ξ)]

= max
o1∈O

max
x1∈X

min
F∈D(o1)

EF[h(x1, ξ)]−min
F∈D

EF[h(x0, ξ)]

= BC-VDI(O)
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Many situations where VDI = 0 in the worst case

Lemma

If the feasible set X is convex and compact and the profit function
h(x, ξ) is concave in x, then WC-VDI(O) = 0.

Proof: Based on Sion’s minimax theorem we have that

WC-VDI(O) = min
o∈O

max
x1∈X

min
F∈D(o)

EF[h(x1, ξ)]−max
x2∈X

min
F∈D

EF[h(x2, ξ)]

≤ min
o∈O

min
F∈D(o)

max
x1∈X

EF[h(x1, ξ)]−max
x2∈X

min
F∈D

EF[h(x2, ξ)]

= min
F∈D

max
x1∈X

EF[h(x1, ξ)]−max
x2∈X

min
F∈D

EF[h(x2, ξ)] = 0 .
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Some situations where VDI = 0 in the best case

Theorem (Delage et al., 2014)

Let the profit function h(x, ξ) be convex in ξ, and let the distribution
set be D := {F |EF[ξ] = µ}. Then for any information sets of type
O := {γ ∈ R+ |EF[ψ(ξ)] ≤ γ} where ψ(·) is a convex function and
D(o) 6= ∅ for all o ∈ O, the value is zero even in the best case.

Proof:

BC-VDI = max
o∈O

max
x∈X

min
F∈D(o)

EF[h(x, ξ)]−max
x∈X

min
F∈D

EF[h(x, ξ)]

= max
o∈O

max
x∈X

EF[h(x, µ)]−max
x∈X

EF[h(x, µ)] = 0 ,

since Jensen’s inequality ensures that δµ (i.e. the Dirac measure
centred at µ) always achieves a lower profit than any F ∈ D,
and since this Dirac measure remains feasible when imposing
that EF[ψ(ξ)] ≤ γ.

26 Delage et al. Value of Distribution Information
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Evaluating worst-case regret is NP-hard

Theorem (Delage et al., 2014)

Evaluating BC-VDI(O) or WCR-VDI(O) exactly is NP-hard even
when h(x, ξ) is concave in x and convex in ξ, and Dmoment is used.

Sketch of proof:
When the distribution information is perfect,

WCR-VDI(O) = max
F∈D

max
x∈X

EF[h(x, ξ)]− EF[h(x0, ξ)]

= max
x∈X

max
F∈D

EF[h(x, ξ)]− EF[h(x0, ξ)] .

Evaluating maxF∈Dmoment EF[h(x, ξ)] is NP-hard for

h(x, ξ) := max
y∈Rm

cTx + ξTy

s.t. |yi| ≤ x , ∀ y ∈ {1, 2, . . . ,m}
aTy = 0 .

27 Delage et al. Value of Distribution Information
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Tractable bound for worst-case regret

Theorem (Delage et al., 2014)

If the following conditions apply:
1 Dmoment is used with S ⊆ {ξ | ‖ξ‖1 ≤ ρ} and
‖EF[ξ]− µ̂‖2

Σ̂−1/2 ≤ γ1

2 h(x, ξ) captures a two-stage linear program with cost
uncertainty, i.e., h(x, ξ) := maxy∈Y(x) cTx + ξTCy.

then an upper bound for WCR-VDI(O) can be evaluated

WCR-VDI(O) ≤ min
s∈R,q∈Rm

s + µ̂Tq +
√
γ1‖Σ̂1/2q‖

s.t. s ≥ α(ρei)− ρeT
i q , ∀ i ∈ {1, ...,m}

s ≥ α(−ρei) + ρeT
i q , ∀ i ∈ {1, ...,m} ,

where α(ξ) = maxx∈X h(x, ξ)− (cTȳ0 + ξTCȳ0) for any ȳ0 ∈ Y(x0).
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Value of distribution info for an airline company

Fleet mix optimization is a difficult decision problem:
Fleet contracts are signed 10 to 20 years ahead of schedule.
Many factors are still unknown at that time:
passenger demand, fuel prices, etc.

Yet, many airline companies sign these contracts based on
a single scenario of what the future may be.

We first show that using the mean value of future profits as
a scenario leads to the same solution as DRO with Dmoment

with known first moment

Can we do better by acquiring more information about the
distribution ?

30 Delage et al. Value of Distribution Information
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Mathematical formulation for fleet mix optimization

The fleet composition problem is a stochastic mixed integer LP

maximize
x

E [− oTx︸︷︷︸
ownership cost

+ h(x, p̃, c̃, L̃)︸ ︷︷ ︸
future profits

] ,

with h(x, p̃, c̃, L̃) :=

max
z≥0,y≥0,w

∑
k

(
∑

i

flight profit︷︸︸︷
p̃k

i wk
i −

rental cost︷ ︸︸ ︷
c̃k(zk − xk)

+ +

lease revenue︷ ︸︸ ︷
L̃k(xk − zk)

+ )

s.t. wk
i ∈ {0, 1} , ∀ k, ∀ i &

∑
k

wk
i = 1 , ∀ i } Cover

yk
g∈in(v) +

∑
i∈arr(v)

wk
i = yk

g∈out(v) +
∑

i∈dep(v)

wk
i , ∀ k, ∀ v } Balance

zk =
∑

v∈{v|time(v)=0}

(yk
g∈in(v) +

∑
i∈arr(v)

wk
i ) , ∀k } Count
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Experiments in fleet mix optimization

We experimented with three test cases :

1 3 types of aircrafts, 84 flights, σp̃i/µp̃i ∈ [4%, 53%]

2 4 types of aircrafts, 240 flights, σp̃i/µp̃i ∈ [2%, 20%]

3 13 types of aircrafts, 535 flights, σp̃i/µp̃i ∈ [2%, 58%]

Results:

Test cases WCR-VDI(o)

#1 ≤ 6%
#2 ≤ 1%
#3 ≤ 7%

Conclusions:

It’s wasteful in these problems to invest more than 7% of
profits in acquisition of distribution information
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Conclusion & future work

Need for tools that can estimate the value of distribution
information

The most natural tools are computational intractable
Tractable upper bounds for value of perfect distribution
information might be available and informative
(e.g. fleet-mix optimization)

Future work:
Develop tighter bounds for WCR-VDI(O) with perfect
distribution information under Dmoment

Derive bounds for other distribution sets
Design simple procedures for characterizing O and D(o)
and bounding WCR-VDI(O) in data-driven problem where
information consists of samples
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Questions & Comments ...

... Thank you!
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