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The unperturbed Markov process

Ω Polish space

Markov process on Ω with càdlàg paths (ηt)t≥0

Pν law when ν is initial distribution (Eν expectation)

Pη, Eη if ν = δη

Assumption: ∃ ergodic stationary distribution µ

S(t)f(η) := Eη

[

f(ηt)
]

.

(S(t))t≥0 strongly continuous contractive semigroup on L2(µ).

Assumption:(S(t))t≥0 satisfies Poincaré inequality
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Poincaré inequality

• Poincaré inequality: ∃γ > 0 such that

‖S(t)f − µ(f)‖ ≤ e−γt‖f − µ(f)‖ ∀t ≥ 0 , f ∈ L2(µ) .

• L : D(L) ⊂ L2(µ) → L2(µ) generator of (S(t))t≥0

Poincaré inequality: ∃γ > 0 such that

γ‖f‖2 ≤ µ
(

f(−Lf)
)

∀f ∈ D(L) with µ(f) = 0 .

• Reversible process (L self–adjoint):
Poincaré inequality ⇔ Positive spectral gap
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Perturbed semigroup

• L̂ε : L
2(µ) → L2(µ) with ε := ‖L̂ε‖

• Set Lε := L+ L̂ε, D(Lε) := D(L).

• Lε is the generator of a strongly continuous semigroup
(Sε(t))t≥0 on L2(µ).
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Dyson–Phillips expansion

Defining iteratively

S(0)
ε (t) := S(t) , S(n+1)

ε (t) :=

∫ t

0
S(t− s)L̂εS

(n)
ε (s)ds ,

Sε(t) =
∞
∑

n=0

S(n)
ε (t) , t ≥ 0

norm k–th rest is O((ε/γ)k) for ε < γ
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Perturbed Markov process

• Consider another Markov process on Ω with càdlàg paths.

• P
(ε)
ν its law when initial distribution ν [E

(ε)
ν expectation]

• Assumption: Sε(t)f(η) := E
(ε)
η

(

f(ηt)
)

µ–a.s. for any f
continuous, bounded

• T. M. Liggett, Interacting particle systems.
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Invariant distribution µε

PP: perturbed process

Theorem (First part)

Let ε < γ.

• Exists a unique invariant distribution µε for PP absolutely
continuous w.r.t. µ.

• dµε

dµ
∈ L2(µ) and µε is time–ergodic for PP.

• Consider PP with initial distribution ν ≪ µ. Then νt → µε

weakly as t → ∞.
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Theorem (2nd part)

• (Dyson–Phillips expansion) For any f ∈ L2(µ)

µε(f) = µ(f) +
∞
∑

n=0

∫ ∞

0
µ
(

L̂εS
(n)
ε (s)f

)

ds .

• If for all t > 0 and B ⊂ Ω

{

η ∈ Bc : P(ε)
η (ηt ∈ B) = 0 , Pη(ηt ∈ B) > 0

}

has zero µ–probability, then µ and µε are mutually
absolutely continuous.
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Theorem (3rd part)

• (Semigroup convergence)

‖Sε(t)f − µε(f)‖ ≤ γ

γ − ε
e−(γ−ε)t‖f − µ(f)‖ , ∀f ∈ L2(µ)

‖Sε(t)f − µε(f)‖ε ≤
γ

γ − ε
e−

γ−ε

2
t‖f − µ(f)‖∞ , ∀f ∈ L∞(µ)

‖ · ‖ norm in L2(µ), ‖ · ‖ε norm in L2(µε), ‖ · ‖∞ norm in L∞(µ)
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Remarks

• Our analysis is based on Dyson–Phillips expansion

• Part of above theorem already obtained in

T. Komorowski, S. Olla, On Mobility and Einstein Relation
for Tracers in Time-Mixing Random Environments,
Journal of Statistical Physics (118) 3/4, (2005).

by different methods. Perturbation L̂ε can be unbounded,
it must satisfy sector condition.
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Remarks

• In the applications, µε and µ mutually a.c. In general, if a
property is true µε–a.s., then it is true apart a set of
µ–probability O(ε2/(γ − ε)2)
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Law of large number for additive functionals

µε is time–ergodic for PP.

Corollary

Let ε < γ and let f : Ω → R be a measurable function,
nonnegative or in L1(µε) (e.g. bounded or in L2(µ)). Then

lim
t→∞

1

t

∫ t

0
f(ηs) = µε(f) , P

(ε)
η − a.s.

for µε any starting configuration η
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Quenched invariance principle for additive

functional

Theorem

Let ε < γ and let f ∈ Cb(Ω) be continuous. Given n ∈ N, define

B
(n)
t (f) :=

∫ nt

0

f(ηs)− µε(f)√
n

ds , t ≥ 0 .

Then ∃ σ2 ≥ 0 such that, for µε–any η, under P
(ε)
η the process

(B
(n)
t )t≥0 weakly converges to a Brownian motion with diffusion

coefficient σ2.
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• Martingale methods (Kipnis & Varadhan)

• Quenched improvements (Maxwell & Woodroofe,
Rassoul–Agha & Seppalainen, ...)

Alessandra Faggionato L2–perturbation of Markov processes and applications



Random walk driven by a dynamical random

environment

• S Polish space. Ω = SZd

• Translation τx on Ω for x ∈ Z
d: τxη(y) := η(y − x)

• Dynamical environment (ξt)t≥0: Markov process on Ω
with càdlàg paths and generator Lenv

• Random walk (Xt)t≥0 on Z
d starting at 0: r(y, τxξ) is

probability rate of jump x y x+ y with environment ξ

Alessandra Faggionato L2–perturbation of Markov processes and applications



Environment viewed from the walker

ηt := τXtξt

Markov generator:

Lewf(η) : = Lenvf(η) +
∑

y∈Zd

r(y, η)
[

f(τyη)− f(η)
]

= Lenvf(η) + Ljumpsf(η)
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Environment viewed from the walker

Markov generator:

Lewf(η) = Lenvf(η) + Ljumpsf(η)

Assumption:

• (i) the environment process with generator Lenv has
ergodic invariant distribution µ and satisfies Poincaré
inequality in L2(µ) with Poincaré constant γ

• (ii) µ(Ljumpsf) = 0
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Perturbed random walk

• We modify the jump rates of the rw.

• rε(y, τxξ): rate for jump x y x+ y

rε(y, ·) := r(y, ·) + r̂ε(y, ·),

• We apply general theory with:
L := Lew;

Lε := L
(ε)
ew (environment viewed from perturbed walker);

L̂ε :=
∑

y∈Zd r̂ε(y, η)
[

f(τyη)− f(η)
]

L(ε)
ew = Lew + L̂ε .
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• Set φ(ε) :=
∑

y∈Zd |r̂ε(y, ·)|∞. Then ‖L̂ε‖ < 2φ(ε).

• We assume φ(ε) < γ

• Switch on the machine...

• µε unique invariant distribution for the environment viewed
from the perturbed random walk absolutely continuous
w.r.t. µ
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Asymptotic velocity of perturbed random walk

(X
(ε)
t )t≥0

Theorem

• For µε–almost any initial environment

lim
t→∞

X
(ε)
t

t
= v(ε) a.s.

• v(ε) admits the Dyson–Phillips expansion:

v(ε) = µ(jε) +

∞
∑

n=1

∫ ∞

0
µ(L̂εS

(n)
ε (s)jε)ds

where jε(η) :=
∑

y∈Zd yrε(y, η)

• nth–addendum =O (φ(ε)n‖jε‖∞)

Alessandra Faggionato L2–perturbation of Markov processes and applications



Quenched invariance principle

Theorem

• ∃ symmetric d× d matrix Dε ≥ 0 such that, for µε–a.a.
initial environment, the rescaled process

X
(ε)
nt − v(ε)nt√

n
, t ≥ 0 ,

weakly converges as n → ∞ to a Brownian motion with
covariance matrix Dε .

• (under reversibility of environment viewed from the
unperturbed rw) if φ(ε) is small enough, than Dε is
non–degenerate.
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Qualitative properties of µε

We know: µε ≪ µ, dµε

dµ
∈ L2(µ)

Fact

If r(y, η) > 0 =⇒ rε(y, η) > 0, then µ ≪ µε.

We have more general criterion
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Finite speed of propagation for the environment

process

∃ α(·) vanishing at infinite and C > 0 such that:

∣

∣Covenvµ [X,X ′]
∣

∣ ≤ α(d(Λ,Λ′))‖X‖∞‖Y ‖∞

• d(Λ,Λ′) Euclidean distance between Λ,Λ′ ⊂ Z
d

• d(Λ,Λ′) ≥ Ct

• X r.v. determined by process on Λ up to time t

• X ′ r.v. determined by process on Λ′ up to time t
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Approximation of µε by µ at infinity

Theorem

Suppose

• environment process has finite speed of propagation

• walker jump rates rε(y, η) have finite range in y and finite
support in η

Then for any bounded local function f : Ω → R, it holds

lim
|x|→∞

µε(τxf) = µ(f) .
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• The proof provides bound on the error |µε(τxf)− µ(f)|.
• If α decay exponentially, then |µε(τxf)− µ(f)| ≤ e−c|x|
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Random walk and 1d interacting particle system

• Environment process

• 1d interacting particle system

• State space {0, 1}Z
• µ reversible distribution, translation invariant

• Poincaré inequality

Alessandra Faggionato L2–perturbation of Markov processes and applications



Nearest–neighbor random walk (X
(ε)
t )t≥0

1
2
−ǫ

x •
1
2
+ǫ

y

x
η(x) = 1

1
2
+ǫ

x •
1
2
−ǫ

y

x
η(x) = 0
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Asymptotic velocity v(ε)

Proposition

Take ε small. Then:

• v(ε) has Dyson–Phillips expansion.

• v(·) is antisymmetric: v(ε) = −v(−ε)

•

v(ε) =

{

2ε
[

2µ(η(0)) − 1
]

+O(ε3) if µ(η(0)) 6= 1/2

ε3κ+O(ε5) if µ(η(0)) = 1/2,

with

κ := −8µ

(

(2η(0) − 1)
{

∫ ∞

0
Eη[ηs(1)− ηs(−1)]ds

}2
)

.
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v(ε) for µ(η(0)) = 1/2

• Environment given by independent spins ⇒ v(ε) ≡ 0, κ = 0

• Environment given by East model ⇒ simulations suggest
κ < 0

• We have proved negative velocity for a random walk
mimicking some mechanism of rw in East environment.
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Antisymmetry v(ε) = −v(−ε)

• the environment process is left invariant by space reflection
=⇒ easy

• in general: algebraic derivation, not related to

dynamical internal symmetries of environment process

• it holds for a larger class of random walks

• Replace Z by torus TN := Z/NZ. Instead of X
(ε)
t /t study

asymptotics of winding number per time unit. With V.
Lecomte: higher–level symmetry on LD rate

function (hence, generating function)
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East environment ρ = 1/2:

simulation of v(ε) (P. Thomann)
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East environment ρ = 1/2:

simulation of µε(η(x)) (P. Thomann)
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⇒ Asymptotic convergence to µ(η(x)) = 1/2
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East environment ρ = 1/2:

simulation of µε(η(x)) (P. Thomann)
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East process

• Stochastic model for glassy systems, state space
Ω = {0, 1}Z

• Constrained Glauber dynamics. Parameter ρ ∈ (0, 1)

• At site x wait exponential time of mean 1.
Then, only if η(x+ 1) = 0, update ηx:

{

1 with probability 1− ρ ,

0 with probability ρ .

• (1− ρ)–Bernoulli probability νρ: reversible distribution

• it satisfies Poincaré inequality

Alessandra Faggionato L2–perturbation of Markov processes and applications



East process and West process

• West process: same definition but now constraint
“η(x− 1) = 0”

• Antisymmetry: for each ρ, veast(ε) = vwest(ε)
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