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• Environment: probability space (Ω,F ,P), Rd acts on Ω by
shifts τx : Ω→ Ω, x ∈ Rd. We assume that P is invariant
under the shifts and ergodic.

• Hamiltonian: H(p, x, ω) := H̃(p, τxω). Examples:
(i) H̃(p, ω) = |p|α + b(ω) · p− V (ω), α > 1, b, V are bounded

and locally Lipschitz under the shifts, V ≥ 0 a.s.. This is a
convex example. We can define the corresponding
Lagrangian,

L̃(q, ω) := sup
p∈Rd

(p · q − H̃(p, ω)).

(ii) H̃(p, ω) = (|p|2 − 1)2 − V (ω).

(iii) H̃(p, ω) = 1
2 |p|

2 − |p|+ b(ω) · p− V (ω).

All these examples are of the type
H̃(p, ω) = H̃1(p, ω)− H̃2(p, ω), where H̃i are convex, H̃1 is
super-linear and grows faster than H̃2 as |p| → ∞. Let us
assume that this is the case for the rest of the talk.
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• HJB equation: a > 0 - viscous case, a = 0 - inviscid case;
we shall assume a = 1. Let uε = uε(t, x, ω) be the (unique
viscosity) solution of

(HJB) uεt =
ε

2
a∆uε +H

(
∇uε, x

ε
, ω
)
, (t, x) ∈ (0,∞)× Rd;

uε|t=0 = g(x), x ∈ Rd, g is Lipschitz continuous.

• Problem: Show that (under suitable assumptions)
uε(t, x, ω) converges as ε→ 0 in some sense (in
probability or a.s.) to a deterministic u(t, x), where u(t, x) is
the solution of the effective equation ut = H̄(∇u) with the
same initial condition g.
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• References for (qualitative) convex homogenization for
viscous (HJB): P.-L. Lions, P. E. Souganidis (2005, 2010);
EK, F. Rezakhanlou, S.R.S. Varadhan (2006);
EK, S.R.S. Varadhan (2008);
S. Armstrong, P. E. Souganidis (2012),
S. Armstrong, H. Tran (2015) and references therein.

• Closely related results on large deviations of RW in
random environments and random potential:
F. Rassoul-Agha, T. Seppäläinen, A. Yilmaz (2013) and
references therein.
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A word about correctors

Corrector problem: For every θ ∈ Rd find a constant λ = λ(θ)
such that the equation

a

2
∆v +H(θ +∇v, x, ω) = λ, x ∈ Rd

has a viscosity solution v(x, ω) which is Lipschitz with
stationary, mean zero gradient. These conditions guarantee
that v(x, ω) is strictly sub-linear at infinity. The latter also
ensures that λ(θ) is unique for each θ.1 Then λ(θ) is the
effective Hamiltonian.
Just to indicate the connection: for v as above the function
U ε(t, x, ω) = λ(θ)t+ θ · x+ εv(x/ε, ω) solves (HJB) with the
initial data θ · x+ εv(x/ε, ω) and converges to λ(θ)t+ θ · x,
which is a solution to ut = λ(∇u).

1P.-L. Lions, P. E. Souganidis, CPAM, 2003, Prop. 2.1.
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References about correctors

• F. Rezakhanlou, J. E. Tarver (2000) proved, in particular,
that the existence of correctors implies homogenization for
general initial data (a = 0).

• P.-L. Lions and P. E. Souganidis (CPAM, 2003) have shown
that correctors for stochastic HJ equations in general need
not exist.

• A. Davini and A. Siconolfi (Mat. Annalen, 2009) have
shown that for level-set convex H and d = 1 approximate
correctors for the inviscid problem do exist and derived
homogenization for this case.

• For further developments see A. Marigonda and
A. Siconolfi (Adv. Diff. Equat., 2011).
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Recent progress in homogenization of non-convex HJ
equations

Results for a = 0:
• S. Armstrong, P. E. Souganidis (IMRN, 2013). Stochastic

homogenization of level-set convex HJ equations.
• S. Armstrong, H. Tran, Y. Yu (Calc. Var. PDE, 2015).

Stochastic homogenization of a non-convex HJ equation.
Treated H(p, ω) = (|p|2 − 1)2 − V (ω) (Example (ii)).

• S. Armstrong, H. Tran, Y. Yu (arxiv, 2014). Stochastic
homogenization of nonconvex Hamilton-Jacobi equations
in one space dimension.

• B. Fehrman (arxiv, 2014). A partial homogenization result
for nonconvex viscous HJ equations. (Proof for a = 0,
changes are sketched for a > 0.)
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Basic facts

• Linear initial data: g(x) = θ · x. Observe that the function
u(t, x) = tH̄(θ) + θ · x solves the equation ut = H̄(∇u) with
this initial data. In particular, if the homogenization takes
place then H̄(θ) = limε→0 u

ε
θ(1, 0, ω), where uεθ solves the

original HJB equation with g(x) = θ · x. Homogenizing
uεθ(1, 0, ω) for all θ ∈ Rd would identify the candidate for the
effective Hamiltonian.

• Homogenization as a scaling limit: Define vε by

uε(t, x, ω) = ε vε
(
t

ε
,
x

ε
, ω

)
then vε solves (with a = 1)

vεt =
1

2
∆vε +H (∇uε, x, ω) , (t, x) ∈ (0,∞)× Rd;

vε|t=0 = ε−1g(εx)(= θ · x if g(x) = θ · x), x ∈ Rd.

Thus if g(x) = θ · x then vε does not depend on ε.
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• Can it be that H̄ is convex when the original H is not? Yes.
For a = 0 see the cited above [ATY]. But not in general.
This can be seen by comparison: solutions of the HJB
equation with the following Hamiltonians (and the same g)

• |p|2 − 2|p|;
• |p|2 − 2|p| − V (ω), 0 ≤ V ≤ 1/2;
• |p|2 − 2|p| − 1/2.

are ordered. The first and the third are non-random so the
effective Hamiltonians are the same as the original ones.
By comparison, the effective Hamiltonian for the second
one has to be in between which implies that it can not be
convex.

• Question in a different direction: suppose that
H̃(p, ω) = H1(p)− γH2(p)− V (ω), where
P(V 6≡ const) > 0 and γ > 0. Is it true that there is γc > 0
such that for all γ < γc the effective Hamiltonian is convex?
The example from [ATY] suggests that this might be the
case (a = 0). Can one prove an a priori convexity of H̄ for
small γ and use it to derive homogenization?
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Case H̃(p, ω) = 1
2|p|

2 − |p|+ b(ω) · p− V (ω)

• Hopf-Cole transformation:
hε(t, x, ω) = ev

ε(t,x,ω) = eε
−1u(εt,εx,ω) so that

uε(t, x, ω) = ε log hε
(
t

ε
,
x

ε
, ω

)
, where hε solves

hεt =
1

2
∆hε − |∇hε|+ b(τxω) · ∇hε − V (τxω)hε,

hε(0, x) = exp(ε−1g(εx))(= eθ·x if g(x) = θ · x).
• Note that |p| = sup|q|≤1(p · q), so
−|∇hε(t, x, ω)| ≤ c(t, x, ω) · ∇hε(t, x, ω) for all c(t, x, ω):
‖c‖∞ ≤ 1. By comparison, hε ≤ hεc, where hεc solves the
linear heat equation with drift c(t, x, ω) + b(τxω) and
potential V . In fact,

hε(t, x, ω) = inf
‖c‖∞≤1

Ex exp

(
ε−1g(εX(t))−

∫ t

0
V (τX(s)ω) ds

)
,

where dX(s) = (b(τX(s)ω) + c(s,X(s), ω)) ds+ dW (s),
X(0) = x, 0 ≤ s ≤ t.
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• Problem: Show the existence of

lim
ε→0

ε inf
‖c‖∞≤1

logEωx/ε exp

(
ε−1g(εX (t/ε))−

∫ t/ε

0
V (τX(s)ω) ds

)
,

where dX(s) = (b(τX(s)ω) + c(s,X(s), ω)) ds+ dW (s),
X(0) = x/ε. As the first step take g(x) = θ · x and x = 0.

• RWRE version: Let the environment be stationary and
ergodic with respect to the shifts on Zd. Assume uniform
ellipticity: P

(
mine∈Zd,|e|=1 ω(0, e) ≥ κ

)
= 1 for some κ > 0.

Let d(x, ω) :=
∑

e:|e|=1 ω(x, e)e be the drift at x in
environment ω. For each n and x let ω′(n, x, ·, ω) be a
probability measure on {e ∈ Zd : |e| = 1} and d′(n, x, ω) be
the corresponding drift. Fix a small c > 0. Let
Pω,ω

′

0 (Xn+1 = Xn + e|Fn) = ω′(n,Xn, e, ω). For each
θ ∈ Rd show the existence of

lim
n→∞

1

n
inf

ω′:|d′−d|≤c
logEω,ω

′

0 exp

(
θ ·Xn −

n−1∑
i=0

V (τXiω)

)
.
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• Case d = 1, V ≡ 0. To identify the candidate for H̄
consider g(x) = θ · x and the diffusion which starts at 0.
Then we are interested in the limit of

uεθ(1, 0) = ε inf
‖c‖∞≤1

logEω0 exp(θ ·X(1/ε)).

In this case the infimum is attained at c ≡= signθ if θ 6= 0
(uε0(1, 0) ≡ 0) by the comparison of solutions of 1d SDE,

dX(s) = (b(τX(s)ω) + c(s,X(s), ω))ds+ dW (s), X(0) = 0;

dY (s) = (b(τY (s)ω)− sign θ)ds+ dW (s), Y (0) = 0.

We conclude that H̄(0) = 0 and

H̄(θ) = limε→0 ε logEω0 (θ ·X(1/ε)), where
dX(s) = (b(τX(s)ω)− sign θ) ds+ dW (s) for θ 6= 0.
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Let θ 6= 0. Note that we have a convex homogenization problem
for H̃θ(p, ω) = 1

2 |p|
2 + (b(ω)− sign θ)p. The limit exists and can

be expressed as follows:
(I) H̄(θ) = sup

(B,Φ)∈E
E[(B(ω)θ − L̃θ(B(ω), ω))Φ(ω)], where

E = {(B,Φ) : E(Φ) = 1, Φ, Φ−1, Φ′,Φ′′, B

are essentially bounded,
1

2
Φ′′ = (BΦ)′ in the weak sense}

and L̃θ(q, ω) = 1
2 (q − b(ω) + sign θ)2. Thus, for θ 6= 0

H̄(θ) = sup
(B,Φ)∈E

E[(B(ω)θ − 1

2
(B(ω)− b(ω) + sign θ)2)Φ(ω)].

But can one see from this formula that if b is a constant (i.e.
there is nothing to homogenize) then H̄(θ) = 1

2 θ
2 − |θ|+ bθ as it

should be (i.e. that Φ ≡ 1 and constant B are optimal)?
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There is another way to express the effective Hamiltonian:

(II) H̄(θ) = inf
Ψ

ess sup
ω

[H̃θ(θ +∇Ψ, ω) +
1

2
∆Ψ],

where the infimum is taken over functions Ψ(x, ω) which have
essentially bounded, stationary, mean zero gradient. Hence,

H̄(θ) = sup
(B,Φ)∈E

E[(B(ω)θ − 1

2
(B(ω)− b(ω) + sign θ)2)Φ(ω)]

= inf
Ψ

ess sup
ω

[
1

2
|θ + Ψ′|2 + (b(ω)− sign θ)(θ + Ψ′) +

1

2
Ψ′′
]
.

Now to complete the check in the constant drift case: putting
Φ ≡ 1, and optimizing over constant B we get

H̄(θ) ≥ 1
2 |θ|

2 − |θ|+ bθ. Choosing Ψ ≡ 1 we see that

H̄(θ) ≤ 1
2 |θ|

2 − |θ|+ bθ.
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The “main equation” in the convex case
Set AB = 1

2∆ +B(ω) · ∇ and EΦ(X) =
∫

ΩXΦ dP. Formally, if
∇Ψ is essentially bounded, stationary, and E(∇Ψ) = 0, then

H̄(θ) = sup
(B,Φ)∈E

E[(θ ·B(ω)− L(B(ω), ω))Φ(ω)]

= sup
Φ

sup
B

inf
Ψ

E[(θ ·B(ω)− L(B(ω), ω) + (ABΨ)(ω))Φ(ω)]

= sup
Φ

inf
Ψ

sup
B

EΦ[θ ·B(ω)− L(B(ω), ω) +
1

2
∆Ψ +∇Ψ ·B(ω)]

= sup
Φ

inf
Ψ

sup
B

EΦ[(θ +∇Ψ) ·B(ω)− L(B(ω), ω) +
1

2
∆Ψ]

= sup
Φ

inf
Ψ

EΦ[H(θ +∇Ψ, ω) +
1

2
∆Ψ]

= inf
Ψ

sup
Φ

EΦ[H(θ +∇Ψ, ω) +
1

2
∆Ψ]

= inf
Ψ

ess sup
ω

[H(θ +∇Ψ, ω) +
1

2
∆Ψ].

Observe that infΨ E[(ABΨ)Φ] = −∞ unless Φ dP is an
invariant measure for AB, in which case it is 0.
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Return to H = H1 −H2. There is a representation formula for
solutions of (HJB) in the differential games theory.2 But the
formula does not seem to be usable.
One could start with “better” representations for solutions of
ut = H̄(∇u). Recall formulas for solutions of ut +H(∇u) = 0.
When H is convex and g ∈ UC we have a Hopf-Lax formula3

u(t, x) = inf
z

sup
y

[g(z) + y · (x− z)− tH(y)]

= inf
y

[g(z) + tL((x− z)/t)] = min
y

[g(y − tk) + tL(k)].

If H ∈ C and g is convex and Lipschitz then the second Hopf
formula states

u(t, x) = sup
y

inf
z

[g(z) + y · (x− z)− tH(y)]

= max
y

[x · y − g∗(y)− tH(y)].

2H as above satisfies Isaacs condition, and the game has a value.
3M. Bardi, S. Faggian, 1998, and references therein.



uε
t = ε

2
∆uε + H(∇uε, x/ε, ω): set up and basics Special case H = H1 −H2

M. Bardi, S. Faggian, 1998, have shown, in particular, that for
H = H1 −H2

max
m

min
k
f(t, x, k,m) ≤ u(t, x) ≤ min

k
max
m

f(t, x, k,m),

where f(t, x, k,m) = g(x− t(k −m)) + tL1(k)− tL2(m). The
equalities hold for linear initial data for all t. They also gave
examples where the inequalities are strict. All examples are
non-coercive but one can give a coercive example
(H(p) = |p|2/2− |p|, g(x) = −2|x|) when for all t > 0 upper and
lower bounds do not match.
Also note that the decomposition H = H1 −H2 is not unique.
Can this be used to improve the bounds?
L.C. Evans, 2014, proposed another representation formula
(and more) for solutions of HJ equations with general H by
using the adjoint method.


	ut=2u+H(u,x/,): set up and basics
	Special case
	H=H1-H2

